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Abstract—Word combinatorics is a significant branch of
discrete mathematics with wide-ranging applications. The in-
troduction of Parikh vectors enabled the arithmetization of
words, but this process often leads to the loss of crucial
information. To address this, Parikh matrix mappings (Parikh
matrices) were developed, offering a more detailed yet compu-
tationally feasible method for word characterization. Despite
their advantages, Parikh matrices do not always uniquely
determine words, raising challenges related to injectivity and
M-equivalence. Recent research has extended these concepts
to circular words—structures with no defined start or end,
common in biological sequences like viral DNA. This paper
further advances the field by introducing the Parikh q−matrix,
which refines the distinction between words that share the
same Parikh matrix but differ structurally. We explore the
q−counting of scattered subwords in circular words and inves-
tigate the ambiguity and unambiguity of these structures. Our
results explore the existence of q−unambiguous circular words
with prints of unbounded length, providing new insights into
the complexity and behavior of circular word structures. This
study enhances the understanding of word combinatorics and
extends the applicability of Parikh matrices to more intricate
word forms.

Index Terms—Subword, Circular words, Parikh matrix, Am-
biguity.

I. INTRODUCTION

D ISCRETE mathematics with applications in several
fields includes word combinatorics. In this context,

the Parikh vector [20] have been introduced due to their
applicability in arithmetizing words by vectors. In the process
of converting words to the vectors, much of the information
about that words were lost. In that sense, an extension to
a special kind of matrix called the Parikh matrix mapping
(Parikh matrices) [29] would provide more information while
also remain computationally feasible. Under this circum-
stance, words become more characterized through numerical
quantities. Words are generally not determined by Parikh
matrices. The injectivity problem of Parikh matrices and
M-equivalent classes of words have been investigated in
this area. Nevertheless, problems such as injectivity and
characterization of M-unambiguity have been elusive. Some
properties related to the injectivity of the Parikh matrix over
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a binary alphabet are analyzed in [1], [24]. A special property
related to the injectivity with respect to the sum of the
positions of symbols are investigated in [12].

In [2], [3], Atanasiu analyzed the properties of class of
amiable words and investigated the characterization theorem
concerning a graph with respect to this class of amible
words. Further Arto Salomaa investigated the properties of
Lyndon image interms of Parikh matrices and showed that
the ambiguity can be resolved by this Lyndon image in
[25]. K.G. Subramanian et al. [31] introduced weak ratio
property and analyzed the characterization of M-ambiguous
words. Using the Parikh matrices, Teh et al. characterized
core M-unambiguous words in [21], [23]. The set of Parikh
matrices is shown to be a non-commutative semi-ring with
a unit element in [30] as well as closed under the operation
of shuffle on trajectory. In [17], Kalpana Mahalingam et al.
examined the various theoretical aspects of Parikh matrices
and analyzed properties of words that lead to their Parikh
matrices mutually commute. Counting subwords of a word
with repeated letters is not possible with the Parikh matrix.
To facilitate this, in [27], the concept of extending Parikh
matrix induced by a word was established and some of
its properties were investigated. From the study of Parikh
matrices, Salomaa introduced the notion of Parikh-friendly
permutations and showed that every permutation is Parikh-
friendly in [26]. Besides the fact that every permutation of an
ordered alphabet is Parikh-friendly, Teh showed that every
permutation should have a unique word that witnesses its
Parikh-friendliness in [32]. In [4], Atansiau et al. derived a
general formula to obtain the Parikh matrix of any power of a
given word. In [15], [16], the various concepts and properties
of extending Parikh matrix on partial words are examined and
discuss their properties.

By transforming words into polynomial matrices, Ege-
cioglu et al. [10], [11] introduced the Parikh q−matrix.
Words that have the same Parikh q−matrix will also have
the same Parikh matrix and Parikh vector. Interestingly,
words with the same Parikh matrix have different Parikh
q−matrix. Moreover, it was shown in [10] that the adjoint
matrix of the Parikh q−matrix of the word corresponds to
its mirror image of the alternate Parikh q−matrix. By using
q−counting, Parikh q−matrix counts scattered subwords of
certain words. According to [5], an alternating Parikh matrix
can be expressed using a q−counting polynomial. In [6], [7],
the various concepts and properties of Parikh q−matrix are
examined and discuss the properties of words that allow their
q−matrices to commute.

Circular words also referred to as necklaces or cyclic
words in the literature differ from traditional linear words
in that they lack a defined beginning or end. These circular
sequences are not just theoretical constructs; they naturally
occur in the DNA strands of certain viruses and bacteria
[13] which is shown in Fig1. Despite their natural existence,
circular words have not been as extensively studied as
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linear words. Current active research directions in the field

Fig. 1. Circular DNA

of circular words include pattern avoidance [9], [28] and
splicing systems [8], [30]. To date, the work most closely
related to the study of subword occurrences in circular words
is [29]. In [22], the concept of Parikh matrices is extended
to the context of circular words and studied the ambiguity
in the identification of a circular word by its Parikh matrix.
This motivates us to extend circular Parikh matrix to Parikh
q−matrix and investigate ambiguity in the identification of
a circular word by its Parikh q−matrix. The remainder of
this paper is structured as follows. Section 2 provides basic
definitions of Parikh matrix and Parikh q−matrix of words
which are used in subsequent sections. In Section 3, we
define q−counting scattered subwords of circular words and
study its characterization. Section 4 studies q−ambiguous
circular words and showed that there exists q−unambiguous
words with print of unbounded length.

II. PRELIMINARIES

In this section we recollect certain notions of Parikh matrix
and Parikh q−matrix.

A. Subwords

Consider an alphabet Σ = {a1, a2,⋯, ak} and the set of
all words over Σ is Σ∗. For any word x ∈ Σ∗, the length of
x is denoted by ∣x∣. An ordered alphabet is an alphabet Σ =
{a1, a2,⋯, ak} with the total order relation a1 < a2 < ⋯ < ak
and it is denoted by Σk. The empty word is denoted by λ.
A word y ∈ Σ∗ is called a scattered subword of x if there
exist words y1, y2,⋯, yn and x0, x1, x2,⋯, xn over Σ such
that y = y1y2⋯yn and x = x0y1x1y2⋯ynxn. The number
of occurrences of the word y as a scattered subword of the
word x is denoted by ∣x∣y . For instance ∣abbbaaab∣aab = 6.
Let aij be the word aiai+1⋯aj for 1 ≤ i < j ≤ k and if i = j
then aij = ai.

B. Parikh matrix

LetMk denote the set of all k×k upper triangular matrices
with entries N and unit diagonal where N is the set of all
non-negative integers.

Definition 1. Let Σk = {a1, a2,⋯, ak} be an ordered al-
phabet where k ≥ 1. The Parikh matrix mapping denoted
by ψk is the morphism ψk ∶ Σ∗k → Mk+1 defined as
ψk(al) = (mij)1 ≤ i, j ≤ k+1 where
● mii = 1 for 1 ≤ i ≤ k + 1
● ml,(l+1) = 1

and all other entries are zero.

Two words x, y ∈ Σ∗k are said to be M−equivalent denoted
by x ∼M y if and only if ψk(x) = ψk(y). A word z ∈ Σ∗k is
said to be M−ambiguous if there exists a word w ≠ z such
that z ∼M w. Otherwise z is called M−unambiguous.

C. Parikh q−matrix

The notion of Parikh matrices is extended to a mapping
called Parikh q−matrix mapping which takes its values in
matrices with polynomial entries. The entries of the Parikh
q−matrices are obtained by q−counting the number of oc-
currences of certain words as scattered subwords of a given
word. The q−counting of a scattered subword aij of a word
x represented by Sx,aij is defined as follows:

Definition 2. Let Σk = {a1, a2,⋯, ak} be an ordered
alphabet where k ≥ 1, x ∈ Σ∗k and aij be a scattered
subword of x for 1 ≤ i ≤ j < k. Then Sx,aij(q) =
∑x=uiaiui+1⋯ujajuj+1 q

∣ui∣ai
+∣ui+1∣ai+1

+⋯+∣uj ∣aj
+∣uj+1∣aj+1 .

Example 1. Let x = baaabb be a word over Σ2. Considering
x as a word over Σ3. Then
● For i = 1 and j = 1 we get aij = a and Sx,a(q) =
q0+2 + q1+2 + q2+2 = q2 + q3 + q4

● For i = 2 and j = 2 we get aij = b and Sx,b(q) =
q0+0 + q1+0 + q2+0 = 1 + q + q2

● For i = 1 and j = 2 we get aij = ab and Sx,ab(q) =
q0+0+0 + q0+1+0 + q1+0+0 + q1+1+0 + q2+0+0 + q2+1+0 =
1 + 2q + 2q2 + q3.

For any word x ∈ Σ∗k, Sx,aij(1) = ∣x∣aij for 1 ≤ i ≤ j ≤
k. Let Mk(q) denote the set of all k × k upper triangular
matrices with entries N(q) and unit diagonal where N(q) is
the set of all polynomials in the variable q with coefficients
from N.

Definition 3. Let Σk = {a1, a2,⋯, ak} be an ordered alpha-
bet and x ∈ Σ∗k then the Parikh q−matrix mapping denoted
by ψq is the morphism ψq ∶ Σ∗k → Mk(q) defined as
ψq(al) = (mij)1 ≤ i, j ≤ k+1 where
● mll = q
● mii = 1 for 1 ≤ i ≤ k, i ≠ l
● ml(l+1) = 1 if l < k

and all other entries are zero.

Definition 4. Let Σk = {a1, a2,⋯, ak} be an ordered alpha-
bet and x ∈ Σ∗k then the principal diagonal entries of the
matrix ψq(x) is (q∣x∣a1 ,q∣x∣a2 ,⋯,q∣x∣ak ).

Note that the Parikh vector of x is given by the formal
derivative of

(q∣x∣a1 ,q∣x∣a2 ,⋯,q∣x∣ak )

with respect to q at q = 1. The entries of the q−matrices
are obtained by q−counting the number of occurrences of
certain words as scattered subwords of a given word.

Theorem 1. [10] Let Σk = {a1, a2,⋯, ak} be an ordered
alphabet and x ∈ Σ∗k. Then the Parikh q−matrix has the
following properties
● mij = 0 for all 1 ≤ j < i ≤ k
● mii = q∣x∣ai for 1 ≤ i ≤ k
● mi(j+1) = Sx,aij(q) for all 1 ≤ i ≤ j < k.
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Example 2. Let x = acbc over Σ3 then the Parikh q−matrix
of x is

ψq(acbc) = ψq(a)ψq(c)ψq(b)ψq(c)

=
⎡⎢⎢⎢⎢⎢⎣

q 1 0
0 1 0
0 0 1

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 q

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣

1 0 0
0 q 1
0 0 1

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 q

⎤⎥⎥⎥⎥⎥⎦

=
⎡⎢⎢⎢⎢⎢⎣

q q q
0 q q
0 0 q2

⎤⎥⎥⎥⎥⎥⎦

=
⎡⎢⎢⎢⎢⎢⎣

q∣x∣a Sx,a(q) Sx,ab(q)
0 q∣x∣b Sx,b(q)
0 0 q∣x∣c

⎤⎥⎥⎥⎥⎥⎦
.

The Parikh q−matrix of a word x over Σk =
{a1, a2,⋯, ak} coincides with the usual Parikh matrix, when
the q−matrix is evaluated at q = 1 treating the word x as
a word over Σk+1 = {a1, a2,⋯, ak+1}. The Parikh matrix of
the word x = acbc over Σ3 is a 4×4 upper triangular matrix
given by

ψ3(acbc) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1
0 1 1 1
0 0 1 2
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

By comparing Parikh matrix with Parikh q−matrix, add a
new symbol d to Σ3 to get Σ4 = {a, b, c, d} and compute the
Parikh q−matrix of the word x treating it as a word over Σ4.
For example,

ψq(acbc) = ψq(a)ψq(c)ψq(b)ψq(c)

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

q 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 q 1
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
0 q 1 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 q 1
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

q q q 1
0 q q 1
0 0 q2 q + 1
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

ψq(acbc) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

q∣x∣a Sx,a(q) Sx,ab(q) Sx,abc(q)
0 q∣x∣b Sx,b(q) Sx,bc(q)
0 0 q∣x∣c Sx,c(q)
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

Throughout the paper if there is a word x from Σk, we
assume x to be a word from Σk+1 and compute the Parikh
q−matrix of x in Mk+1(q).

Two words x, y ∈ Σ∗k are said to be q−equivalent denoted
by x ∼q y if and only if ψq(x) = ψq(y). A word z ∈ Σ∗k is
said to be q−ambiguous if there exists a word w ≠ z such
that z ∼q w. Otherwise z is called q−unambiguous. Note
that if two words x, y are q−equivalent then they have same
Parikh vector.

In this work, we will be dealing mostly with Σ3 and
without loss of generality, we let Σ3 = {a, b, c} and a < b < c
be the corresponding total order.

III. Q−COUNTING SCATTERED SUBWORD OF THE
CIRCULAR WORD

In contrast to classical linear words, a circular word has
neither a beginning nor an end. The circular word obtained
from a word x will be denoted by [x].
Definition 5. Suppose Σ is an alphabet and x = x1x2⋯xn ∈
Σ∗. The circular word [x] over Σ represented by a word
x ∈ Σ∗ is the equivalence class of x under the conjugacy
relation. The set of all circular words over Σ by Σ∗c .

Example 3. Suppose Σ = {a, b, c} and consider the word
x = abcabacb. The circular word [w] as follows

[w] = {abcabacb, bcabacba, cabacbab, abacbabc,
bacbabca, acbabcab, cbabcaba, babcabac}

Definition 6. Suppose Σ is an ordered alphabet and [x] ∈
Σ∗c . The q−counting scattered subword w of the circular
word [x] with respect to Σ denoted by S[x],w(q) is defined
by

S[x],w(q) =
1

∣[x]∣ Σ
v∈[x]

Sv,w(q).

Example 4. Consider [x] = [abaa] over Σ = {a, b} then
the q−counting scattered subword ab of the circular word
[abaa] is

S[abaa],ab(q) =
1

4
[Sabaa,ab(q) + Sbaaa,ab(q)+

Saaab,ab(q) + Saaba,ab(q)]

= 1

4
[1 + 0 + 1 + q + q2 + 1 + q]

= 1

4
[3 + 2q + q2] .

Definition 7. Suppose Σ is an ordered alphabet and [x] ∈
Σ∗c . The Parikh q−matrix of the circular word [x] with
respect to Σ denoted by ψq([x]) is defined by

ψq([x]) =
1

∣[x]∣ Σ
v∈[x]

ψq(v).

Example 5. Consider [x] = [abaa] over Σ = {a, b} then the
Parikh q−matrix of the circular word [abaa] is

ψq([abaa]) =
1

4
[ψq(abaa) + ψq(baaa)+

ψq(aaab) + ψq(aaba)]

= 1

4

⎛
⎜
⎝

⎡⎢⎢⎢⎢⎢⎣

q3 q2 + 2q 1
0 q 1
0 0 1

⎤⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎣

q3 q2 + q + 1 0
0 q 1
0 0 1

⎤⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎣

q3 q3 + q2 + q 1
0 q 1
0 0 1

⎤⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎣

q3 2q2 + q q + 1
0 q 1
0 0 1

⎤⎥⎥⎥⎥⎥⎦

⎞
⎟
⎠
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ψq([abaa]) =
1

4

⎡⎢⎢⎢⎢⎢⎣

q12 1 + 5q + 5q2 + q3 3 + 2q + q2

0 q4 4
0 0 1

⎤⎥⎥⎥⎥⎥⎦
.

ALGORITHM FOR COMPUTING PARIKH Q-MATRIX

Input: Circular word [x], ordered alphabet Σ
Output: Parikh q-matrix ψq([x])

1) Define ψq(v) for v ∈ [x] as follows:
● mll = q
● mii = 1 for 1 ≤ i ≤ k, i ≠ l
● ml(l+1) = 1 if l < k
● All other entries are zero.

2) Compute ψq([x]) using the following formula:

ψq([x]) =
1

∣[x]∣ ∑v∈[x]
ψq(v)

= 1

∣[x]∣
(ψq(v1) + ψq(v2) +⋯ + ψq(v∣[x]∣))

where ∣[x]∣ is the length of the circular word [x] and
v1, v2, . . . , v∣[x]∣ are its cyclic permutations.

Theorem 2. Let Σ = {a1, a2,⋯, ak} be an ordered alphabet
and [x] ∈ Σ∗c . Then the Parikh q−matrix ψq([x]) = M has
the following properties:

(i) Mij = 0 for all 1 ≤ j < i ≤ k + 1
(ii) Mii = q∣[x]∣ai for 1 ≤ i ≤ k + 1

(iii) Mi(j+1) = S[x],aij
(q) for all 1 ≤ i ≤ j < k.

Proof: Obviously the first two properties (i) and (ii)
are true. Now we prove the property (iii). By induction on n,
assume that ∣[x]∣ = n. If n ≤ 1, the assertion holds. Assume
now that the assertion (iii) is true for all words of length at
most n and let [x] be the length n + 1. Hence [x] = [x′]ai
where ∣[x′]∣ = n and aj ∈ Σ. Then

ψq([x]) = ψq([x′])ψq(aj).

Assume that

ψq([x′]) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q∣[x
′]∣a1 m′1,2 ⋯ ⋯ m′1,k
0 q∣[x

′]∣a2 ⋯ ⋯ m′2,k
⋮ ⋱ ⋱ ⋱ ⋮
⋮ ⋱ ⋱ ⋱ ⋮
0 0 ⋯ ⋯ q∣[x

′]∣ak

0 0 ⋯ ⋯ 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=M ′.

By the inductive hypothesis the matrix ψq([x′]) has property
(iii). By Definition 7,

ψq(aj) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 ⋯ ⋯ ⋯ ⋯ 0
⋮ ⋱ ⋱ ⋱ ⋯ ⋯ ⋮
⋮ ⋱ ⋱ ⋱ ⋯ ⋯ ⋮
0 ⋯ q 1 ⋯ ⋯ 0
⋮ ⋱ ⋱ ⋱ ⋯ ⋯ ⋮
⋮ ⋱ ⋱ ⋱ ⋯ ⋯ ⋮
0 0 ⋯ ⋯ ⋯ ⋯ 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
where the matrix differs from Ik+1 only in two entries, there
are

(i) the entry in position (j, j) is q
(ii) the entry in position (j, j + 1) is 1.

Therefore

ψq([x′]) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q∣[x
′]∣a1 m′1,2 ⋯ ⋯ m′1,k
0 q∣[x

′]∣a2 ⋯ ⋯ m′2,k
⋮ ⋱ ⋱ ⋱ ⋮
⋮ ⋱ ⋱ ⋱ ⋮
0 0 ⋯ ⋯ q∣[x

′]∣ak

0 0 ⋯ ⋯ 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 ⋯ ⋯ ⋯ ⋯ 0
⋮ ⋱ ⋱ ⋱ ⋯ ⋯ ⋮
⋮ ⋱ ⋱ ⋱ ⋯ ⋯ ⋮
0 ⋯ q 1 ⋯ ⋯ 0
⋮ ⋱ ⋱ ⋱ ⋯ ⋯ ⋮
0 0 ⋯ ⋯ ⋯ ⋯ 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The resulting matrix M = (mp,q)1≤p,q≤k+1 then

mi,j = qm′i,j ,∀1 ≤ i ≤ j
mi,j+1 = m′i,j +m′i,j+1,∀1 ≤ i ≤ j

and for all other entries mp,q =m′p,q . But these are immediate
from the definition of the polynomials S[x],ai,j

(q) which
satisfy

S[x′]aj ,ai,j−1
(q) = qS[x],ai,j−1

(q),∀1 ≤ i ≤ j
S[x′]aj ,ai,j

(q) = S[x′],ai,j−1
(q) + S[x′],ai,j

(q),∀1 ≤ i ≤ j

and are unchanged otherwise.
The subword history of any word x is given by the

equation

∣x∣ab + ∣x∣ba = ∣x∣a.∣x∣b.

For q−counting scattered subwords, the following analogy
can be drawn.

Theorem 3. [11] Suppose Σ is an ordered alphabet and
x ∈ Σ∗. Then

Adj(ψq(x)) = ψq(mi(x)).

We observe that Theorem 3 is not satisfied for the circular
words. For example consider the circular word [x] = [aab]
then

Adj(ψq([aab])) =
1

3
[
q3 −(1 + 4q + q2) 3 + 12q + 3q2 + 2q3 + q4

0 q6 −3q6

0 0 q9
]

ψq([mi(aab)]) =
1

3

⎡⎢⎢⎢⎢⎢⎣

q3 −(1 + q) 1
0 q6 −3q2

0 0 q9

⎤⎥⎥⎥⎥⎥⎦
Theorem 4. [6] Let x be a word over Σ2 then
Sx,a(q)Sx,b(q) − q∣x∣bSx,ab(q) = Smi(x),ab(q).

We extend Theorem 4 for circular word as follows.

Theorem 5. Let x be a word over Σ2 then

S[x],a(q)S[x],b(q) − q∣[x]∣bS[x],ab(q) = S[mi(x)],ab(q).

Proof: Let Σ = {a, b}. As in Theorem 4, Smi(x),ab(q) =
Sx,a(q)Sx,b(q) − q∣x∣bSx,ab(q). Thus it is enough to show
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that

S[mi(x)],ab(q) =
1

[mi(x)] ∑
y∈[mi(x)]

Sy,ab(q)

= 1

∣[x]∣ ∑y∈[x]
Smi(y),ab(q)

= 1

∣[x]∣ ∑y∈[x]
[Sy,a(q)Sy,b(q)−

q∣y∣bSy,ab(q)]

= 1

∣[x]∣
[Sy,a(q)Sy,b(q)q∣[x]∣−

q∣[x]∣b ∑
y∈[x]

Sy,ab(q)
⎤⎥⎥⎥⎥⎦

= S[x],a(q)S[x],b(q) − q∣[x]∣bS[x],ab(q).

Theorem 6. If Sx,a(q) = Sy,a(q) where x, y be the words
over Σ2 then

S[x],a(q) = S[y],a(q).

Proof: Since Sx,a(q) = Sy,a(q), we have ∣x∣a = ∣y∣a
which implies that ∣[x]∣a = ∣[y]∣a. Hence

S[x],a(q) =
1

∣[x]∣ ∑
v∈[x],a∈v

Sv,a(q)

= 1

∣[y]∣ ∑
w∈[y],a∈w

Sw,a(q)

= S[y],a(q).

Therefore Sx,a(q) = Sy,a(q) ⇔ S[x],a(q) = S[y],a(q).

IV. Q−AMBIGUOUS CIRCULAR WORDS

In this section, we introduce the concept of Cq−ambiguous
words. While the Parikh q-matrix of a word provides addi-
tional information compared to the Parikh matrix, it has been
demonstrated in [11] that this mapping is also not one-to-
one.

Definition 8. Two circular words [x], [y] ∈ Σ∗k are said to
be Cq−equivalent denoted by [x] ∼Cq [y] if and only if

ψq([x]) = ψq([y]).

A circular word [x] ∈ Σ∗k is said to be Cq−ambiguous if
there exists a word [z] ≠ [x] such that [z] ∼Cq [x]. We say
that [x] is Cq−unambiguous.

Example 6. Let [x] = [aabb] = {aabb, abba, bbaa, baab}
and [y] = [bbaa] = {bbaa, baab, aabb, abba} be two circular
words over Σ2. Then one can verify that the words x and
y are not q−ambiguous but the circular words [x] and [y]

are Cq−ambiguous, since

ψq([aabb]) =
1

4
[ψq(aabb) + ψq(abba)+

ψq(bbaa) + ψq(baab)]

= 1

4

⎛
⎜
⎝

⎡⎢⎢⎢⎢⎢⎣

q2 q3 + q2 q2 + 2q + 1
0 q2 q + 1
0 0 1

⎤⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎣

q2 q + q2 q + 1
0 q2 q + 1
0 0 1

⎤⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎣

q2 q + 1 0
0 q2 q + 1
0 0 1

⎤⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎣

q2 q2 + q q + 1
0 q2 q + 1
0 0 1

⎤⎥⎥⎥⎥⎥⎦

⎞
⎟
⎠

= 1

4

⎡⎢⎢⎢⎢⎢⎣

q8 q3 + 3q2 + 3q + 1 q2 + 4q + 3
0 q8 4q + 4
0 0 1

⎤⎥⎥⎥⎥⎥⎦
= ψq([bbaa])

Theorem 7. If the words x and y are q−equivalent over Σ2

then

[x] ∼Cq [y].
Proof: Let x and y be the q−equivalent over Σ2 such

that

Sx,w(q) = Sy,w(q)

for w ∈ {a, b, ab} which implies that x and y have same
Parikh vector. Therefore we have

S[x],w(q) =
1

∣[x]∣ ∑v∈[x]
Sv,w(q)

= 1

∣[x]∣
[S(x1x2x3⋯xn),w(q)+

S(x2x3x4⋯xnx1),w(q)
+⋯ + S(xnx1x2⋯xn−1),w(q)]

= 1

∣[y]∣
[S(x1x2x3⋯xn),w(q)+

S(x2x3x4⋯xnx1),w(q)
+⋯ + S(xnx1x2⋯xn−1),w(q)]

= 1

∣[y]∣
[S(y1y2y3⋯yn),w(q)+

S(y2y3y4⋯yny1),w(q)
+⋯ + S(yny1y2⋯yn−1),w(q)]

= S[y],w(q)

Therefore [x] ∼Cq [y].
Definition 9. Two words [x], [y] ∈ Σ∗k are considered to
fulfill Cq−weak ratio property termed as [x] ∼Cqwr [y] if
for each ai ∈ Σk, ∣[x]∣ai = m∣[y]∣ai where m be a nonzero
rational number and for each 1 ≤ i ≤ k − 1, any one of (R1)
and (R2) be true, where
(R1) ∶ ∣[x]∣ai = ∣[x]∣ai+1 and ∣[y]∣ai = ∣[y]∣ai+1

(R2) ∶
S[x],ai

(q)
S[y],ai

(q) =
q∣[x]∣ai+1 − q∣[x]∣ai

q∣[y]∣ai+1 − q∣[y]∣ai

, where q ≠ 0 and

∣[x]∣ai ≠ ∣[x]∣ai+1 , ∣[y]∣ai ≠ ∣[y]∣ai+1 .
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The Cq-weak ratio property is a necessary condition for
the Parikh q-matrices of two circular words [x] and [y] in
Σ∗k to commute.

Theorem 8. Let [x], [y] be the circular words over Σ∗k. If
[x], [y] satisfy Cq−weak ratio property then their Parikh
q−matrices commute, i.e.,

ψq([xy]) = ψq([yx]).

Proof: Consider the circular words [x], [y] ∈ Σ∗2 sat-
isfied Cq−weak ratio property such that ψq(xy) = ψq(yx)
then we have

(i) xy ∼q yx ⇒ Sxy,w(q) = Syx,w(q) for w ∈
{a, b, ab}

(ii) xy and yx have same Parikh vector.
Therefore,

S[xy],w(q) =
1

∣[xy]∣ Σ
v∈[xy]

Sv,w(q)

= 1

∣[xy]∣
(∣[xy]∣aq∣[xy]∣ + ∣[xy]∣bq∣[xy]∣−1)

= 1

∣[yx]∣
(∣[yx]∣aq∣[yx]∣ + ∣[yx]∣bq∣[yx]∣−1)

= 1

∣[yx]∣ Σ
v∈[yx]

Sv,w(q)

= S[yx],w(q).

Hence ψq([xy]) = ψq([yx]).
In the following theorem we show that there exists q-

unambiguous words with print of unbounded length.

Theorem 9. If [x] and [y] are words of the forms [(ab)m]
and [(ba)m] respectively, where m ≥ 1 and the words are
over the alphabet Σ2, then [x] and [y] are Cq-unambiguous.

Proof: Let x and y be two words over Σ2 that share the
same Parikh q-matrix. Consider the word y, where the letter
a appears as the rightmost character, such that y = uav with
∣u∣a =m−1. This implies [y] = [uav]. Since each monomial
S[x],a(q) is of degree m, it follows that ∣v∣b = 1. Thus, we
can express:

[y] = [u1av]
= [u1]ab.

Next, considering the rightmost a in [u1], we can further
express:

[y] = [u2av]ab
= [u2]abab.

Continuing this process, we obtain:

[y] = [(ababab)m] = [x].

Therefore, [x] and [y] are indeed Cq-unambiguous.

Theorem 10. If [x] and [y] are words of the forms [(ab)m]
and [(ab)m−1(ba)], where m ≥ 1 over Σ2, then [x] and [y]
are Cq-unambiguous.

Proof: Let x = (ab)m and y = (ab)m−1(ba) be two
words over Σ2 with the same Parikh q-matrix. Consider the
word y, where the letter a appears as the rightmost character,
such that y = uav with ∣u∣a =m−2. This implies [y] = [uav].

Since each monomial S[x],a(q) is of degree m, it follows
that ∣v∣b = 1. Thus, we can express:

[y] = [u1av]
= [u1]ab
= [(ab)m−2ab].

Next, considering the rightmost a in [u1], we can further
express:

[y] = [u2av]ab
= [u2]abab
= [(ab)m−2abab].

Continuing this process, we obtain:

[y] = [(ababab)m] = [x].

Thus, [x] and [y] are Cq-unambiguous.

Theorem 11. If [x] and [y] are words of the forms [(ab)m]
and [a(ba)m−1b], where m ≥ 1 over Σ2, then [x] and [y]
are Cq-unambiguous.

Proof: Let x = (ab)m and y = a(ba)m−1b be two words
over Σ2 with the same Parikh q-matrix. Consider the word
y, where the letter a appears as the rightmost character, such
that y = uav with ∣u∣a = m − 2. This implies [y] = [uav].
Since each monomial S[x],a(q) is of degree m, it follows
that ∣v∣b = 1. Thus, we can express:

[y] = [u1av]
= [u1]ab.

Next, considering the rightmost a in [u1], we can further
express:

[y] = [u2av]ab
= [u2]abab.

Continuing this process, we obtain:

[y] = [(ababab)m] = [x].

Thus, [x] and [y] are Cq-unambiguous.

V. CONCLUSION

This paper introduces the concept of Parikh q−matrices
for circular words, advancing the field of word combina-
torics by refining the characterization of circular sequences,
particularly those encountered in biological structures such
as viral DNA. By employing q-counting techniques, we
have extended the traditional Parikh matrix framework to
account for scattered subwords within circular words, ad-
dressing the ambiguity and injectivity challenges that arise.
Our study provides a new perspective on the structure and
behavior of circular words, demonstrating the existence of
q−unambiguous words with unbounded lengths. These find-
ings enhance the theoretical understanding of circular word
structures and lay the groundwork for further applications in
discrete mathematics and computational biology.
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