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Abstract—The detection of road defects is crucial for en-
suring vehicular safety and facilitating the prompt repair of
roadway imperfections. Existing YOLOv8-based models face
the following issues: extraction capabilities and insufficient
feature representation in complex scenarios, slow bounding
box regression speed. To address these challenges, we pro-
pose the YOLOv8-DSW model. Firstly, we incorporate the
Dilation-wise Residual (DWR) module into the C2f module in
the neck, improving the detection performance of multi-scale
feature maps. Secondly, We incorporate the SENetv2 attention
mechanism into the neck of the YOLOv8 model to augment
feature expression capabilities. Finally, we introduce Wise-IoU
(WIoU) to enhance the speed of bounding box regression.
Experimental results indicate that YOLOv8-DSW enhances
the mean Average Precision at 50% (mAP50) by 2.5% in
comparison to the YOLOv8n, significantly improving detection
accuracy and provide valuable method for the development of
road defect detection.

Index Terms—YOLOv8; road defect detection; deep learning;
attention mechanism

I. INTRODUCTION

THE detection of road defects is crucial for preventing
traffic accidents and ensuring public safety [1]. Con-

ventional detection techniques, such as edge detection, color
segmentation, and texture analysis, effectively identify cracks
and potholes on road surfaces, thereby establishing a robust
foundation for the advancement of road defect detection [2].
However, due to its low efficiency and significant errors,
manual detection lacks practicality. The emergence of deep
learning has made to groundbreaking advancements in object
detection algorithms [3]. Alzraiee et al. [4] utilized Faster R-
CNN to annotate pavement defects, enhancing identification
confidence and thereby improving the method’s practicality.
Xu et al. [5] proposed a tunnel pavement detection method
utilizing Mask R-CNN. The model’s robustness and accu-
racy in defect detection and segmentation were validated
through the incorporation of a feature-enhanced pyramid
network (PAFPN). However, they are hindered by slow
detection speeds and large model parameters, rendering them
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unsuitable for applications on lightweight mobile devices
[6]. To mitigate this limitation, single-stage target detection
algorithms have been introduced, including You Only Look
Once (YOLO) and Single Shot MultiBox Detector (SSD).
Du et al. [7] utilized bidirectional feature pyramid networks
for multi-scale fusion in the YOLOv5s model, and Varifocal
Loss to alleviate the problem of data imbalance. Yi et al. [8]
introduced an enhanced YOLOv7 method by integrating the
SimAM attention mechanism and Ghost modules, as well as
substituting the original loss function with SIoU. Increase
computational speed and reduce latency. Yan et al. [9]
integrated deformable convolution into the backbone network
of SSD, thereby enhancing accuracy. Due to YOLOv8’s
superior accuracy and speed compared to previous YOLO
versions, we adopt YOLOv8 as the baseline model.

II. RELATED PRINCIPLES

A. YOLOv8 model

YOLO is currently one of the most popular real-time ob-
ject detection algorithms [10]. YOLOv8 inherits the efficient
real-time detection capabilities of the YOLO series while
introducing significant improvements in model architecture,
training processes and multi-task handling capabilities [11]–
[16]. YOLOv8 has five distinct models, each featuring dif-
ferent parameter sizes to accommodate various application
requirements [17]. In this paper, we propose the YOLOv8-
DSW, an improved YOLOv8n model. YOLOv8 references
the C3 module of YOLOv5 and the ELAN module of
YOLOv7, and proposes the C2f module, enhancing the
ability of feature fusion [18]. Subsequently, the Spatial
Pyramid Pooling - Fast (SPPF) module from YOLOv5 is
incorporated, and the model parameters are fine-tuned to
optimize performance [19]. YOLOv8 substitutes the conven-
tional header with a modern decoupled header, transitioning
from anchor-based to anchor-free detection method [20].
Regarding the loss function, YOLOv8 utilizes Binary Cross-
Entropy (BCE) loss for classification and employs Deep Fea-
ture Loss (DFL) in conjunction with Complete Intersection
over Union (CIoU) loss for regression tasks. Additionally,
YOLOv8 adopts a task-aligned strategy for assigning positive
and negative samples, foregoing both Intersection over Union
(IoU) allocation and unilateral allocation.

B. DWR module

The DWR module is an expandable residual attention
mechanism consisting of two primary components: Regional
Residualization (RR) and Semantic Residualization (SR). RR
emphasizes regional residualization, while SR is dedicated
to semantic residualization. As illustrated in Fig. 1, these
components are intricately integrated to enhance the efficient
extraction of feature information and the fusion of feature
maps from multi-scale sensory fields.
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Fig. 1. DWR module diagram

Incorporating RR into deep networks addresses the di-
verse requirements of various receptive fields within multi-
branch architectures. In each branch, a 3x3 convolution is
sequentially applied for feature extraction, followed by batch
normalization and ReLU activation to produce feature maps.
Subsequently, SR utilizes these feature maps as filtering
material and inversely aligns the receptive fields to apply an
optimal receptive field for each channel. The DWR not only
improves feature extraction but also mitigates redundancy
in receptive fields. It transforms dilated convolution from
merely extracting complex semantic information to executing
morphological filtering on each concise feature map, thereby
enhancing the acquisition of multi-scale contextual features.

C. SENetv2 Attention Mechanisms

In deep learning, attention mechanisms have widely ap-
plications, with the Squeeze-and-Excitation(SE) attention
mechanism being particularly distinguished. The SE con-
structs models through squeezing and excitation operations.
SENetv2 is an enhanced version of the SE attention mecha-
nism, integrating the Squeeze aggregated Excitation (SaE)
module into its original architecture. The SaE module is
inspired by the inception module and incorporates a multi-
branch fully connected layer of equivalent size, thereby
significantly improving accuracy. The structure of the SaE
module is illustrated in Fig. 2.

The SaE module is a core innovation of SENetV2, which
enhances the traditional SE module by incorporating multi-
branch fully connected layers, thereby improving the mod-
eling of global features. In the SaE module, the input
undergoes a compression operation via multi-branch fully
connected layers, followed by an excitation operation that
restores the features to their original dimensions. The output
is then multiplied channel-wise with the input features to
amplify key characteristics. The use of a lower cardinal-
ity design optimizes computational efficiency and reduces
model complexity. SENetv2 integrates residual connections
that transmit the original features to the output, combining

Fig. 2. Structure diagram of the SaE module

them with the features processed by the SaE module. This
approach helps mitigate feature loss during backpropagation.

D. WIoU

IoU is a crucial metric for assessing the performance of
object detection models in computer vision, especially in
tasks like object detection and semantic segmentation. It
quantifies the overlap between the predicted bounding box
and the ground truth bounding box.

WIoU represents an enhanced variant of IoU that employs
the concept of outlier degree to assess the efficacy of anchor
boxes and introduces a gradient assignment strategy. WIoU
effectively mitigates the effects of low-quality anchor boxes
and high-quality anchor boxes, thus shifting attention to
medium-quality anchor boxes.

WIoU comprises three iterations, with WIoU v1 primar-
ily addresses geometric measurement issues. These metrics
include Euclidean distance and aspect ratio, among others,
which can disproportionately influence training and exac-
erbate penalties for low-quality anchor boxes. WIoU v1
employs a two-layer distance-attention mechanism based on
the distance metric. The formulation of WIoU v1 is detailed
in Eq. (1), Eq. (2), Eq. (3), and Eq. (4).

LWIoUv1 = RWIoU × LIoU (1)

RWIoU = exp(x) (2)

x = (
(bg

t

cx − bcx)
2 + (bg

t

cy − bcy)
2

(c2w + c2h)
) (3)

LIoU = 1− IoU (4)

whereLWIoUv1 is the weighted IoU loss, RWIoU is the weight
factor, btcx is the x-coordinate of the center of the ground truth
box, bcx is the x-coordinate of the center of the predicted box,
btcy is the y-coordinate of the center of the ground truth box,
bcy is the y-coordinate of the center of the predicted box, cw
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Fig. 3. YOLOv8-DSW

is the width of the smallest enclosing box that covers both
the ground truth and predicted boxes, and ch is the height of
the smallest enclosing box that covers both the ground truth
and predicted boxes. LIoU is the standard IoU loss, defined
as 1 minus the IoU.

WIoU v2 is an improved version of the WIoU v1 series,
which introduces a static Focusing Mechanism (FM) and a
dynamic normalization factor to further optimize the gradient
allocation strategy for anchor boxes. WIoU v2 significantly
enhances the regression accuracy and training efficiency of
the model. In WIoU v2, the focusing factor decreases as IoU
decreases, thereby reducing the contribution of low-quality
anchor boxes to the loss function and enabling the model
to focus more on high-quality and medium-quality anchor
boxes. Additionally, WIoU v2 incorporates the running av-
erage of IoU (LIoU) as a dynamic normalization factor to
adaptively adjust the standardization of IoU values, ensuring
that the gradient allocation strategy is dynamically optimized
during training. This approach effectively addresses the issue
of slowed convergence in the later stages of training. By
combining the FM with the dynamic normalization factor,
WIoU v2 achieves faster convergence and higher localization
accuracy, particularly demonstrating superior performance
and generalization ability in scenarios with complex target
distributions or inconsistent data quality. The formula for
WIoUv2 is as shown in Eq.(5).

LWIoUv2 = Lγ∗
IoULWIoUv, γ > 0 (5)

Specifically, Lγ∗
IoU is a monotonically focusing coefficient.

In contrast, the WIoU v3 version is introduced in this paper
incorporates the concept of outlier degree, by the quality of
anchor boxes is assessed through the calculation of the outlier
degree β. A lower outlier degree corresponds to a higher-
quality anchor box. WIoUv3 assigns greater gradient gains
to higher-quality anchor boxes to improve the regression

performance of the bounding box. Conversely, lower gradient
gains are allocated to anchor boxes with higher outlier
degrees to mitigate the negative impact of low-quality anchor
boxes, thereby enhancing overall model performance. The
calculation of WIoU v3 is detailed in Eq. (6), Eq. (7), and
Eq. (8).

LWIoUv3 = r × LWIoUv1 (6)

r =
β

δαβ−δ
(7)

β =
L∗IoU
LIoU

∈ [o,+∞] (8)

where α is a hyperparameter and r is the gradient gain.

III. IMPROVED YOLOV8 ROAD DEFECT DETECTION
MODEL

To address the limited feature representation and extrac-
tion capabilities in complex scenarios, as well as the slow
bounding box regression speed of the current YOLOv8n
model, we propose YOLOv8-DSW. First, the integration
of a more efficient DWR module for multi-scale feature
extraction into the C2f module within the neck of the original
YOLOv8n network enhances its ability to extract features
in intricate scenes. Second, the inclusion of the SENetv2
attention mechanism in the network’s neck improves feature
representation. Finally, we replace the CIoU loss function
with the WIoU v3 loss function to accelerate regression
speed. The architecture of the YOLOv8-DSW model is
illustrated in Fig. 3.

A. Boosts multi-scale detection with DWR

To enhance multi-scale feature detection capabilities, we
introduce the DWR module into the C2f module. The design
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of the C2f module is inspired by the C3 module in YOLOv5
and consists of two primary components: the upsampling
module and the fusion module. The former adjusts low-
level feature maps to align with the dimensions of high-level
feature maps for subsequent fusion. The latter employs a
bottleneck structure for feature fusion, typically consisting
of a 1x1 convolution, a 3x3 convolution, and residual con-
nections. The 1x1 convolution reduces dimensionality, then
the 3x3 convolution extracts features. Finally, the original
features are integrated with the extracted features through
residual connections.

The DWR module substitutes the bottleneck module in the
original architecture. It first receives the number of channels
as input and initializes various convolutional layers. To align
the number of channels, the input is processed through a
3x3 convolution, which reduces the channel count to half of
its original value. Subsequently, three dilated convolutions
with varying dilation rates are applied to the output of
the preceding layer. The outputs of these convolutions are
concatenated along the channel dimension and then restored
to their original dimensions using 1x1 convolutional layers.

The DWR module expands the receptive field without
increasing the number of parameters or computational com-
plexity, enabling the network to capture fine-grained details
alongside broader contextual information. Furthermore, the
residual connections effectively facilitate cross-layer feature
propagation, mitigating gradient vanishing issues and en-
hancing training efficiency and performance. By combining
dilated convolutions with a residual connection, the DWR
module efficiently aggregates multi-scale features, making
it particularly well-suited for detecting targets in complex
scenarios. The architecture of C2f_DWR module is shown
in Fig.4.

B. Enhances feature expression with SENetv2

We introduce the SENetv2 attention mechanism after the
C2f neck network in YOLOv8 to enhance feature repre-
sentation. The core idea of SENetV2 is to enhance feature
representation by applying squeeze-and-excitation operations
on channel features and global features, enabling the net-
work to focus more on key features. Additionally, SENetV2
constructs deep networks through residual connections, mit-
igating feature loss during the backpropagation process.
The formulation of the residual connections in SENetv2 is
elaborated upon in Eq. (9) and Eq. (10).

SENetv2 = x+ F (X) (9)

F (X) = F (X · Ex(
∑

Sq(X))) (10)

where Sq denotes the squeezing operation and
∑

Sq sig-
nifies the merging of multi-branched features. Ex represents
the excitation operation.

The features entering the Squeeze module undergo global
average pooling, converting the output into a flattened vector.
This operation facilitates subsequent processing and reduces
the number of parameters. The features are then passed
through a multi-branch fully connected layer, further reduc-
ing their dimensions. To mitigate the impact of varying group
sizes during compression, the multi-branch fully connected
layer adopts a consistent topology to minimize the influence
of hyperparameters. Additionally, a convolutional structure

Fig. 4. C2f_DWR

using 1x1, 3x3, and 1x1 filters is employed for feature
extraction. The excitation operation learns the dependencies
between channels using the full connection layer, and then
applies activation functions to obtain the weights for each
channel. Finally, the weighted multi-branch input is concate-
nated and the original shape is restored through the fully
connected layer. Therefor, the incorporation of the SENetv2
attention mechanism maintains the integrity of the network’s
original features, enhances the detection capabilities for road
defects and improves the ability to adapt across various
environments.

C. Improves localization accuracy and speed with WIoU

Bounding box regression is pivotal to target detection,
and enhancing its fitting capability can optimize model per-
formance. However, indiscriminately augmenting bounding
box regression for low-quality anchor boxes may negatively
impact overall performance. YOLOv8 employs CIoU as the
loss function for bounding box regression, incorporating an
additional penalty term for aspect ratio beyond that of DIoU.
While it enhances the accuracy of measuring anchor box
similarity, it exerts excessive influence on the training process
and does not adequately account for variations among dif-
ferent anchor boxes. To accelerate bounding box regression,
the penalty associated with geometric factors is diminished.
Consequently, in our YOLOv8-DSW, WIoU is employed in
place of the original CIoU.
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Fig. 5. Comparison of the detection effects of YOLOv8n and YOLOv8-DSW

WIoU v3 is the most advanced version of the Wise-IoU
series. WIoU v3 adaptively assigns smaller gradient gains
to both low-quality and high-quality anchor boxes, focusing
the learning process on medium-quality anchor boxes, which
are most critical for improving model performance. This
approach effectively reduces the harmful gradients from
low-quality anchor boxes while maximize the influence of
medium quality anchor frame, resulting in a more balanced
and efficient training process. The dynamic focusing mecha-
nism allows WIoU v3 to adjust gradient allocation strategies
in real-time based on the current training context. WIoU v3
significantly enhances localization accuracy and convergence
speed, outperforming previous versions and other state-of-
the-art bounding box regression loss functions.

IV. EXPERIMENTAL ANALYSIS

A. Environment Configuration

We assess our model on the public dataset from the 2020
Global Road Detection Challenge. In this chapter, we provide
a comprehensive description of the model parameters, train-
ing process, evaluation metrics, ablation experiments, and
comparative studies. The hardware configuration comprises
a 10GB NVIDIA GeForce RTX 3080 graphics card, PyTorch
2.0.0 as the deep learning framework, Python 3.8, CUDA
11.8, and the Ubuntu 20.04 operating system.

B. Network Training

The images are partitioned into training and validation sets
in an 8:2 ratio.The maximum number of training epochs is
set to 300. For practical considerations, the input images are
normalized to a size of 640 × 640, which represents the

largest dimension permitted for deployment on the device.
The initial learning rate is established at 0.01, and the
SGD optimization strategy is employed to adjust it. To
ensure fairness and accuracy, both the training and ablation
experiments utilize a consistent set of hyperparameters. The
parameter configuration is elaborated in Table 1.

TABLE I
PARAMETER TABLE

Parameters Setup

Epochs 300
Batch Size 16

Imgsize 640
Learning Rate 0.01

Patience 50
Optimizer SGD
Workers 8

Weight-Decay 0.0005

C. Evaluation indicators
The experiments are conducted to assess the performance

of model, utilizing precision (P), recall (R), and mean
Average Precision (mAP) as the primary evaluation metrics.
Accuracy and recall are computed as illustrated in Eq. (11)
and Eq. (12):

P =
TP

TP + FP
× 100 (11)

R =
TP

TP + FN
× 100 (12)

where TP denotes the count of true positives, FP represents
the count of false positives, and FN indicates the count of
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TABLE III
COMPARISON OF DIFFERENT ATTENTION MECHANISMS

Algorithms mAP50 mAP50-95 Params/M GFLOPs

Yolov8n 54.5 29.1 3.0 8.2
Yolov8n+SE 54.3 28.5 3.0 8.1

YOLOv8n+CBAM 55.9 29.0 3.1 8.3
YOLOv8n+LSKA 56.0 29.1 3.3 8.9

YOLOv8n+SEv2(Ours) 56.1 29.2 3.0 8.1

false negatives.the average accuracy across n categories is
computed as illustrated in Eq. (13) and Eq. (14):

AP =

∫ 1

0

P (r)d(r) (13)

mAP =
1

N

n∑
i=1

APi (14)

where AP denotes the average precision of the model at var-
ious recall rates, and N represents the number of categories.

D. Ablation experiments

To evaluate the influence of various components, this paper
conducts ablation experiments. These experiments assess
how different combinations of modules, such as DWR,
SENetv2, and WIoU, impact the performance of road defect
detection.

TABLE II
ABLATION TEST RESULTS

Algorithms P/% R/% mAP50 mAP50-95

DWR 56.6 53.7 55.0 29.0
SENetv2 57.7 53.7 56.1 29.2

WIoU 57.8 55.4 55.7 29.2
DWR+SENetv2 58.3 53.3 55.8 29.0

DWR+WIoU 57.0 55.0 56.2 29.7
SENetv2+WIoU 58.7 53.4 56.5 29.3

DWR+SENetv2+WIOU 62.5 52.8 57.0 29.3

As illustrated in Table 2, the integration of DWR,
SENetv2, and WIoU into YOLOv8n enhances the mAP50
to varying degrees. The highest mAP50 value is attained
when all three modules are incorporated simultaneously. This
enhanced model exhibits greater efficiency, with each module
contributing positively to overall performance.

E. Comparative Experiments

1) Impact of different attention mechanisms on network
performance: To assess the performance of SENetv2, this
section compares it with other widely used attention mecha-
nisms. The CBAM attention mechanism consists of two inde-
pendent sub-modules: the channel attention module and the
spatial attention module. This design reduces computational
complexity and parameter requirements while enhancing
feature extraction efficiency. LSKA, a large separable kernel
attention module, decomposes the 2D convolutional kernel
in deep convolutional layers into cascaded horizontal and
vertical 1D kernels. This approach effectively mitigates the
quadratic growth in computation and memory usage without
compromising model performance. As shown in Table 3,
SENetv2 demonstrates a more substantial improvement in
detection accuracy compared to other mechanisms.

2) Classical model comparison experiments: To com-
prehensively evaluate the YOLOv8-DSW model. This pa-
per conducts comparative experiments using YOLOv7,
YOLOv8, and other improved models based on YOLOv8n,
aiming to verify the effectiveness of the YOLOv8-
DSW model. The comparison of detection effects be-
tween YOLOV8-DSW and YOLOv8n is shown in Fig.5.
The mAP50 comparison between YOLOv8n model and
YOLOv8-DSW model is shown in Fig.6. The comparison of
mAP50 and mAP50-95 between YOLOv8-DSW and other
models is shown in Fig.7 and Fig.8.

1.We reproduced the YOLOv8-RD road defect detection
model by adding the BOT module after the SPPF module in
the original YOLOv8 backbone network. Additionally, the
model integrates the CA attention mechanism into the head
section and incorporates RepGhost into the C2f module. It
is specifically designed to detect four types of road defects:
longitudinal cracks, transverse cracks, mesh cracks, and
potholes. Detection accuracy for these defect types has been
improved to varying degrees.

2. We incorporate the MSBlock from YOLO-MS into
YOLOv8n for comparative experiments. The MS-Block inte-
grates the CSP module utilized in YOLOv5 with the ELAN
module from YOLOv7, focusing on extracting richer multi-
scale features. It utilizes the proposed HKS protocol by
employing convolutional layers of varying kernel sizes at dif-
ferent stages, thereby achieving an optimal balance between
speed and accuracy through large kernel convolutions.

3. We integrate the information aggregation-distribution
mechanism from the Gold-YOLO model into YOLOv8 for
comparative experiments. The GD mechanism effectively
addresses the challenge of missing information during the
fusion of cross-layer features, a limitation associated with
the FPN method employed in YOLO models. This approach
entails constructing both low-level and high-level informa-
tion aggregation-distribution mechanisms to accommodate
objects of varying sizes. This integration significantly im-
proves the information fusion capability of the neck network.

The collection and distribution process involves three
distinct modules: the Feature Alignment Module (FAM),
the Information Fusion Module (IFM), and the Informa-
tion Injection Module (Inject). The FAM is responsible for
collecting and aligning features across all levels, while the
IFM integrates these aligned features to generate global
information. Subsequently, the Inject module leverages this
fused global information to enhance detection performance
in each branch by distributing it appropriately.

4. Yolo-JD is an advanced agricultural pest detection
model that excels particularly in the detection of jute diseases
and represents a significant enhancement of the YOLO archi-
tecture. The model’s detection accuracy is significantly im-
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Fig. 6. Comparison of YOLOv8-DSW and YOLOv8nPR curves
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(a) comparision chart of mAP@50 (b) partial enlargement of mAP@50

Fig. 7. Comparison of mAP50 models in different models

(c) comparision chart of mAP@50-95 (d) partial enlargement of mAP@50-95

Fig. 8. Comparison of mAP50-95 models in different models

proved through the integration of several custom-developed
modules: the SCFEM, DSCFEM, and SPPM modules. No-
tably, the DSCFEM module is characterized by three SCO
sand clock operations. By transforming conventional 3x3
convolutions into a spatially separable format(specifically
3x1 and 1x3 convolutions)SCO not only reduces the number
of parameters but also enhances feature extraction capa-
bilities. This paper incorporates the DSCFEM module and
the SPPM module into YOLOv8 and conducts comparative
experiments to evaluate its performance.

5. The LeYOLO model enhances the efficiency of ob-
ject detection, particularly for embedded and mobile de-
vices. Through efficient backbone network scaling, the Fast
Pyramid Architecture Network (FPAN), and the Decoupled
Network-in-Network (DNiN) detection heads, the LeYOLO
model significantly reduces computational complexity while
maintaining accuracy, offering an effective solution for prac-
tical applications with limited resources.

6. The ASF-YOLO model addresses the cell instance

segmentation task. Through Scale Sequence Feature Fusion
(SSFF) module and Triple Feature Encoder (TFE) module
were integrated into the Path Aggregation Network (PANet)
to fuse multi-scale feature maps. Specifically, the SSFF mod-
ule improves the ability to handle objects of different sizes
and orientations, while the TFE module focuses on capturing
spatial information about small objects. At the same time,
the Channel and Position Attention Mechanism (CPAM)
enhances the model’s attention to important features.

In this paper, we compare seven models with YOLOv8-
DSW under the same experimental conditions. The statistics
from the comparative experiments are presented in Table
4. The experimental results demonstrate that the YOLOv8-
DSW model exhibits varying degrees of improvements in
both mAP50 and mAP50-95 average detection accuracies
when compared to the YOLOv8n model. Notably, despite
integrating three distinct modules, YOLOv8-DSW does not
increase the parameter count and computational complexity
compared to the original YOLOv8n model. When com-
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TABLE IV
COMPARISON OF DATA FROM DIFFERENT MODELS

Algorithms mAP50 mAP50-95 Params/M GFLOPs

LeYOLOv8 54.1 27.8 3.1 8.0
YOLOv8n 54.5 29.1 3.0 8.2

YOLOv8-DSCFEM 54.7 27.8 3.0 8.2
ASF-YOLOv8 54.8 27.8 3.0 8.6
Gold-YOLOv8 55.5 29.0 6.0 11.9
YOLOv8-RD 56.5 29.0 2.8 7.5
YOLOv8-MS 56.6 29.3 3.3 8.0

YOLOv7 56.8 29.0 37.62 105.39
YOLOv8-DSW(Ours) 57.0 29.3 2.9 8.1

pared to the road defect detection model YOLOv8-RD,
YOLOv8-DSW improves mAP50 by 0.5%. Furthermore,
in comparison to other YOLO enhancements, YOLOv8-
DSW outperforms Gold-YOLOv8, YOLOv8-MS, YOLOv8-
DSCFEM, LeYOLOv8, ASF-YOLOv8 and YOLOv7 by
1.5%, 0.4%, 2.3%, 2.9%, 2.2% and 0.2%, respectively, in
mAP50, highlighting the effectiveness of YOLOv8-DSW.

V. CONCLUSION

In this paper, we propose YOLOv8-DSW, which incorpo-
rates the DWR module into the C2f module of the original
YOLOv8 network. This enhancement enables more effective
extraction of multi-scale contextual information. Further-
more, we integrate the SENetv2 attention mechanism to
improve feature characterization. Finally, we replace the orig-
inal CIoU regression loss function in YOLOv8 with the more
accurate WIoU v3 loss function to accelerate bounding box
regression. Comprehensive experimental results demonstrate
that YOLOv8-DSW outperforms state-of-the-art models in
key metrics, including precision, recall, mAP50, and mAP50-
95. Our YOLOv8-DSW provides a robust approach for
advancing road defect detection.
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