

Abstract— Document summarization can be categorized into

two categories: extractive and abstractive summarization.
Research in abstractive summarization is more limited than that
of extractive summarization, especially for Indonesian
documents. Most existing studies in Indonesian abstractive
summarization rely on a single embedding approach in their
encoder. This study aims to develop an abstractive Indonesian
document summarization model using stacked embedding as an
encoder and a Transformer-based decoder. Stacked
embeddings offer the advantage of capturing a more
comprehensive range of linguistic features, enhancing the
model's ability to generalize across different word forms and
morphological variations. The stacked embedding combines
Bidirectional Encoder Representation from Transformers
(BERT), Byte Pair Embedding (BPE), Character Embedding
(CE), and FastText (FT). We conduct experiments to find the
effect of BERT layer selection and various stacked embedding
as an encoder in the proposed summarization model. Using the
Liputan6 dataset, the experimental results show that using all
layers of BERT as an encoder gives the best performance for
summarization. In addition, the stacked embedding of BERT,
CE, and BPE gives the highest F1 score of 35.58 (ROUGE-1),
15.40 (ROUGE-2), and 32.80 (ROUGE-L) when trained with
50,000 data. In contrast, when trained with 75,000 data, the
stacked embedding performance is below BERT embedding,
which has an F1 score of 37.18 (ROUGE-1), 18.19 (ROUGE-2),
and 34.28 (ROUGE-L). Our proposed model achieves
performance close to state-of-the-art models despite using less
than 40% of the training data in Liputan6 dataset.

Index Terms—Abstractive summarization, Liputan6 dataset,
Pre-trained embedding, Stacked embedding, Transformer
decoder

I. INTRODUCTION
NFORMATION is integral to human life, as it provides
knowledge and new experiences. In today’s digital age, we

can quickly access vast amounts of information, such as
global news articles, at any time [1]. However, these articles'
increasing volume and complexity often make them lengthy
and challenging to understand, discouraging readers and
potentially leading to misinformation. There is a need for
concise text summaries that capture the main points in a
shorter format [2]. Manual summarization is time-consuming
and can vary in quality based on age and comprehension.
Thus, automatic text summarization is essential to efficiently
condense information while preserving its original meaning
and avoiding redundancy [3]. Developing models to
summarize text automatically is a challenging task. This
difficulty arises because machines do not possess the same
deep and subtle understanding of the content humans use
when creating summaries [4].

Document summarization can be categorized into two
types: extractive and abstractive. Extractive summarization
involves selecting and combining key sentences or points
from the original text without altering its structure. In
contrast, abstractive summarization generates a new
summary by rephrasing the original text and modifying its
structure while preserving the core meaning [5]. This
approach often results in more natural and comprehensible
summaries, as it accounts for the relationships between words
and sentences [6]. However, abstractive summarization is
more complex, requiring a deeper understanding of the entire
text.

While extractive summarization has been extensively
studied across various domains, including news articles [7],
hotel reviews [8], and gadget reviews [9], recent years have
seen a growing interest in abstractive summarization within
the field of Natural Language Processing (NLP).

A study by [10] made significant progress in text
summarization using a Sequence-to-Sequence model with
Recurrent Neural Networks (RNNs). This approach achieved
high ROUGE scores on benchmark datasets such as
CNN/Daily Mail, Giga Word, and DUC. However, RNNs
faced limitations, particularly in managing long-range
dependencies in text, which prompted researchers to explore
alternative methods for enhancing summarization techniques.

One of the key advancements in abstractive models is the
attention mechanism introduced by [11] to address challenges
in machine translation. This mechanism allows the source
input to influence word generation with assigned weights.
Many researchers subsequently incorporated this mechanism
into their encoder-decoder architectures, achieving better

Indonesian Abstractive Text Summarization
Using Stacked Embeddings and Transformer

Decoder
Edi Winarko, Member, IAENG, Luis Tanoto, Muhammad Haidar Reza

I
 Manuscript received July 8, 2024; revised February 23, 2025.
This work is supported in part by the Department of Computer Science

and Electronics, Faculty of Mathematics and Natural Sciences, UGM,
Schema B Research Grant No. 3328/UN1/FMIPA.1.3/KP/PT.01.03/2024.

Edi Winarko is a lecturer at the Department of Computer Science and
Electronics, Universitas Gadjah Mada, Indonesia (Corresponding author,
phone: +62-813-2766-3322; e-mail: ewinarko@ugm.ac.id).

Luis Tanoto is an undergraduate student at the Department of Computer
Science and Electronics, Universitas Gadjah Mada, Indonesia (e-mail:
luis.tanoto@mail.ugm.ac.id).

Muhammad Haidar Reza is a postgraduate student at the Department of
Computer Science and Electronics, Universitas Gadjah Mada, Indonesia (e-
mail: mhaidarreza@mail.ugm.ac.id).

IAENG International Journal of Computer Science

Volume 52, Issue 4, April 2025, Pages 1051-1061

__

results and higher ROUGE scores, as demonstrated by [12],
[13], [14], among others. However, the attention mechanism
did not resolve the issue of parallelization, which led to
increased computation time and cost during training. To
address this, [15] introduced the Transformer architecture in
2017, incorporating multi-head self-attention in the encoder-
decoder structure to enable parallelization. This architecture
has since been widely adopted and modified to improve
model performance, such as in the RC-Transformer by [5]
and enhancements to traditional Sequence-to-Sequence
models by [16].

Inspired by the Transformer's ability to capture feature
representations, [17] introduced Bidirectional Encoder
Representations from Transformers (BERT), initially as a
pre-trained word embedding model for various NLP tasks.
BERT outperformed 11 NLP tasks at the time [17], and
experiments were conducted to examine the effect of BERT
layer selection for the Named Entity Recognition task. Today,
BERT has become both a word embedding technique and a
standalone model in the NLP field, with text summarization
being no exception. Reference [18] applied BERT as an
encoder in the traditional Transformer architecture, achieving
an average ROUGE-1, ROUGE-2, and ROUGE-L score of
33.48 on the CNN/DM dataset. Similarly, [19] introduced the
BERTSUM architecture by modifying and fine-tuning BERT
for summarization tasks, achieving a ROUGE-1 F1 score of
41.72 on the CNN/DM dataset and 48.92 on the New York
Times dataset.

In addition to English-language datasets, many researchers
have explored text summarization in non-English languages.
For instance, [20] applied the pointer-generator approach to
the LCSTS (Large-scale Chinese Short Text Summarization)
dataset for Chinese text summarization. Similarly, [21]
investigated summarization for Japanese texts by employing
BERT as an encoder and a Transformer-based decoder to
summarize Japanese documents.

Indonesia, the world's fourth most populous country,
produces abundant information daily. There is also research
on extractive summarization in Indonesian news [22] and
web content [23]. However, current research in abstractive
summarization for Indonesian documents is relatively
limited. For instance, [24] used BiGRU as the main
component in their encoder-decoder model and applied it to
Indonesian journal texts with a performance of 12%. A study
by [25] applied a weighted genetic algorithm and MSOP to
Indonesian articles, but the results were insufficient. In 2020,
[26] created a large-scale Indonesian dataset from
Liputan6.com's news articles and proposed the BertAbs and
BertExtAbs models. These models achieved F1 scores of
40.94 (ROUGE-1) and 41.08 (ROUGE-1), respectively.
Similarly, [27] applied this approach to the IndoSum dataset
[28].

Most abstractive summarization models utilize one word
embedding in the encoder, such as Word2Vec, FastText, and
BERT. While individual embedding has strengths, it also has
limitations that can affect summarization quality. One
approach used in several NLP tasks is utilizing stacked
embeddings to replace individual word embeddings in the
encoder. The use of stacked embeddings has yielded better
performance in sequence tagging models (NER) [29] and
aspect-based sentiment analysis models [30].

The main contribution of this paper includes:
1. We study the effect of BERT layers for abstractive

summarization tasks. This study is motivated by the
result of [17], which suggests that BERT layer
selections affect the model performance in different
tasks. Furthermore, we use the results of these
experiments as our baseline.

2. We propose a novel abstractive summarization model
that utilizes stacked embeddings as the encoder and a
Transformer-based decoder. The encoder combines four
different types of embeddings: BERT [17], Byte Pair
Encoding (BPE) [31], Character Embedding (CE) [32],
and FastText [33]. This combination aims to capture a
comprehensive range of linguistic features, enhancing
the model's ability to generate high-quality summaries.

The remainder of this paper is organized as follows.
Section 2 discusses the research methodology applied to this
study. Section 3 presents and discusses the experimental
results, and Section 4 concludes this research paper.

II. METHODOLOGY
Fig. 1 is the workflow diagram that outlines the process of

building and evaluating a text summarization model [34]. It
begins with data collection, followed by data preprocessing
steps such as removing irrelevant text and case folding. After
preprocessing, stacked embeddings are created for training,
validation, and test datasets. The training and validation data
are used to train and fine-tune the model, resulting in a trained
model. The model is then evaluated using the test data, and
its performance is assessed using the ROUGE metric, which
measures the quality of the generated summaries.

Fig. 1. The process of building and evaluating abstractive summarization
models

A. Data Collection
The dataset used in this research, obtained from [26],

consists of 215,827 news articles from Liputan6.com,
covering the period from October 2000 to October 2010.
Each article is stored in a JSON file with five key attributes:

IAENG International Journal of Computer Science

Volume 52, Issue 4, April 2025, Pages 1051-1061

__

`clean_article` (the main content of the news article),
`clean_summary` (an abstractive summary of the article),
`extractive_summary` (an extractive summary of the article),
`id` (a unique identifier for the article), and `URL` (the link
to the article's webpage). The articles and summaries are
tokenized by splitting on whitespace and punctuation.

For processing efficiency, the dataset is converted to CSV
format, retaining only the essential fields: `clean_article` and
`clean_summary.` The original data has been split into
training, validation, and test sets (see the second column of
Table I). Due to computational resource constraints, only a
subset of the training and validation data is used in this
research. To create these subsets, we selected articles
containing 300 tokens or fewer. Table I shows the allocation
of research data across different datasets. For reduced
datasets, the "50K Dataset" includes 50,000 training samples,
7,500 validation samples, and 10,972 test samples, while the
"75K Dataset" contains 75,000 training samples, 7,500
validation samples, and 10,972 test samples. This allocation
allows for consistent test sample size across different training
dataset sizes for comparative analysis.

TABLE I

THE ALLOCATION OF RESEARCH DATA

Data Original
Data 50K Dataset 75K Dataset

Training 193,883 50,000 75,000

Validation 10,972 7,500 7,500

Test 10,972 10,972 10,972

TABLE II

NUMBER OF TOKEN STATISTICS FOR TRAIN, VALIDATION, AND TEST DATA
Statistics Original

Training
50K

Training
75K

Training
Validation Test

Mean 184 152 152 164 172
Std 114 56 56 45 105
Min 8 8 8 34 6
Q1 114 110 110 132 124
Q2 153 142 142 158 151
Q3 219 187 187 190 187
Max 6717 300 300 300 2220

Table II shows the length of token statistics of articles in

the original, 50K, and 75K training data, validation data, and
test data. This table shows that the filtered training sets (50K
and 75K) are more uniformly distributed than the original
training data, with reduced variability and truncated
maximum lengths. The original training data has a wider
range and more variability in token counts. The identical
statistics for 50K and 75K training sets indicate consistent
sampling (filtering) is applied regardless of the sample size.
The validation set contains longer sequences than the training
sets, which could test the model's ability to generalize to
slightly longer inputs. The test set has much longer sequences
(max 2220) than training and validation data, which could
assess how well the model handles sequences beyond its
training range.

B. Data Preprocessing
A cleaning process is conducted before feeding the data

into the feature extractor for numerical representation. The
preprocessing involves removing unnecessary parts of the
documents, such as the news portal name, mentioned regions

typically found at the beginning or end, references to other
articles (e.g., '[baca: …]' meaning 'read'), and the author's or
editor's names usually at the start or end. This step ensures
clarity and relevance. Punctuation is retained to preserve the
document's meaning, and text is converted to lowercase to
standardize representation, avoiding discrepancies between
words like "Makan" and "makan" ('eat'). We do not remove
stopwords, and no stemming or lemmatization is applied.

C. Stacked Embedding
Stacked embeddings combine different embeddings by

concatenating them into a single vector. For example, if we
stack a 768-dimensional BERT embedding with a 300-
dimensional FastText embedding, we get a 1068-dimensional
concatenated model. We explore four stacked embedding
encoders consisting of BERT embedding, Byte Pair
Embedding (BPE), Character Embedding (CE), and FastText
(FT) embedding (see Table II). We use a BERT-based
encoder as our baseline.

To create BERT embedding, we use the Indonesian BERT
model ‘indobenchmark/indobert-base-p1’, a state-of-the-art
language model for Indonesian based on the BERT model
[35]. The embedding dimension of this BERT model is 768.
Byte-Pair Encoding (BPE) can effectively capture common
and rare word patterns in text. BPE works by merging the
most frequent pairs of characters into subwords, enabling the
model to learn meaningful representations at different levels
of detail. We use the BPE model called BPEmb, developed
by [36]. BPEmb is a collection of pre-trained subword
embeddings for 275 languages based on BPE and trained on
Wikipedia. It offers embeddings of various sizes: 25, 50, 100,
200, and 300 dimensions. In our work, we use the 100-
dimensional embeddings.

Learning character-level embeddings has the benefit of
creating representations suitable for the specific NLP task and
domain. Character embeddings (CE) are especially useful for
languages with rich morphology and for handling out-of-
vocabulary (OOV) words. The model architecture we use to
generate word embeddings from characters is based on the
model described in [30]. In this model, the character-based
representation of words has a dimension of 50.

The FastText model, developed by Facebook's AI
Research (FAIR) lab [33], is based on the Skip-gram model
from Word2Vec. Its subword approach represents each word
as a collection of character n-grams. Special symbols < and >
are added at the beginning and end of words to distinguish
prefixes and suffixes from other character sequences. The
word itself is also included in its set of n-grams. Once all n-
grams for a given word are extracted, a vector representation
is assigned to each n-gram. The final word representation is
then obtained by summing the vector representations of all
the n-grams. In this study, we utilize pre-trained FastText
embeddings (cc.id.300.bin.gz), trained on Common Crawl
and Wikipedia, with a dimension of 300 [37]. To create and
stack embeddings, we employ the FlairNLP framework [38],
which facilitates the combination of embeddings from
multiple sources through a simple API.

Table III shows the sizes of stacked embeddings for five
models. Each model builds on the basic BERT model, which
has a size of 768. The other models add different elements to
BERT, making their sizes larger. Model 2 combines BERT

IAENG International Journal of Computer Science

Volume 52, Issue 4, April 2025, Pages 1051-1061

__

with BPE, resulting in a size of 868. Model 3 combines BERT
with CE and BPE, resulting in a size of 918. Model 4 pairs
BERT with FT, leading to a size of 1068. Model 5 combines
BERT with FT and BPE, giving the largest size of 1168.

TABLE III
TYPES OF STACKED EMBEDDING AND THEIR EMBEDDING SIZE

Model Stack Embedding Size of Stacked Embedding

1 BERT 768

2 BERT+BPE 868 (768 + 100)
3 BERT+CE+BPE 918 (768 + 50 + 100)

4 BERT+FT 1068 (768 + 300)

5 BERT+FT+BPE 1168 (768 + 300 + 100)

Fig. 2. Proposed model

D. Proposed Model Architecture
Fig. 2 shows the architecture of the proposed model. The

decoder of the proposed model is similar to [21], [26], [27],
while the encoder is the stack of pre-trained embeddings. The
detailed view of each decoder is shown on the right side of
the figure. Since we use pre-trained embedding as an encoder,
we do not need to fine-tune the encoder. The output of stacked
embedding is a vector representation of tokens for the
particular document. Since the representations generated do
not consider the maximum sequence length for the whole
document, the representations are padded (or, for some
documents, truncated) until reaching the length of 300 (for
source articles) and 150 (for target summaries). Therefore,
when entering the model architecture, each document will
have the exact dimensions. For example, a stack embedding
consisting of BERT and BPE embeddings provides a
document representation of size equal to 1 300 868 for
the source articles and 1 150 868 for the target summaries.

The padded vector representations are then passed through
each decoder block to be calculated with the representation

from the previous decoder block. The teacher-forcing method
is employed during the training process. It enables input from
the first block of the decoder to come from the right-shifted
target summaries regardless of what word is predicted in the
decoder at the corresponding position. The leftmost token
from the right-shifted target summaries is replaced with
[CLS] or [SOS] token as a flag for the start of the sequence.

Unlike the encoder, which utilizes different stacked
embeddings for each scenario, the decoder only uses the
BERT Tokenizer to tokenize the target summary to token
chunks for all scenarios. The tokenized document is fed into
embedding layers to get the vector representation, and the
result is added to the representation from positional encoding
to form the final vector representation for the first block
decoder. As Transformer architecture removes the recurrent
concept from it, the model cannot obtain a proper word order
that is important in sequence tasks; hence, it is required to
have this positional encoding to replace that functionality.
Equations (1) and (2) show the positional encoding used in
this research for odd and even indices.

𝑃𝐸(𝑝𝑜𝑠, 2𝑖) = 𝑠𝑖𝑛 (

𝑝𝑜𝑠

10000
2𝑖
𝑑

)
(1)

𝑃𝐸(𝑝𝑜𝑠, 2𝑖 + 1) = cos (

𝑝𝑜𝑠

10000
2𝑖
𝑑

)
(2)

In these equations, pos is the current position, i is the
dimension index, and d is the model’s dimension (embedding
size).

Each decoder block receives two inputs: one from the
encoder, which is the source sequence representation, and
another from the previous decoder block. For the first decoder
block, this second input is the target embeddings, and for the
remaining blocks, it’s the output from the previous decoder
block. Within each block, the inputs are processed through
different layers. The decoder input first goes to the masked
multi-head self-attention layer, where it is split into three
parts: Q (query), K (key), and V (value). These are used in the
scaled-dot product attention along with a look-ahead mask,
ensuring that the decoder only attends to tokens up to the
current position in the sequence. After that, a residual
connection and layer normalization (also called "Add &
Norm") is applied. This masked attention allows the decoder
to focus only on the tokens it has generated so far without
looking at future tokens.

The masked attention formula is shown in Equation (3),
where dk is the vector of K’s dimension, and the Mask is the
mask vector used to mask out certain positions, for example,
padding tokens or future tokens.

 𝑀𝑎𝑠𝑘𝑒𝑑𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉, Mask)

= softmax (
𝑄𝐾𝑇

√𝑑𝑘
+ Mask) 𝑉

(3)

The masked self-attention is performed using multiple

heads, allowing the decoder to focus on different parts of the
target sequence at once. Equations (4) and (5) show the
formula of masked multi-head self-attention. WO is a
learnable matrix that projects the concatenated output back to

IAENG International Journal of Computer Science

Volume 52, Issue 4, April 2025, Pages 1051-1061

__

the model's original dimension. The Qi, Ki, and Vi are each
attention head's projected queries, keys, and values.

 𝑀𝐻𝐴(𝑄, 𝐾, 𝑉) = 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑1, … , ℎ𝑒𝑎𝑑𝑛)𝑊𝑂 (4)
 ℎ𝑒𝑎𝑑𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑖, 𝐾𝑖, 𝑉𝑖) (5)

Next, the output from the first step is passed through the

multi-head cross-attention layer. In this step, the queries (Q)
come from the decoder output, while the keys (K) and values
(V) come from the encoder output. These are used in scaled-
dot product attention along with a padding mask, which
ensures that padding tokens in the input are ignored. This
allows the decoder to attend to the most relevant parts of the
input sequence (encoder output) while generating the target
sequence. After that, the results are recombined and passed
through layer normalization (Add & Norm layer) to produce
a new, refined representation.

Last, the result from the second calculation will pass
through the position-wise feed-forward layer to get an
additional calculation, followed by normalization. The final
representation from the last layer is passed into the next
decoder block. The final representation from the last decoder
block will go through the linear layer. This layer enables the
representation to be mapped into a logit vector, which
contains probabilities of words in the dictionary in a
particular position. Subsequently, the vector will go through
the softmax layer to be normalized towards the overall
probability distribution, and the highest one is selected as the
word prediction for that position. The same process goes on
until reaching the end of the sequence. Despite using the
correct target word for each position to be passed into the
decoder block, the word generation or prediction is still used
to calculate the loss value.

Configurations of the decoder are similar to [21], [27],
consisting of 6 stacked decoder layers, 12 layers of multi-
head self-attention, 2,048 neurons for each hidden layer in the
feed-forward model, drop out = 0.1, initial learning rate =
0.0001, and warm-up steps = 4000.

The model is trained for ten epochs, and the vocabulary
size equals the number of vocabularies formed in the BERT
Tokenizer. In this model, we use the cross-entropy loss and
Adam optimizer and employ the learning rate scheduler used
by [21]. Equation (6) shows what the learning rate (lr)
scheduler looks like, where init_lr is the initial learning rate
used, cs is the current step, and ws is the warm-up step.

𝑙𝑟 = 𝑖𝑛𝑖𝑡_𝑙𝑟 ⋅ 𝑚𝑖𝑛(𝑐𝑠−0.5, 𝑤𝑠−1.5⋅𝑐𝑠)
𝑤𝑠−0.5 (6)

The model fine-tuning process involves a combination of

varying the initial learning rate and adjusting the number of
warm-up steps. The initial learning rate values are tested at
0.001, 0.0001 (default), and 0.00001, while the warm-up
steps range from 1000, 4000 (default), to 10000. Each time
the model's performance improves during the validation
stage, the system saves the result as a checkpoint, which
includes the updated model weights and optimizer states.

E. Model Evaluation
We evaluate the models using test data consisting of

10,972 rows. The evaluation process is pretty similar to the
training phase. It starts by initializing the object to define the

pre-trained embedding (including the stacked embeddings),
padding the vector representation according to the encoder's
maximum sequence length, and inferencing the result in the
decoder. However, the treatment on the decoder side is quite
different from the training since the input to the first decoder
block is only a list containing the CLS/SOS token. Besides
that, the beam search algorithm is applied at the top of the
architecture right after mapping the final representation to the
logit vector. This algorithm is also equipped with a trigram
blocking mechanism to suppress the word repetition (a
penalty is given to the word generated for more than three
consecutive occurrences so that the word is blocked in the
next occurrence). The beam width used in this study equals
three and only keeps the best sequence at the end (n_best=1).
The word prediction generated by the decoder and beam
search algorithm for the corresponding position will be
appended to the list mentioned above and become the
decoder's input for the next position. This process will
continue until the SEP/EOS token is predicted or the pre-
defined maximum sequence length (150) is reached.

After obtaining the inference results, they are evaluated
using the ROUGE (Recall Oriented Understudy for Gisting
Evaluation) score. The ROUGE score measures the number
of matching sequences (i.e., n-gram, LCS) between the
generated and reference summaries [39], ranging between 0
and 1. In this paper, three types of ROUGE are being utilized,
namely R1(ROUGE-1), R2 (ROUGE-2), and RL (ROUGE-
L), as they are the commonly used ROUGE metrics in
summarization tasks [16].

R1 measures the overlap of unigrams (individual words)
between the generated summary and the reference summary,
and R2 does the same for bigrams (pairs of consecutive
words). In contrast, RL evaluates the similarity between the
generated and reference summaries by identifying the longest
common subsequence of words, which captures the sequence
similarity between the texts. Unlike R1 and R2, which rely on
counting word matches, RL uses a string-matching technique
to assess the alignment of word sequences.

III. RESULTS AND DISCUSSION
In this section, we first examine the impact of selecting

different BERT layers on the model's performance, where
BERT embeddings are utilized exclusively as the encoder.
Next, we assess the effect of employing stacked embeddings
as an encoder on model performance using training datasets
of 50K and 75K samples. We then compare the proposed
model with existing models to evaluate their relative
effectiveness. Finally, we will analyze the results of the
summarization.

A. The effect of BERT layers selection
The BERT model consists of 13 stacked layers. The first

layer is an embedding layer, while the remaining 12 layers
are bidirectional encoder layers. Information flows from the
lower layers to the higher ones, with each layer refining the
representation of the input until the final layer produces a
numerical vector for each word. In a study by Devlin et al.
[17], the impact of different BERT layers on the performance
of the named entity recognition (NER) task was analyzed. In
this paper, we adopt a similar approach to examine the effect
of layer selection on the summarization task.

Table IV presents the accuracy and loss metrics for various

IAENG International Journal of Computer Science

Volume 52, Issue 4, April 2025, Pages 1051-1061

__

BERT layers during both training and validation after ten
epochs. The results demonstrate that using the sum of all
layers achieves the highest training accuracy (49.060) and the
lowest training loss (3.175), alongside the best validation
accuracy (36.369) and a relatively low validation loss (4.485).
These findings suggest that aggregating information from all
BERT layers provides the most comprehensive and effective
task representation. In contrast, using individual layers or
subsets of layers results in diminished performance, with the
first layer showing the lowest accuracy and highest loss
during both training and validation. The sum of the last four
layers also performs well, indicating that deeper layers
capture more relevant features for the summarization task.
Based on these results, we adopt the sum of all layers when
constructing BERT embeddings.

 TABLE IV

ACCURACY AND LOSS OF BERT LAYERS DURING TRAINING AND
VALIDATION

BERT layers
Training Validation

Acc Loss Acc Loss

First layer 34.323 4.084 25.127 5.256

Last layer 42.440 3.616 31.164 4.838

Second last layer 43.368 3.563 32.791 4.753

The last four
layers 45.790 3.405 34.333 4.648

All layers 49.060 3.175 36.369 4.485

A. The Effect of Stacked Embedding Using 50K Train
Data

Fig. 3 compares the performance of five stacked embedding
encoders during training and validation. In all cases, the
training loss consistently decreases across epochs, which
indicates that the model is learning effectively from the
training data. The validation loss also decreases, but not
always at the same rate as the training loss. The gap between
training and validation loss provides insight into the model’s
generalization capabilities. The BERT model shows the
smallest loss difference, indicating a stable performance with
minimal overfitting signs. Similarly, BERT+BPE has a
comparable loss difference, which also reflects limited
overfitting and good generalization ability. BERT+CE+ BPE,
BERT+FT, and BERT+FT+BPE show signs of overfitting.
Complementing this visual analysis, Table V provides a
detailed comparison of the best epoch and the performance of
the stacked embeddings encoder during both training and
validation.

It can be seen in Table V that BERT achieves a reasonable
balance between training and validation accuracy while also
maintaining a relatively close match between training and
validation loss. BERT+BPE slightly improves the accuracy
of training and lowers the loss. BERT+CE+BPE provides a
notable improvement in both training accuracy and validation
accuracy. The BERT+FT model exhibits a high training
accuracy with a more significant drop in validation accuracy
and a more noticeable difference between training and
validation loss, indicating that it overfits the most among the
models. Based on the analysis result of the graph in Fig. 3 and
Table V, the BERT+FT+BPE model shows the best overall
performance in both the graph and the table. The graph
confirms that it achieves the lowest validation loss and the

smallest gap between training and validation, reflecting the
best generalization. The BERT+CE+BPE model balances
training and validation losses, confirming its solid
performance, as seen in the table.

Fig. 3. Training and validation loss of five stacked embeddings encoder on
50K training data

TABLE V
THE ACCURACY AND LOSS OF STACKED EMBEDDINGS ENCODER DURING

TRAINING AND VALIDATION (50K TRAIN DATA)

Stacked
Embedding

Best
Epoch

Training Validation
Acc Loss Acc Loss

BERT 10 49.060 3.175 36.369 4.485

BERT+BPE 10 49.282 3.125 36.399 4.442

BERT+CE+BPE 10 49.835 3.069 36.744 4.416

BERT+FT 9 49.306 3.084 36.232 4.453

BERT+FT+BPE 9 49.941 3.058 36.952 4.402

Table VI presents the ROUGE scores for various models

on test data, focusing on Precision (P), Recall (R), and F1-
score (F1) for R1, R2, and RL. The BERT+CE+BPE model
appears to perform best across most metrics. It consistently
achieves the highest precision (P) and F1 scores in R1, R2,
and RL. The BERT+FT+BPE model shows strong
performance in recall (R) scores, achieving the highest values
for R1-R (36.96), R2-R (16.83), and RL-R (34.01). In most
metrics, BERT+FT offers improvements over the base BERT
model but does not reach the top performance levels of
BERT+CE+BPE or BERT+FT+BPE. These results suggest
that stacking embeddings, particularly combining BERT with
CE and BPE, can lead to improved performance in text
analysis tasks as measured by ROUGE scores.

IAENG International Journal of Computer Science

Volume 52, Issue 4, April 2025, Pages 1051-1061

__

TABLE VI
THE ROUGE SCORE OF STACKED EMBEDDINGS ENCODER ON TEST DATA

WHEN THE MODELS TRAINED USING 50K TRAIN DATA

Metrics BERT BERT+
BPE

BERT+
CE+BPE

BERT
+FT

BERT+
FT+BPE

R1 P 34.49 34.72 35.35 35.21 34.98
 R 36.94 36.40 36.86 36.35 36.96

 F1 35.18 35.02 35.58 35.26 35.41

R2 P 14.00 14.12 14.64 14.56 14.52

 R 16.64 16.38 16.78 16.48 16.83

 F1 14.98 14.92 15.40 15.21 15.34

RL P 31.71 31.96 32.60 32.35 32.21

 R 33.94 33.49 33.98 33.37 34.01

 F1 32.33 32.22 32.80 32.38 32.59

TABLE VII
F1 SCORE OF TUNING BERT+CE+BPE ON THE COMBINATION OF LEARNING

RATE AND WARM-UP STEP (50K TRAIN DATA)
Learning

Rate
Warm-up

Steps R1 R2 RL

0.001 1000 5.62 0.1 5.6
 4000 18.16 2.49 17.04

 10000 25.97 6.55 23.76

0.0001 1000 32.35 10.88 29.68

 25000 35.23 15.10 32.47

 4000 35.58 15.40 32.80

 5000 35.36 15.30 32.55

 7500 34.52 13.90 31.81

 10000 33.56 12.49 30.72

0.00001 1000 28.83 7.07 26.17

 4000 27.34 5.92 24.97

 10000 22.48 3.45 20.74

We tried to finetune the BERT+CE+BPE model using

different combinations of learning rates and warm-up steps.
The F1 scores on the test data after finetuning are shown in
Table VII. The optimal combination is found with a learning
rate of 0.0001 and 4000 warm-up steps, achieving the highest
F1 scores across all metrics (R1: 35.58, R2: 15.40, RL:
32.80). Increasing the learning rate to 0.001 results in
significantly lower F1 scores, suggesting that a learning rate
that is too high leads to inadequate convergence and poorer
model performance. Conversely, decreasing the learning rate
to 0.00001 also degrades performance, indicating that a
learning rate that is too slow might not provide sufficient
updates for effective learning within the given steps.
Furthermore, the number of warm-up steps also critically
impacts performance, with both too few (1000) and too many
(10000) warm-up steps leading to suboptimal results. Thus, a
moderate learning rate and an appropriately chosen number
of warm-up steps are crucial for optimizing the model's
performance. After conducting finetuning, we find that the
optimal hyperparameters of the BERT+CE+PBE model are
similar to the default settings used in Table VI.

B. The Effect of Stacked Embedding Using 75K Train
Data
Fig. 4 shows the performance of five stacked embedding

encoders on 75K training data, with both training and

validation losses decreasing over the epochs, indicating
consistent learning and improvement across all models.
BERT+FT+BPE exhibits the smallest loss difference,
indicating the best generalization and least overfitting among
the models. BERT and BERT+CE+BPE also show
reasonable generalization with moderate overfitting. In
contrast, BERT+BPE and BERT+FT display the highest loss
differences, indicating stronger overfitting, with BERT+FT
being the most affected.

Fig. 4. Training and validation loss of five stacked embeddings on 75K
training data

TABLE VIII

THE ACCURACY AND LOSS OF STACKED EMBEDDINGS ENCODER DURING
TRAINING AND VALIDATION (75K TRAIN DATA)

Stacked
Embedding

Best
Epoch

Training Validation
Acc Loss Acc Loss

BERT 10 61.557 2.333 39.642 4.418

BERT+BPE 10 57.627 2.593 36.688 4.719

BERT+CE+BPE 9 62.355 2.316 40.352 4.408

BERT+FT 9 62.062 2.312 39.366 4.466

BERT+FT+BPE 8 61.754 2.347 39.833 4.428

Table VIII offers a detailed comparison of the best epoch

and the performance of the stacked embedding encoders in
both training and validation. BERT+CE+BPE is the best-
performing model, achieving the highest validation accuracy
and demonstrating strong generalization across the dataset, as
shown in Fig. 4 and Table VIII. BERT+FT+BPE also
performs well, achieving good validation accuracy and
generalization, though it slightly lags behind
BERT+CE+BPE. BERT+BPE performs worse than plain

IAENG International Journal of Computer Science

Volume 52, Issue 4, April 2025, Pages 1051-1061

__

BERT. These results highlight the benefits of using a mix of
embeddings to improve the model's ability to understand and
generate summaries, with BERT+CE+BPE standing out as
the most effective combination for training and validation.

Table IX presents the performance of various stacked
embeddings on test data. BERT+FT achieves the highest
precision across all metrics (R1: 31.11, R2: 14.73, RL:
28.61), indicating its effectiveness in generating accurate
summaries. However, the baseline BERT outperforms others
in the recall, particularly for R1 (49.51) and RL (45.68),
which suggests its strength in capturing a broader range of
relevant content from the reference summaries. Regarding the
F1-score, BERT+FT shows slightly superior performance in
R1 (37.19) and R2 (18.11), while BERT and BERT+FT+BPE
combinations exhibit competitive results. While BERT+FT
stands out for precision and balanced performance, the
original BERT model remains strong in recall, highlighting
its comprehensive content capture capabilities.

TABLE IX

THE ROUGE SCORE OF STACKED EMBEDDINGS ON TEST DATA WHEN THE
MODELS TRAINED USING 75K TRAIN DATA

Metrics BERT BERT
+BPE

BERT+
CE+BPE

BERT
+FT

BERT+
FT+BPE

R1 P 30.47 30.62 30.40 31.11 30.61
 R 49.51 48.10 48.90 48.07 48.42

 F1 37.18 36.78 36.95 37.19 36.96

R2 P 14.48 14.21 14.34 14.73 14.40

 R 25.60 24.41 25.08 24.63 24.77

 F1 18.19 17.62 17.95 18.11 17.90

RL P 28.09 28.21 27.98 28.61 28.18

 R 45.68 44.36 45.05 44.26 44.63

 F1 34.28 33.90 34.02 34.21 34.04

Based on the fine-tuning results with 50K training data, the

optimal configuration was determined to be a learning rate of
0.0001 with 4000 warm-up steps. Therefore, we proceeded to
fine-tune the BERT embedding encoder model using only the
0.0001 learning rate. The results, presented in Table X,
indicate that the optimal number of warm-up steps for fine-
tuning BERT on this dataset is 4000, as it achieves the highest
F1 scores across all metrics (R1, R2, and RL). Increasing or
decreasing the warm-up steps results in lower model
performance.

TABLE X

F1 SCORE OF BERT AFTER FINE-TUNING USING 0.0001 LEARNING RATE AND
VARIOUS WARM-UP STEPS (75K TRAIN DATA)

Learning
Rate

Warm-up
Steps R1 R2 RL

0.0001 1000 36.42 17.35 33.59

 25000 36.88 17.91 34.05

 4000 37.18 18.19 34.28

 5000 36.79 17.81 33.90

 7500 36.85 17.82 33.95

 10000 36.47 17.39 33.57

C. Comparison with Other Models
We compare our two models, BERT+CE+BPE and BERT

encoder based models, with models from previous research
conducted by [26] and [40]. Table XI shows the F1 score of

the six models. Among the previous models, BertAbs
(IndoBERT) achieved the best performance across all
metrics, with the highest scores for R1 (40.94), R2 (23.01),
and RL (37.89). IndoBART and BertAbs (mBERT) followed
closely, while IndoGPT showed the lowest scores,
particularly in R1 (37.41) and RL (31.54). Despite using
much less training data (less than 40% of the original data),
our proposed models achieve relatively competitive results.
The BERT Encoder (75K) achieved scores of R1 (37.18), R2
(18.19), and RL (34.28), which surpassed the IndoGPT model
in R1 and RL metrics despite using less than half the training
data. Similarly, the BERT+CE+BPE Encoder (50K) achieved
R1 (35.58), R2 (15.40), and RL (32.80), which, while slightly
lower overall, demonstrates robust performance considering
the smaller dataset size.

The current BERT encoder (75K train data) outperforms
the BERT+CE+BPE encoder (50K train data), suggesting
that increasing training data improves performance. The
results indicate that with more training data, the current
models might potentially match or exceed the performance of
previous models.

TABLE XI

F-1 SCORE COMPARISON BETWEEN PREVIOUS AND CURRENT RESEARCH
Model Train Data R1 R2 RL

BertAbs (mBERT) [26] 193.9K 39.48 21.59 36.72

BertAbs (IndoBERT) [26] 193.9K 40.94 23.01 37.89
IndoBART [40] 193.9K 39.87 22.24 33.50
IndoGPT [40] 193.9K 37.41 20.61 31.54

Our models
BERT+CE+BPE Encoder 50K 35.58 15.40 32.80
BERT Encoder 75K 37.18 18.19 34.28

D. Analysis of Summarization Result
The samples of the generated summaries with low and high

scores are presented in Tables XII and XIII, respectively.
Table XII shows that the generated summary with a low score
fails to provide meaningful or relevant information. It repeats
the phrase "efektif" four times, resulting in a disjointed and
redundant output that lacks any substantive content or
relevance to the original text. This indicates poor semantic
understanding and summarization capabilities in this
instance. Furthermore, the generated summary seems to take
the first sentence of the document and does not contain any
words from the reference summary.

In contrast, the generated summary with a high score in
Table XIII is largely similar in structure and information, but
it introduces a factual inconsistency by mentioning
"ringotika," which appears to be an erroneous term instead of
"analgetic" or another valid category. While the rest of the
summary aligns closely with the human summarization, this
minor error can reduce the accuracy and reliability of the
model-generated summary.

IV. CONCLUSION
This research develops a model to summarize Indonesian

documents using stacked embeddings as an encoder and a
Transformer-based decoder. The research shows a different
result from the study done by [17] regarding BERT layer
selection for the model. In the summarization task, using all

IAENG International Journal of Computer Science

Volume 52, Issue 4, April 2025, Pages 1051-1061

__

TABLE XII

AN EXAMPLE OF BAD SUMMARIZATION USING BERT EMBEDDING MODEL TRAINED ON 75K DATA
Original

document
Kendati penerapan otonomi daerah sudah berlaku efektif, pemerintah pusat masih tetap membantu
daerah-daerah yang mengalami bencana alam. Buktinya, dalam Tahun Anggaran 2001 pemerintah
menyediakan dana bantuan sebesar Rp 400 miliar untuk menangani korban bencana di Tanah Air. Hal
ini diungkapkan Menteri Permukiman dan Prasarana Wilayah Erna Witoelar di Padang, Sumatra
Barat, baru-baru ini. Erna menjelaskan, kerusakan akibat bencana alam, seperti di Kabupaten Nias,
Sumatra Utara dan Padang, Sumatra Barat tak saja menyusahkan korban, tapi juga menyulitkan
pemerintah daerah setempat. Sebab provinsi dan kabupaten tak banyak mendapat bantuan dari
pemerintah sejak Otonomi Daerah diberlakukan. Meski demikian, ungkap Erna, pemerintah tak tinggal
diam. Dalam waktu dekat, lanjut Erna, bantuan untuk daerah bencana segera dikucurkan, terutama
terhadap korban banjir di Padang. [2 kalimat dengan 25 kata setelahnya tidak ditampilkan]
Translation: Although the implementation of regional autonomy has been effectively enforced, the
central government still assists regions affected by natural disasters. As proof, in the 2001 fiscal year,
the government allocated aid funds amounting to Rp 400 billion to assist disaster victims across the
country. This was stated by the Minister of Settlement and Regional Infrastructure, Erna Witoelar, in
Padang, West Sumatra, recently. Erna explained that the damage caused by natural disasters, such as in
Nias Regency, North Sumatra, and Padang, West Sumatra, not only troubled the victims but also
burdened the local governments. This is because provinces and regencies have received little assistance
from the government since the enactment of regional autonomy. However, Erna stated, the government
has not remained idle. In the near future, continued Erna, the assistance for disaster-impacted areas
would be immediately disbursed, especially for flood victims in Padang. [2 sentences with 25 words are
not shown from here]

Reference
summary

Pemerintah pusat tetap membantu sejumlah daerah yang mengalami bencana alam. Departemen
Permukiman dan Prasarana Wilayah menyiapkan dana sebesar Rp 400 miliar.
Translation: The central government continued to assist a number of impacted areas due to natural
disaster. The Department of Settlement and Regional Infrastructure prepared a fund of Rp 400 billion.

Generated
summary

kendati penerapan otonomi daerah sudah berlaku efektif efektif efektif efektif.
Translation: Even though the implementation of regional autonomy had been available effectively
effectively effectively effectively.

TABLE XIII
AN EXAMPLE OF GOOD SUMMARIZATION USING BERT EMBEDDING MODEL TRAINED ON 75K DATA

Original
document

Petugas Badan Pengawasan Obat dan Makanan (BPOM) Mataram, Nusatenggara Barat, menyita
ribuan butir obat keras daftar G dari berbagai merek yang diedarkan secara ilegal. Jenis obat tersebut,
antara lain antibiotik, analgetic, dan sejumlah merek lain. Hal itu diungkapkan Kepala BPOM Mataram
Sriutami Ekaningtyas, baru-baru ini. Menurut Sriutami, saat disita, obat-obatan ini masih disimpan di
dalam sebuah mobil boks yang biasa digunakan tersangka K. S. untuk pemasaran. Obat-obatan tersebut,
menurut K. S, biasa disalurkan lewat sejumlah toko obat dan pasar obat, terutama di tempat yang
terisolir. Sriutami mengakui, sebenarnya, peredaran obatan tersebut telah tercium sejak lama. Tapi,
karena sulit menangkap pengedar, pemasaran obat tersebut terus berlanjut. [2 kalimat dengan 28 kata
setelahnya tidak ditampilkan]
Translation: Officers from the Food and Drug Monitoring Agency (BPOM) Mataram, West Nusa
Tenggara, confiscated thousands of pills of category G hard drugs from various brands that were being
distributed illegally. These drugs included antibiotics, analgesics, and several other brands. This was
revealed by the Head of BPOM Mataram, Sriutami Ekaningtyas, recently. According to Sriutami, when
seized, the drugs were still stored in a box truck typically used by the suspect, K.S., for marketing. The
drugs, according to K.S., were usually distributed through several drugstores and medicine markets,
especially in isolated areas. Sriutami admitted that the distribution of these drugs had actually been
detected for a long time. However, because it was difficult to catch the dealers, the drug marketing still
continued. [2 sentences with 28 words are not shown from here]

Reference
summary

Ribuan butir obat keras daftar G dari berbagai merek yang diedarkan secara ilegal di Mataram, NTT,
disita petugas BPOM. Jenis obat tersebut, antara lain antibiotik, analgetic, dan sejumlah merek lain.
Translation: Thousands of category G hard drugs from various brands that were being distributed
illegally in Mataram, NTT, were confiscated by BPOM officers. These drugs included antibiotics,
analgesics, and several other brands.

Generated
summary

petugas bpom mataram menyita ribuan butir obat keras daftar g dari berbagai merek yang diedarkan
secara ilegal. jenis obat tersebut, antara lain antibiotik, ringotika, dan sejumlah merek lain.
Translation: BPOM Mataram officers confiscated thousands of category G hard drugs from various
brands that were distributed illegally. These drugs included antibiotics, ringotics, and several other
brands.

IAENG International Journal of Computer Science

Volume 52, Issue 4, April 2025, Pages 1051-1061

__

layers in BERT outperforms other layer combinations in
BERT, with training and validation accuracy of 49.06 and
36.36, respectively.

The research proves that the amount of training data affects
the model performance. For the models trained with 50K
data, the combination of BERT, CE, and BPE results in the
best performance with F1 scores of 34.17 (R1), 13.98 (R2),
and 31.51 (RL). Meanwhile, for the models trained with 75K
data, the stacked embeddings do not give better results than
the BERT embedding. The BERT model results in the best
performance F1 scores of 37.18 (R1), 18.19 (R2), and 34.28
(RL). Our proposed model achieves performance close to
state-of-the-art models described in [26] and [40] despite a
significant reduction in training data.

In future research, we can explore several avenues to
extend this study. These include experimenting with different
combinations of pre-trained embeddings, with or without
BERT as the base model, and fine-tuning various parameters
within the Transformer decoder. Additionally, we could
investigate the impact of increasing the volume of training
data or focus on improving the quality of the existing training
data while maintaining a small dataset size. Each approach
can enhance model performance and deepen our
understanding of the model's behavior under different
conditions.

REFERENCES
[1] W. S. El-Kassas, C. R. Salama, A. A. Rafea, and H. K. Mohamed,

“Automatic text summarization: A comprehensive survey,” Expert
Systems with Applications, vol. 165, p. 113679, 2021, doi:
10.1016/j.eswa.2020.113679.

[2] D. R. Radev, E. Hovy, and K. McKeown, “Introduction to the special
issue on summarization,” Computational Linguistics, vol. 28, no. 4, pp.
399–408, Dec. 2002, doi: 10.1162/089120102762671927.

[3] M. Jishma Mohan, C. Sunitha, A. Ganesh, and A. Jaya, “A study on
ontology based abstractive summarization,” in Procedia Computer
Science, Jan. 2016, vol. 87, pp. 32–37, doi:
10.1016/j.procs.2016.05.122.

[4] M. Allahyari et al., “Text summarization techniques: a brief survey,”
International Journal of Advanced Computer Science and
Applications, Jul. 2017. Available: http://arxiv.org/abs/1707.02268.

[5] T. Cai, M. Shen, H. Peng, L. Jiang, and Q. Dai, “Improving transformer
with sequential context representations for abstractive text
summarization,” in Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), Oct. 2019, vol. 11838 LNAI, pp. 512–524, doi:
10.1007/978-3-030-32233-5_40.

[6] S. Song, H. Huang, and T. Ruan, “Abstractive text summarization using
LSTM-CNN based deep learning,” Multimed. Tools Appl., vol. 78, no.
1, pp. 857–875, 2019, doi: 10.1007/s11042-018-5749-3.

[7] I. R. Musyaffanto, G. Budi Herwanto, and M. Riasetiawan, “Automatic
extractive text summarization for indonesian news articles using
maximal marginal relevance and non-negative matrix factorization,” in
Proceedings 2019 5th International Conference on Science and
Technology, ICST 2019, Jul. 2019, doi:
10.1109/ICST47872.2019.9166376.

[8] N. H. Gabriela, R. Siautama, C. I. A. Amadea, and D. Suhartono,
“Extractive hotel review summarization based on TF/IDF and
adjective-noun pairing by considering annual sentiment trends,” in
Procedia Computer Science, Jan. 2021, vol. 179, pp. 558–565, doi:
10.1016/j.procs.2021.01.040.

[9] M. R. Ramadhan, S. N. Endah, and A. B. J. Mantau, “Implementation
of Textrank algorithm in product review summarization,” in ICICoS
2020 - Proceeding: 4th International Conference on Informatics and
Computational Sciences, Nov. 2020.

[10] R. Nallapati, B. Zhou, C. dos Santos, C. Gulcehre, and B. Xiang,
“Abstractive text summarization using sequence-to-sequence RNNs
and beyond,” in Proceedings of The 20th SIGNLL Conference on
Computational Natural Language Learning, 2016, pp. 280–290, doi:
10.18653/v1/K16-1028.

[11] D. Bahdanau, K. H. Cho, and Y. Bengio, “Neural machine translation
by jointly learning to align and translate,” in Proceedings of the 3rd
International Conference on Learning Representations, ICLR 2015,

Sep. 2015. Available: https://arxiv.org/abs/1409.0473v7.
[12] S. Chopra, M. Auli, and A. M. Rush, “Abstractive sentence

summarization with attentive recurrent neural networks,” in
Proceedings of 2016 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language
Technologies, NAACL HLT 2016, 2016, pp. 93–98, doi:
10.18653/v1/n16-1012.

[13] J. Tan, X. Wan, and J. Xiao, “Abstractive document summarization
with a graph-based attentional neural model,” in ACL 2017 - 55th
Annual Meeting of the Association for Computational Linguistics,
2017, vol. 1, pp. 1171–1181, doi: 10.18653/v1/P17-1108.

[14] P. M. Hanunggul and S. Suyanto, “The impact of local attention in
LSTM for abstractive text summarization,” in 2nd International
Seminar on Research of Information Technology and Intelligent
Systems, ISRITI 2019, Dec. 2019, pp. 54–57, doi:
10.1109/ISRITI48646.2019.9034616.

[15] A. Vaswani et al., “Attention is all you need,” in Advances in Neural
Information Processing Systems, Jun. 2017, vol. 2017-Dec, pp. 5999–
6009. Available: https://arxiv.org/abs/1706.03762v5.

[16] E. Egonmwan and Y. Chali, “Transformer-based model for single
documents neural summarization,” in Proceedings of the 3rd Workshop
on Neural Generation and Translation (WNGT 2019), Nov. 2019, pp.
70–79, doi: 10.18653/v1/d19-5607.

[17] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: pre-
training of Deep Bidirectional Transformers for language
understanding,” in Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computational Linguistics:
Human Language Technologies, pp. 4171–4186, Oct. 2018

[18] H. Zhang, J. Xu, and J. Wang, “Pretraining-based natural language
generation for text summarization,” in Proceedings of CoNLL 2019 -
23rd Conference on Computational Natural Language Learning,
Association for Computational Linguistic, pp. 789–797, Feb. 2019.

[19] Y. Liu and M. Lapata, “Text summarization with pretrained encoders,”
in EMNLP-IJCNLP 2019 - 2019 Conference on Empirical Methods in
Natural Language Processing and 9th International Joint Conference
on Natural Language Processing, pp. 3730–3740, Aug. 2019, doi:
10.18653/v1/d19-1387.

[20] S. Ren and Z. Zhang, “Pointer-generator abstractive text
summarization model with part of speech features,” in Proceedings of
the IEEE International Conference on Software Engineering and
Service Sciences, ICSESS, Oct. 2019, vol. 2019-Octob, pp. 514–517,
doi: 10.1109/ICSESS47205.2019.9040715.

[21] Y. Iwasaki, A. Yamashita, Y. Konno, and K. Matsubayashi, “Japanese
abstractive text summarization using BERT,” in Proceedings 2019
International Conference on Technologies and Applications of
Artificial Intelligence, TAAI 2019, Nov. 2019, doi:
10.1109/TAAI48200.2019.8959920.

[22] N. Khotimah and A. S. Girsang, “Indonesian news articles
summarization using Genetic Algorithm,” Engineering Letters, vol. 30,
no. 1, pp. 152–160, 2022.

[23] D. Wardani and Y. Susanti, “Improving graph-based summarization
with HTML tag and metadata features,” Engineering Letters, vol. 28,
no. 2, 2020.

[24] R. Adelia, S. Suyanto, and U. N. Wisesty, “Indonesian abstractive text
summarization using bidirectional gated recurrent unit,” in Procedia
Computer Science, Jan. 2019, vol. 157, pp. 581–588, doi:
10.1016/j.procs.2019.09.017.

[25] R. S. Devianti and M. L. Khodra, “Abstractive summarization using
genetic semantic graph for Indonesian news articles,” in Proceedings -
2019 International Conference on Advanced Informatics: Concepts,
Theory, and Applications, ICAICTA 2019, Sep. 2019, doi:
10.1109/ICAICTA.2019.8904361.

[26] F. Koto, J. H. Lau, and T. Baldwin, “Liputan6: a large-scale Indonesian
dataset for text summarization,” in Proceedings of the 1st Conference
of the Asia-Pacific Chapter of the ACL and the 10th International Joint
Conference on NLP, Nov. 2020, Accessed: Apr. 19, 2021. [Online].
Available: http://arxiv.org/abs/2011.00679.

[27] R. Wijayanti, M. L. Khodra, and D. H. Widyantoro, “Indonesian
abstractive summarization using pre-trained model,” in Proceedings
3rd 2021 East Indonesia Conference on Computer and Information
Technology, EIConCIT 2021, pp. 79–84, Apr. 2021, doi:
10.1109/EICONCIT50028.2021.9431880.

[28] K. Kurniawan and S. Louvan, “IndoSum: A new benchmark dataset for
Indonesian text summarization,” in 2018 International Conference on
Asian Language Processing (IALP), IEEE, Nov. 2018, pp. 215–220.
doi: 10.1109/IALP.2018.8629109.

[29] B. Heinzerling and M. Strube, “Sequence tagging with contextual and
non-contextual subword representations: a multilingual evaluation,” in
Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics, A. Korhonen, D. Traum, and L. Màrquez,

IAENG International Journal of Computer Science

Volume 52, Issue 4, April 2025, Pages 1051-1061

__

Eds., Florence, Italy: Association for Computational Linguistics, Jul.
2019, pp. 273–291. doi: 10.18653/v1/P19-1027.

[30] A. S. Fadel, M. E. da. A. Saleh, and O. A, “Arabic aspect extraction
based on stacked contextualized embedding with deep learning,” IEEE
Access, vol. 10, pp. 30526–30535, 2020, doi:
10.1109/ACCESS.2022.3159252.

[31] R. Sennrich, B. Haddow, and A. Birch, “Neural machine translation of
rare words with subword units,” in Proceedings of the 54th Annual
Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), K. Erk and N. A. Smith, Eds., Berlin, Germany:
Association for Computational Linguistics, Aug. 2016, pp. 1715–1725.

[32] G. Lample, M. Ballesteros, S. Subramanian, K. Kawakami, and C. Dyer,
“Neural architectures for named entity recognition,” in Proceedings of
the 2016 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, K.
Knight, A. Nenkova, and O. Rambow, Eds., San Diego, California:
Association for Computational Linguistics, Jun. 2016, pp. 260–270.
doi: 10.18653/v1/N16-1030.

[33] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, “Enriching word
vectors with subword information,” Transactions of the Association for
Computational Linguistics, vol. 5, pp. 135–146, 2017.

[34] L. Tanoto, “Indonesian abstractive text summarizer model using the
combination of pre-trained embeddings and transformer decoder,”
Undergraduate thesis, Department of Computer Science and
Electronics, Universitas Gadjah Mada, Yogyakarta, Indonesia, 2022.

[35] B. Wilie et al., “IndoNLU: benchmark and resources for evaluating
Indonesian natural language understanding,” in Proceedings of the 1st
Conference of the Asia-Pacific Chapter of the Association for
Computational Linguistics and the 10th International Joint Conference
on Natural Language Processing, K.-F. Wong, K. Knight, and H. Wu,
Eds., Suzhou, China: Association for Computational Linguistics, Dec.
2020, pp. 843–857.

[36] B. Heinzerling and M. Strube, “BPEmb: tokenization-free pre-trained
subword embeddings in 275 languages,” in Proceedings of the
Eleventh International Conference on Language Resources and
Evaluation (LREC 2018), N. C. (Conference chair), K. Choukri, C.
Cieri, T. Declerck, S. Goggi, K. Hasida, H. Isahara, B. Maegaard, J.
Mariani, H. Mazo, A. Moreno, J. Odijk, S. Piperidis, and T. Tokunaga,
Eds., Miyazaki, Japan: European Language Resources Association
(ELRA), May 2018.

[37] E. Grave, P. Bojanowski, P. Gupta, A. Joulin, and T. Mikolov,
“Learning word vectors for 157 languages,” in Proceedings of the
International Conference on Language Resources and Evaluation
(LREC 2018), 2018.

[38] A. Akbik, T. Bergmann, D. Blythe, K. Rasul, S. Schweter, and R.
Vollgraf, “FLAIR: An easy-to-use framework for state-of-the-art
NLP,” in 2019 Annual Conference of the North American Chapter of
the Association for Computational Linguistics (Demonstrations), 2019,
pp. 54–59.

[39] K. Ganesan, “ROUGE 2.0: updated and improved measures for
evaluation of summarization tasks,” arxiv.org/abs/1803.01937, Mar.
2018. Available: https://arxiv.org/abs/1803.01937.

[40] S. Cahyawijaya et al., “IndoNLG: benchmark and resources for
evaluating indonesian natural language generation,” in Proceedings of
the 2021 Conference on Empirical Methods in Natural Language
Processing, Online and Punta Cana, Dominican Republic: Association
for Computational Linguistics, 2021, pp. 8875–8898. doi:
10.18653/v1/2021.emnlp-main.699.

IAENG International Journal of Computer Science

Volume 52, Issue 4, April 2025, Pages 1051-1061

__

	I. INTRODUCTION
	II. Methodology
	A. Data Collection
	B. Data Preprocessing
	C. Stacked Embedding
	D. Proposed Model Architecture
	E. Model Evaluation

	III. Results and Discussion
	A. The effect of BERT layers selection
	A. The Effect of Stacked Embedding Using 50K Train Data
	B. The Effect of Stacked Embedding Using 75K Train Data
	C. Comparison with Other Models
	D. Analysis of Summarization Result

	IV. Conclusion
	References

