
 

  
Abstract— Document summarization can be categorized into 

two categories: extractive and abstractive summarization. 
Research in abstractive summarization is more limited than that 
of extractive summarization, especially for Indonesian 
documents. Most existing studies in Indonesian abstractive 
summarization rely on a single embedding approach in their 
encoder. This study aims to develop an abstractive Indonesian 
document summarization model using stacked embedding as an 
encoder and a Transformer-based decoder. Stacked 
embeddings offer the advantage of capturing a more 
comprehensive range of linguistic features, enhancing the 
model's ability to generalize across different word forms and 
morphological variations. The stacked embedding combines 
Bidirectional Encoder Representation from Transformers 
(BERT), Byte Pair Embedding (BPE), Character Embedding 
(CE), and FastText (FT). We conduct experiments to find the 
effect of BERT layer selection and various stacked embedding 
as an encoder in the proposed summarization model. Using the 
Liputan6 dataset, the experimental results show that using all 
layers of BERT as an encoder gives the best performance for 
summarization. In addition, the stacked embedding of BERT, 
CE, and BPE gives the highest F1 score of 35.58 (ROUGE-1), 
15.40 (ROUGE-2), and 32.80 (ROUGE-L) when trained with 
50,000 data. In contrast, when trained with 75,000 data, the 
stacked embedding performance is below BERT embedding, 
which has an F1 score of 37.18 (ROUGE-1), 18.19 (ROUGE-2), 
and 34.28 (ROUGE-L). Our proposed model achieves 
performance close to state-of-the-art models despite using less 
than 40% of the training data in Liputan6 dataset. 
 

Index Terms—Abstractive summarization, Liputan6 dataset, 
Pre-trained embedding, Stacked embedding, Transformer 
decoder 
 

I. INTRODUCTION 
NFORMATION is integral to human life, as it provides 
knowledge and new experiences. In today’s digital age, we 

 

 
 

can quickly access vast amounts of information, such as 
global news articles, at any time [1]. However, these articles' 
increasing volume and complexity often make them lengthy 
and challenging to understand, discouraging readers and 
potentially leading to misinformation. There is a need for 
concise text summaries that capture the main points in a 
shorter format [2]. Manual summarization is time-consuming 
and can vary in quality based on age and comprehension. 
Thus, automatic text summarization is essential to efficiently 
condense information while preserving its original meaning 
and avoiding redundancy [3]. Developing models to 
summarize text automatically is a challenging task. This 
difficulty arises because machines do not possess the same 
deep and subtle understanding of the content humans use 
when creating summaries [4]. 

Document summarization can be categorized into two 
types: extractive and abstractive. Extractive summarization 
involves selecting and combining key sentences or points 
from the original text without altering its structure. In 
contrast, abstractive summarization generates a new 
summary by rephrasing the original text and modifying its 
structure while preserving the core meaning [5]. This 
approach often results in more natural and comprehensible 
summaries, as it accounts for the relationships between words 
and sentences [6]. However, abstractive summarization is 
more complex, requiring a deeper understanding of the entire 
text. 

While extractive summarization has been extensively 
studied across various domains, including news articles [7], 
hotel reviews [8], and gadget reviews [9], recent years have 
seen a growing interest in abstractive summarization within 
the field of Natural Language Processing (NLP).  

A study by [10] made significant progress in text 
summarization using a Sequence-to-Sequence model with 
Recurrent Neural Networks (RNNs). This approach achieved 
high ROUGE scores on benchmark datasets such as 
CNN/Daily Mail, Giga Word, and DUC. However, RNNs 
faced limitations, particularly in managing long-range 
dependencies in text, which prompted researchers to explore 
alternative methods for enhancing summarization techniques. 

One of the key advancements in abstractive models is the 
attention mechanism introduced by [11] to address challenges 
in machine translation. This mechanism allows the source 
input to influence word generation with assigned weights. 
Many researchers subsequently incorporated this mechanism 
into their encoder-decoder architectures, achieving better 
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results and higher ROUGE scores, as demonstrated by [12], 
[13], [14], among others. However, the attention mechanism 
did not resolve the issue of parallelization, which led to 
increased computation time and cost during training. To 
address this, [15] introduced the Transformer architecture in 
2017, incorporating multi-head self-attention in the encoder-
decoder structure to enable parallelization. This architecture 
has since been widely adopted and modified to improve 
model performance, such as in the RC-Transformer by [5] 
and enhancements to traditional Sequence-to-Sequence 
models by [16].  

Inspired by the Transformer's ability to capture feature 
representations, [17] introduced Bidirectional Encoder 
Representations from Transformers (BERT), initially as a 
pre-trained word embedding model for various NLP tasks. 
BERT outperformed 11 NLP tasks at the time [17], and 
experiments were conducted to examine the effect of BERT 
layer selection for the Named Entity Recognition task. Today, 
BERT has become both a word embedding technique and a 
standalone model in the NLP field, with text summarization 
being no exception. Reference [18] applied BERT as an 
encoder in the traditional Transformer architecture, achieving 
an average ROUGE-1, ROUGE-2, and ROUGE-L score of 
33.48 on the CNN/DM dataset. Similarly, [19] introduced the 
BERTSUM architecture by modifying and fine-tuning BERT 
for summarization tasks, achieving a ROUGE-1 F1 score of 
41.72 on the CNN/DM dataset and 48.92 on the New York 
Times dataset.  

In addition to English-language datasets, many researchers 
have explored text summarization in non-English languages. 
For instance, [20] applied the pointer-generator approach to 
the LCSTS (Large-scale Chinese Short Text Summarization) 
dataset for Chinese text summarization. Similarly, [21] 
investigated summarization for Japanese texts by employing 
BERT as an encoder and a Transformer-based decoder to 
summarize Japanese documents. 

Indonesia, the world's fourth most populous country, 
produces abundant information daily. There is also research 
on extractive summarization in Indonesian news [22] and 
web content [23]. However, current research in abstractive 
summarization for Indonesian documents is relatively 
limited. For instance, [24] used BiGRU as the main 
component in their encoder-decoder model and applied it to 
Indonesian journal texts with a performance of 12%. A study 
by [25] applied a weighted genetic algorithm and MSOP to 
Indonesian articles, but the results were insufficient. In 2020, 
[26] created a large-scale Indonesian dataset from 
Liputan6.com's news articles and proposed the BertAbs and 
BertExtAbs models. These models achieved F1 scores of 
40.94 (ROUGE-1) and 41.08 (ROUGE-1), respectively. 
Similarly, [27] applied this approach to the IndoSum dataset 
[28]. 

Most abstractive summarization models utilize one word 
embedding in the encoder, such as Word2Vec, FastText, and 
BERT. While individual embedding has strengths, it also has 
limitations that can affect summarization quality. One 
approach used in several NLP tasks is utilizing stacked 
embeddings to replace individual word embeddings in the 
encoder. The use of stacked embeddings has yielded better 
performance in sequence tagging models (NER) [29] and 
aspect-based sentiment analysis models [30].  

The main contribution of this paper includes:  
1. We study the effect of BERT layers for abstractive 

summarization tasks. This study is motivated by the 
result of [17], which suggests that BERT layer 
selections affect the model performance in different 
tasks. Furthermore, we use the results of these 
experiments as our baseline. 

2. We propose a novel abstractive summarization model 
that utilizes stacked embeddings as the encoder and a 
Transformer-based decoder. The encoder combines four 
different types of embeddings: BERT [17], Byte Pair 
Encoding (BPE) [31], Character Embedding (CE) [32], 
and FastText [33]. This combination aims to capture a 
comprehensive range of linguistic features, enhancing 
the model's ability to generate high-quality summaries. 

The remainder of this paper is organized as follows. 
Section 2 discusses the research methodology applied to this 
study. Section 3 presents and discusses the experimental 
results, and Section 4 concludes this research paper.  

II. METHODOLOGY 
Fig. 1 is the workflow diagram that outlines the process of 

building and evaluating a text summarization model [34]. It 
begins with data collection, followed by data preprocessing 
steps such as removing irrelevant text and case folding. After 
preprocessing, stacked embeddings are created for training, 
validation, and test datasets. The training and validation data 
are used to train and fine-tune the model, resulting in a trained 
model. The model is then evaluated using the test data, and 
its performance is assessed using the ROUGE metric, which 
measures the quality of the generated summaries.  

 

 
Fig. 1. The process of building and evaluating abstractive summarization 
models 

A. Data Collection 
The dataset used in this research, obtained from [26], 

consists of 215,827 news articles from Liputan6.com, 
covering the period from October 2000 to October 2010. 
Each article is stored in a JSON file with five key attributes: 
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`clean_article` (the main content of the news article), 
`clean_summary` (an abstractive summary of the article), 
`extractive_summary` (an extractive summary of the article), 
`id` (a unique identifier for the article), and `URL` (the link 
to the article's webpage). The articles and summaries are 
tokenized by splitting on whitespace and punctuation.  

For processing efficiency, the dataset is converted to CSV 
format, retaining only the essential fields: `clean_article` and 
`clean_summary.` The original data has been split into 
training, validation, and test sets (see the second column of 
Table I). Due to computational resource constraints, only a 
subset of the training and validation data is used in this 
research. To create these subsets, we selected articles 
containing 300 tokens or fewer. Table I shows the allocation 
of research data across different datasets. For reduced 
datasets, the "50K Dataset" includes 50,000 training samples, 
7,500 validation samples, and 10,972 test samples, while the 
"75K Dataset" contains 75,000 training samples, 7,500 
validation samples, and 10,972 test samples. This allocation 
allows for consistent test sample size across different training 
dataset sizes for comparative analysis.  

 
TABLE I 

THE ALLOCATION OF RESEARCH DATA 

Data  Original 
Data 50K Dataset 75K Dataset 

Training 193,883 50,000 75,000 

Validation 10,972 7,500 7,500 

Test 10,972 10,972 10,972 

 
TABLE II 

NUMBER OF TOKEN STATISTICS FOR TRAIN, VALIDATION, AND TEST DATA 
Statistics Original 

Training 
50K 

Training 
75K 

Training 
Validation Test 

Mean 184 152 152 164 172 
Std 114 56 56 45 105 
Min 8 8 8 34 6 
Q1 114 110 110 132 124 
Q2 153 142 142 158 151 
Q3 219 187 187 190 187 
Max 6717 300 300 300 2220 
 
Table II shows the length of token statistics of articles in 

the original, 50K, and 75K training data, validation data, and 
test data. This table shows that the filtered training sets (50K 
and 75K) are more uniformly distributed than the original 
training data, with reduced variability and truncated 
maximum lengths. The original training data has a wider 
range and more variability in token counts. The identical 
statistics for 50K and 75K training sets indicate consistent 
sampling (filtering) is applied regardless of the sample size. 
The validation set contains longer sequences than the training 
sets, which could test the model's ability to generalize to 
slightly longer inputs. The test set has much longer sequences 
(max 2220) than training and validation data, which could 
assess how well the model handles sequences beyond its 
training range. 

B. Data Preprocessing 
A cleaning process is conducted before feeding the data 

into the feature extractor for numerical representation. The 
preprocessing involves removing unnecessary parts of the 
documents, such as the news portal name, mentioned regions 

typically found at the beginning or end, references to other 
articles (e.g., '[baca: …]' meaning 'read'), and the author's or 
editor's names usually at the start or end. This step ensures 
clarity and relevance. Punctuation is retained to preserve the 
document's meaning, and text is converted to lowercase to 
standardize representation, avoiding discrepancies between 
words like "Makan" and "makan" ('eat'). We do not remove 
stopwords, and no stemming or lemmatization is applied. 

C. Stacked Embedding 
Stacked embeddings combine different embeddings by 

concatenating them into a single vector. For example, if we 
stack a 768-dimensional BERT embedding with a 300-
dimensional FastText embedding, we get a 1068-dimensional 
concatenated model. We explore four stacked embedding 
encoders consisting of BERT embedding, Byte Pair 
Embedding (BPE), Character Embedding (CE), and FastText 
(FT) embedding (see Table II). We use a BERT-based 
encoder as our baseline. 

To create BERT embedding, we use the Indonesian BERT 
model ‘indobenchmark/indobert-base-p1’, a state-of-the-art 
language model for Indonesian based on the BERT model 
[35]. The embedding dimension of this BERT model is 768. 
Byte-Pair Encoding (BPE) can effectively capture common 
and rare word patterns in text. BPE works by merging the 
most frequent pairs of characters into subwords, enabling the 
model to learn meaningful representations at different levels 
of detail. We use the BPE model called BPEmb, developed 
by [36]. BPEmb is a collection of pre-trained subword 
embeddings for 275 languages based on BPE and trained on 
Wikipedia. It offers embeddings of various sizes: 25, 50, 100, 
200, and 300 dimensions. In our work, we use the 100-
dimensional embeddings. 

Learning character-level embeddings has the benefit of 
creating representations suitable for the specific NLP task and 
domain. Character embeddings (CE) are especially useful for 
languages with rich morphology and for handling out-of-
vocabulary (OOV) words. The model architecture we use to 
generate word embeddings from characters is based on the 
model described in [30]. In this model, the character-based 
representation of words has a dimension of 50. 

The FastText model, developed by Facebook's AI 
Research (FAIR) lab [33], is based on the Skip-gram model 
from Word2Vec. Its subword approach represents each word 
as a collection of character n-grams. Special symbols < and > 
are added at the beginning and end of words to distinguish 
prefixes and suffixes from other character sequences. The 
word itself is also included in its set of n-grams. Once all n-
grams for a given word are extracted, a vector representation 
is assigned to each n-gram. The final word representation is 
then obtained by summing the vector representations of all 
the n-grams. In this study, we utilize pre-trained FastText 
embeddings (cc.id.300.bin.gz), trained on Common Crawl 
and Wikipedia, with a dimension of 300 [37]. To create and 
stack embeddings, we employ the FlairNLP framework [38], 
which facilitates the combination of embeddings from 
multiple sources through a simple API. 

Table III shows the sizes of stacked embeddings for five 
models. Each model builds on the basic BERT model, which 
has a size of 768. The other models add different elements to 
BERT, making their sizes larger. Model 2 combines BERT 
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with BPE, resulting in a size of 868. Model 3 combines BERT 
with CE and BPE, resulting in a size of 918. Model 4 pairs 
BERT with FT, leading to a size of 1068. Model 5 combines 
BERT with FT and BPE, giving the largest size of 1168. 
  

TABLE III 
TYPES OF STACKED EMBEDDING AND THEIR EMBEDDING SIZE 

Model Stack Embedding Size of Stacked Embedding 

1 BERT 768 

2 BERT+BPE 868 (768 + 100) 
3 BERT+CE+BPE 918 (768 + 50 + 100) 

4 BERT+FT 1068 (768 + 300) 

5 BERT+FT+BPE 1168 (768 + 300 + 100) 

 
 

 
Fig. 2. Proposed model 

D.  Proposed Model Architecture 
Fig. 2 shows the architecture of the proposed model. The 

decoder of the proposed model is similar to [21], [26], [27], 
while the encoder is the stack of pre-trained embeddings. The 
detailed view of each decoder is shown on the right side of 
the figure. Since we use pre-trained embedding as an encoder, 
we do not need to fine-tune the encoder. The output of stacked 
embedding is a vector representation of tokens for the 
particular document. Since the representations generated do 
not consider the maximum sequence length for the whole 
document, the representations are padded (or, for some 
documents, truncated) until reaching the length of 300 (for 
source articles) and 150 (for target summaries). Therefore, 
when entering the model architecture, each document will 
have the exact dimensions. For example, a stack embedding 
consisting of BERT and BPE embeddings provides a 
document representation of size equal to 1  300  868 for 
the source articles and 1  150  868 for the target summaries.  

The padded vector representations are then passed through 
each decoder block to be calculated with the representation 

from the previous decoder block. The teacher-forcing method 
is employed during the training process. It enables input from 
the first block of the decoder to come from the right-shifted 
target summaries regardless of what word is predicted in the 
decoder at the corresponding position. The leftmost token 
from the right-shifted target summaries is replaced with 
[CLS] or [SOS] token as a flag for the start of the sequence.  

Unlike the encoder, which utilizes different stacked 
embeddings for each scenario, the decoder only uses the 
BERT Tokenizer to tokenize the target summary to token 
chunks for all scenarios. The tokenized document is fed into 
embedding layers to get the vector representation, and the 
result is added to the representation from positional encoding 
to form the final vector representation for the first block 
decoder. As Transformer architecture removes the recurrent 
concept from it, the model cannot obtain a proper word order 
that is important in sequence tasks; hence, it is required to 
have this positional encoding to replace that functionality. 
Equations (1) and (2) show the positional encoding used in 
this research for odd and even indices. 
 

 
𝑃𝐸(𝑝𝑜𝑠, 2𝑖) = 𝑠𝑖𝑛 (

𝑝𝑜𝑠

10000
2𝑖
𝑑

) 
(1) 

 
𝑃𝐸(𝑝𝑜𝑠, 2𝑖 + 1) = cos (

𝑝𝑜𝑠

10000
2𝑖
𝑑

) 
(2) 

 
In these equations, pos is the current position, i is the 
dimension index, and d is the model’s dimension (embedding 
size). 

Each decoder block receives two inputs: one from the 
encoder, which is the source sequence representation, and 
another from the previous decoder block. For the first decoder 
block, this second input is the target embeddings, and for the 
remaining blocks, it’s the output from the previous decoder 
block. Within each block, the inputs are processed through 
different layers. The decoder input first goes to the masked 
multi-head self-attention layer, where it is split into three 
parts: Q (query), K (key), and V (value). These are used in the 
scaled-dot product attention along with a look-ahead mask, 
ensuring that the decoder only attends to tokens up to the 
current position in the sequence. After that, a residual 
connection and layer normalization (also called "Add & 
Norm") is applied. This masked attention allows the decoder 
to focus only on the tokens it has generated so far without 
looking at future tokens. 

The masked attention formula is shown in Equation (3), 
where dk is the vector of K’s dimension, and the Mask is the 
mask vector used to mask out certain positions, for example, 
padding tokens or future tokens.  

  
 𝑀𝑎𝑠𝑘𝑒𝑑𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉, Mask)

= softmax (
𝑄𝐾𝑇

√𝑑𝑘
+ Mask) 𝑉 

(3) 

 
The masked self-attention is performed using multiple 

heads, allowing the decoder to focus on different parts of the 
target sequence at once. Equations (4) and (5) show the 
formula of masked multi-head self-attention. WO is a 
learnable matrix that projects the concatenated output back to 
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the model's original dimension. The Qi, Ki, and Vi  are each 
attention head's projected queries, keys, and values. 

 
 𝑀𝐻𝐴(𝑄, 𝐾, 𝑉) = 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑1, … , ℎ𝑒𝑎𝑑𝑛)𝑊𝑂  (4) 
 ℎ𝑒𝑎𝑑𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑖, 𝐾𝑖, 𝑉𝑖) (5) 

 
Next, the output from the first step is passed through the 

multi-head cross-attention layer. In this step, the queries (Q) 
come from the decoder output, while the keys (K) and values 
(V) come from the encoder output. These are used in scaled-
dot product attention along with a padding mask, which 
ensures that padding tokens in the input are ignored. This 
allows the decoder to attend to the most relevant parts of the 
input sequence (encoder output) while generating the target 
sequence. After that, the results are recombined and passed 
through layer normalization (Add & Norm layer) to produce 
a new, refined representation. 

Last, the result from the second calculation will pass 
through the position-wise feed-forward layer to get an 
additional calculation, followed by normalization. The final 
representation from the last layer is passed into the next 
decoder block. The final representation from the last decoder 
block will go through the linear layer. This layer enables the 
representation to be mapped into a logit vector, which 
contains probabilities of words in the dictionary in a 
particular position. Subsequently, the vector will go through 
the softmax layer to be normalized towards the overall 
probability distribution, and the highest one is selected as the 
word prediction for that position. The same process goes on 
until reaching the end of the sequence. Despite using the 
correct target word for each position to be passed into the 
decoder block, the word generation or prediction is still used 
to calculate the loss value. 

Configurations of the decoder are similar to [21], [27], 
consisting of 6 stacked decoder layers, 12 layers of multi-
head self-attention, 2,048 neurons for each hidden layer in the 
feed-forward model, drop out = 0.1, initial learning rate = 
0.0001, and warm-up steps = 4000. 

The model is trained for ten epochs, and the vocabulary 
size equals the number of vocabularies formed in the BERT 
Tokenizer. In this model, we use the cross-entropy loss and 
Adam optimizer and employ the learning rate scheduler used 
by [21]. Equation (6) shows what the learning rate (lr) 
scheduler looks like, where init_lr is the initial learning rate 
used, cs is the current step, and ws is the warm-up step. 

 

𝑙𝑟 = 𝑖𝑛𝑖𝑡_𝑙𝑟 ⋅ 𝑚𝑖𝑛(𝑐𝑠−0.5, 𝑤𝑠−1.5⋅𝑐𝑠)
𝑤𝑠−0.5  (6) 

 
The model fine-tuning process involves a combination of 

varying the initial learning rate and adjusting the number of 
warm-up steps. The initial learning rate values are tested at 
0.001, 0.0001 (default), and 0.00001, while the warm-up 
steps range from 1000, 4000 (default), to 10000. Each time 
the model's performance improves during the validation 
stage, the system saves the result as a checkpoint, which 
includes the updated model weights and optimizer states. 

E. Model Evaluation 
We evaluate the models using test data consisting of 

10,972 rows. The evaluation process is pretty similar to the 
training phase. It starts by initializing the object to define the 

pre-trained embedding (including the stacked embeddings), 
padding the vector representation according to the encoder's 
maximum sequence length, and inferencing the result in the 
decoder. However, the treatment on the decoder side is quite 
different from the training since the input to the first decoder 
block is only a list containing the CLS/SOS token. Besides 
that, the beam search algorithm is applied at the top of the 
architecture right after mapping the final representation to the 
logit vector. This algorithm is also equipped with a trigram 
blocking mechanism to suppress the word repetition (a 
penalty is given to the word generated for more than three 
consecutive occurrences so that the word is blocked in the 
next occurrence). The beam width used in this study equals 
three and only keeps the best sequence at the end (n_best=1). 
The word prediction generated by the decoder and beam 
search algorithm for the corresponding position will be 
appended to the list mentioned above and become the 
decoder's input for the next position. This process will 
continue until the SEP/EOS token is predicted or the pre-
defined maximum sequence length (150) is reached. 

After obtaining the inference results, they are evaluated 
using the ROUGE (Recall Oriented Understudy for Gisting 
Evaluation) score. The ROUGE score measures the number 
of matching sequences (i.e., n-gram, LCS) between the 
generated and reference summaries [39], ranging between 0 
and 1. In this paper, three types of ROUGE are being utilized, 
namely R1(ROUGE-1), R2 (ROUGE-2), and RL (ROUGE-
L), as they are the commonly used ROUGE metrics in 
summarization tasks [16].  

R1 measures the overlap of unigrams (individual words) 
between the generated summary and the reference summary, 
and R2 does the same for bigrams (pairs of consecutive 
words). In contrast, RL evaluates the similarity between the 
generated and reference summaries by identifying the longest 
common subsequence of words, which captures the sequence 
similarity between the texts. Unlike R1 and R2, which rely on 
counting word matches, RL uses a string-matching technique 
to assess the alignment of word sequences.  

III. RESULTS AND DISCUSSION 
In this section, we first examine the impact of selecting 

different BERT layers on the model's performance, where 
BERT embeddings are utilized exclusively as the encoder. 
Next, we assess the effect of employing stacked embeddings 
as an encoder on model performance using training datasets 
of 50K and 75K samples. We then compare the proposed 
model with existing models to evaluate their relative 
effectiveness. Finally, we will analyze the results of the 
summarization. 

A. The effect of BERT layers selection 
The BERT model consists of 13 stacked layers. The first 

layer is an embedding layer, while the remaining 12 layers 
are bidirectional encoder layers. Information flows from the 
lower layers to the higher ones, with each layer refining the 
representation of the input until the final layer produces a 
numerical vector for each word. In a study by Devlin et al. 
[17], the impact of different BERT layers on the performance 
of the named entity recognition (NER) task was analyzed. In 
this paper, we adopt a similar approach to examine the effect 
of layer selection on the summarization task. 

Table IV presents the accuracy and loss metrics for various 
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BERT layers during both training and validation after ten 
epochs. The results demonstrate that using the sum of all 
layers achieves the highest training accuracy (49.060) and the 
lowest training loss (3.175), alongside the best validation 
accuracy (36.369) and a relatively low validation loss (4.485). 
These findings suggest that aggregating information from all 
BERT layers provides the most comprehensive and effective 
task representation. In contrast, using individual layers or 
subsets of layers results in diminished performance, with the 
first layer showing the lowest accuracy and highest loss 
during both training and validation. The sum of the last four 
layers also performs well, indicating that deeper layers 
capture more relevant features for the summarization task. 
Based on these results, we adopt the sum of all layers when 
constructing BERT embeddings. 

 
 TABLE IV 

ACCURACY AND LOSS  OF BERT LAYERS DURING TRAINING AND 
VALIDATION 

BERT layers 
Training Validation 

Acc Loss Acc Loss 

First layer 34.323 4.084 25.127 5.256 

Last layer 42.440 3.616 31.164 4.838 

Second last layer 43.368 3.563 32.791 4.753 

The last four 
layers 45.790 3.405 34.333 4.648 

All layers 49.060 3.175 36.369 4.485 

  

A. The Effect of Stacked Embedding Using 50K Train 
Data 

Fig. 3 compares the performance of five stacked embedding 
encoders during training and validation. In all cases, the 
training loss consistently decreases across epochs, which 
indicates that the model is learning effectively from the 
training data. The validation loss also decreases, but not 
always at the same rate as the training loss. The gap between 
training and validation loss provides insight into the model’s 
generalization capabilities. The BERT model shows the 
smallest loss difference, indicating a stable performance with 
minimal overfitting signs. Similarly, BERT+BPE has a 
comparable loss difference, which also reflects limited 
overfitting and good generalization ability. BERT+CE+ BPE, 
BERT+FT, and BERT+FT+BPE show signs of overfitting. 
Complementing this visual analysis, Table V provides a 
detailed comparison of the best epoch and the performance of 
the stacked embeddings encoder during both training and 
validation. 

It can be seen in Table V that BERT achieves a reasonable 
balance between training and validation accuracy while also 
maintaining a relatively close match between training and 
validation loss. BERT+BPE slightly improves the accuracy 
of training and lowers the loss. BERT+CE+BPE provides a 
notable improvement in both training accuracy and validation 
accuracy. The BERT+FT model exhibits a high training 
accuracy with a more significant drop in validation accuracy 
and a more noticeable difference between training and 
validation loss, indicating that it overfits the most among the 
models. Based on the analysis result of the graph in Fig. 3 and 
Table V, the BERT+FT+BPE model shows the best overall 
performance in both the graph and the table. The graph 
confirms that it achieves the lowest validation loss and the 

smallest gap between training and validation, reflecting the 
best generalization. The BERT+CE+BPE model balances 
training and validation losses, confirming its solid 
performance, as seen in the table. 

 

 
 
Fig. 3. Training and validation loss of five stacked embeddings encoder on 
50K training data 
 

TABLE V 
THE ACCURACY AND LOSS OF STACKED EMBEDDINGS ENCODER DURING 

TRAINING AND VALIDATION (50K TRAIN DATA) 

Stacked 
Embedding 

Best 
Epoch 

Training Validation 
Acc Loss Acc Loss 

BERT 10 49.060 3.175 36.369 4.485 

BERT+BPE 10 49.282 3.125 36.399 4.442 

BERT+CE+BPE 10 49.835 3.069 36.744 4.416 

BERT+FT 9 49.306 3.084 36.232 4.453 

BERT+FT+BPE 9 49.941 3.058 36.952 4.402 

 
Table VI presents the ROUGE scores for various models 

on test data, focusing on Precision (P), Recall (R), and F1-
score (F1) for R1, R2, and RL. The BERT+CE+BPE model 
appears to perform best across most metrics. It consistently 
achieves the highest precision (P) and F1 scores in R1, R2, 
and RL. The BERT+FT+BPE model shows strong 
performance in recall (R) scores, achieving the highest values 
for R1-R (36.96), R2-R (16.83), and RL-R (34.01). In most 
metrics, BERT+FT offers improvements over the base BERT 
model but does not reach the top performance levels of 
BERT+CE+BPE or BERT+FT+BPE. These results suggest 
that stacking embeddings, particularly combining BERT with 
CE and BPE, can lead to improved performance in text 
analysis tasks as measured by ROUGE scores. 
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TABLE VI 
THE ROUGE SCORE OF STACKED EMBEDDINGS ENCODER ON TEST DATA 

WHEN THE MODELS TRAINED USING 50K TRAIN DATA 

Metrics BERT BERT+
BPE 

BERT+ 
CE+BPE 

BERT
+FT 

BERT+ 
FT+BPE 

R1 P 34.49 34.72 35.35 35.21 34.98 
 R 36.94 36.40 36.86 36.35 36.96 

 F1 35.18 35.02 35.58 35.26 35.41 

R2 P 14.00 14.12 14.64 14.56 14.52 

 R 16.64 16.38 16.78 16.48 16.83 

 F1 14.98 14.92 15.40 15.21 15.34 

RL P 31.71 31.96 32.60 32.35 32.21 

 R 33.94 33.49 33.98 33.37 34.01 

 F1 32.33 32.22 32.80 32.38 32.59 

 
 

TABLE VII 
F1 SCORE OF TUNING BERT+CE+BPE ON THE COMBINATION OF LEARNING 

RATE AND WARM-UP STEP (50K TRAIN DATA) 
Learning 

Rate 
Warm-up 

Steps R1 R2 RL 

0.001 1000 5.62 0.1 5.6 
 4000 18.16 2.49 17.04 

 10000 25.97 6.55 23.76 

0.0001 1000 32.35 10.88 29.68 

 25000 35.23 15.10 32.47 

 4000 35.58 15.40 32.80 

 5000 35.36 15.30 32.55 

 7500 34.52 13.90 31.81 

 10000 33.56 12.49 30.72 

0.00001 1000 28.83 7.07 26.17 

 4000 27.34 5.92 24.97 

 10000 22.48 3.45 20.74 

 
We tried to finetune the BERT+CE+BPE model using 

different combinations of learning rates and warm-up steps. 
The F1 scores on the test data after finetuning are shown in 
Table VII. The optimal combination is found with a learning 
rate of 0.0001 and 4000 warm-up steps, achieving the highest 
F1 scores across all metrics (R1: 35.58, R2: 15.40, RL: 
32.80). Increasing the learning rate to 0.001 results in 
significantly lower F1 scores, suggesting that a learning rate 
that is too high leads to inadequate convergence and poorer 
model performance. Conversely, decreasing the learning rate 
to 0.00001 also degrades performance, indicating that a 
learning rate that is too slow might not provide sufficient 
updates for effective learning within the given steps. 
Furthermore, the number of warm-up steps also critically 
impacts performance, with both too few (1000) and too many 
(10000) warm-up steps leading to suboptimal results. Thus, a 
moderate learning rate and an appropriately chosen number 
of warm-up steps are crucial for optimizing the model's 
performance. After conducting finetuning, we find that the 
optimal hyperparameters of the BERT+CE+PBE model are 
similar to the default settings used in Table VI. 

B. The Effect of Stacked Embedding Using 75K Train 
Data 
Fig. 4 shows the performance of five stacked embedding 

encoders on 75K training data, with both training and 

validation losses decreasing over the epochs, indicating 
consistent learning and improvement across all models. 
BERT+FT+BPE exhibits the smallest loss difference, 
indicating the best generalization and least overfitting among 
the models. BERT and BERT+CE+BPE also show 
reasonable generalization with moderate overfitting. In 
contrast, BERT+BPE and BERT+FT display the highest loss 
differences, indicating stronger overfitting, with BERT+FT 
being the most affected. 

 

 
 
Fig. 4. Training and validation loss of five stacked embeddings on 75K 
training data 

 
TABLE VIII 

THE ACCURACY AND LOSS OF STACKED EMBEDDINGS ENCODER DURING 
TRAINING AND VALIDATION (75K TRAIN DATA) 

Stacked 
Embedding 

Best 
Epoch 

Training Validation 
Acc Loss Acc Loss 

BERT 10 61.557 2.333 39.642 4.418 

BERT+BPE 10 57.627 2.593 36.688 4.719 

BERT+CE+BPE 9 62.355 2.316 40.352 4.408 

BERT+FT 9 62.062 2.312 39.366 4.466 

BERT+FT+BPE 8 61.754 2.347 39.833 4.428 

 
Table VIII offers a detailed comparison of the best epoch 

and the performance of the stacked embedding encoders in 
both training and validation. BERT+CE+BPE is the best-
performing model, achieving the highest validation accuracy 
and demonstrating strong generalization across the dataset, as 
shown in Fig. 4 and Table VIII. BERT+FT+BPE also 
performs well, achieving good validation accuracy and 
generalization, though it slightly lags behind 
BERT+CE+BPE. BERT+BPE performs worse than plain 
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BERT. These results highlight the benefits of using a mix of 
embeddings to improve the model's ability to understand and 
generate summaries, with BERT+CE+BPE standing out as 
the most effective combination for training and validation. 

Table IX presents the performance of various stacked 
embeddings on test data. BERT+FT achieves the highest 
precision across all metrics (R1: 31.11, R2: 14.73, RL: 
28.61), indicating its effectiveness in generating accurate 
summaries. However, the baseline BERT outperforms others 
in the recall, particularly for R1 (49.51) and RL (45.68), 
which suggests its strength in capturing a broader range of 
relevant content from the reference summaries. Regarding the 
F1-score, BERT+FT shows slightly superior performance in 
R1 (37.19) and R2 (18.11), while BERT and BERT+FT+BPE 
combinations exhibit competitive results. While BERT+FT 
stands out for precision and balanced performance, the 
original BERT model remains strong in recall, highlighting 
its comprehensive content capture capabilities. 

 
TABLE IX 

THE ROUGE SCORE OF STACKED EMBEDDINGS ON TEST DATA WHEN THE 
MODELS TRAINED USING 75K TRAIN DATA 

Metrics BERT BERT
+BPE 

BERT+ 
CE+BPE 

BERT
+FT 

BERT+ 
FT+BPE 

R1 P 30.47 30.62 30.40 31.11 30.61 
 R 49.51 48.10 48.90 48.07 48.42 

 F1 37.18 36.78 36.95 37.19 36.96 

R2 P 14.48 14.21 14.34 14.73 14.40 

 R 25.60 24.41 25.08 24.63 24.77 

 F1 18.19 17.62 17.95 18.11 17.90 

RL P 28.09 28.21 27.98 28.61 28.18 

 R 45.68 44.36 45.05 44.26 44.63 

 F1 34.28 33.90 34.02 34.21 34.04 

 
Based on the fine-tuning results with 50K training data, the 

optimal configuration was determined to be a learning rate of 
0.0001 with 4000 warm-up steps. Therefore, we proceeded to 
fine-tune the BERT embedding encoder model using only the 
0.0001 learning rate. The results, presented in Table X, 
indicate that the optimal number of warm-up steps for fine-
tuning BERT on this dataset is 4000, as it achieves the highest 
F1 scores across all metrics (R1, R2, and RL). Increasing or 
decreasing the warm-up steps results in lower model 
performance. 

 
TABLE X 

F1 SCORE OF BERT AFTER FINE-TUNING USING 0.0001 LEARNING RATE AND 
VARIOUS WARM-UP STEPS (75K TRAIN DATA) 

Learning 
Rate 

Warm-up 
Steps R1 R2 RL 

0.0001 1000 36.42 17.35 33.59 

 25000 36.88 17.91 34.05 

 4000 37.18 18.19 34.28 

 5000 36.79 17.81 33.90 

 7500 36.85 17.82 33.95 

 10000 36.47 17.39 33.57 

 

C.  Comparison with Other Models 
We compare our two models, BERT+CE+BPE and BERT 

encoder based models, with models from previous research 
conducted by [26] and [40]. Table XI shows the F1 score of 

the six models. Among the previous models, BertAbs 
(IndoBERT) achieved the best performance across all 
metrics, with the highest scores for R1 (40.94), R2 (23.01), 
and RL (37.89). IndoBART and BertAbs (mBERT) followed 
closely, while IndoGPT showed the lowest scores, 
particularly in R1 (37.41) and RL (31.54). Despite using 
much less training data (less than 40% of the original data), 
our proposed models achieve relatively competitive results. 
The BERT Encoder (75K) achieved scores of R1 (37.18), R2 
(18.19), and RL (34.28), which surpassed the IndoGPT model 
in R1 and RL metrics despite using less than half the training 
data. Similarly, the BERT+CE+BPE Encoder (50K) achieved 
R1 (35.58), R2 (15.40), and RL (32.80), which, while slightly 
lower overall, demonstrates robust performance considering 
the smaller dataset size. 

The current BERT encoder (75K train data) outperforms 
the BERT+CE+BPE encoder (50K train data), suggesting 
that increasing training data improves performance. The 
results indicate that with more training data, the current 
models might potentially match or exceed the performance of 
previous models. 

 
TABLE XI 

F-1 SCORE COMPARISON BETWEEN PREVIOUS AND CURRENT RESEARCH 
Model Train Data R1 R2 RL 

BertAbs (mBERT) [26]   193.9K 39.48 21.59 36.72 

BertAbs (IndoBERT) [26]  193.9K 40.94 23.01 37.89 
IndoBART [40] 193.9K 39.87 22.24 33.50 
IndoGPT [40] 193.9K 37.41 20.61 31.54 

Our models     
BERT+CE+BPE Encoder 50K 35.58 15.40 32.80 
BERT Encoder 75K 37.18 18.19 34.28 

 

D. Analysis of Summarization Result 
The samples of the generated summaries with low and high 

scores are presented in Tables XII and XIII, respectively. 
Table XII shows that the generated summary with a low score 
fails to provide meaningful or relevant information. It repeats 
the phrase "efektif" four times, resulting in a disjointed and 
redundant output that lacks any substantive content or 
relevance to the original text. This indicates poor semantic 
understanding and summarization capabilities in this 
instance. Furthermore, the generated summary seems to take 
the first sentence of the document and does not contain any 
words from the reference summary. 

In contrast, the generated summary with a high score in 
Table XIII is largely similar in structure and information, but 
it introduces a factual inconsistency by mentioning 
"ringotika," which appears to be an erroneous term instead of 
"analgetic" or another valid category. While the rest of the 
summary aligns closely with the human summarization, this 
minor error can reduce the accuracy and reliability of the 
model-generated summary. 

IV. CONCLUSION 
This research develops a model to summarize Indonesian 

documents using stacked embeddings as an encoder and a 
Transformer-based decoder. The research shows a different 
result from the study done by [17] regarding BERT layer 
selection for the model. In the summarization task,  using  all  
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TABLE XII 

AN EXAMPLE OF BAD SUMMARIZATION USING BERT EMBEDDING MODEL TRAINED ON 75K DATA 
Original 

document 
Kendati penerapan otonomi daerah sudah berlaku efektif, pemerintah pusat masih tetap membantu 
daerah-daerah yang mengalami bencana alam. Buktinya, dalam Tahun Anggaran 2001 pemerintah 
menyediakan dana bantuan sebesar Rp 400 miliar untuk menangani korban bencana di Tanah Air. Hal 
ini diungkapkan Menteri Permukiman dan Prasarana Wilayah Erna Witoelar di Padang, Sumatra 
Barat, baru-baru ini. Erna menjelaskan, kerusakan akibat bencana alam, seperti di Kabupaten Nias, 
Sumatra Utara dan Padang, Sumatra Barat tak saja menyusahkan korban, tapi juga menyulitkan 
pemerintah daerah setempat. Sebab provinsi dan kabupaten tak banyak mendapat bantuan dari 
pemerintah sejak Otonomi Daerah diberlakukan. Meski demikian, ungkap Erna, pemerintah tak tinggal 
diam. Dalam waktu dekat, lanjut Erna, bantuan untuk daerah bencana segera dikucurkan, terutama 
terhadap korban banjir di Padang. [2 kalimat dengan 25 kata setelahnya tidak ditampilkan]  
Translation: Although the implementation of regional autonomy has been effectively enforced, the 
central government still assists regions affected by natural disasters. As proof, in the 2001 fiscal year, 
the government allocated aid funds amounting to Rp 400 billion to assist disaster victims across the 
country. This was stated by the Minister of Settlement and Regional Infrastructure, Erna Witoelar, in 
Padang, West Sumatra, recently. Erna explained that the damage caused by natural disasters, such as in 
Nias Regency, North Sumatra, and Padang, West Sumatra, not only troubled the victims but also 
burdened the local governments. This is because provinces and regencies have received little assistance 
from the government since the enactment of regional autonomy. However, Erna stated, the government 
has not remained idle. In the near future, continued Erna, the assistance for disaster-impacted areas 
would be immediately disbursed, especially for flood victims in Padang. [2 sentences with 25 words are 
not shown from here]  

Reference 
summary 

Pemerintah pusat tetap membantu sejumlah daerah yang mengalami bencana alam. Departemen 
Permukiman dan Prasarana Wilayah menyiapkan dana sebesar Rp 400 miliar. 
Translation: The central government continued to assist a number of impacted areas due to natural 
disaster. The Department of Settlement and Regional Infrastructure prepared a fund of Rp 400 billion. 

Generated 
summary 

kendati penerapan otonomi daerah sudah berlaku efektif efektif efektif efektif. 
Translation: Even though the implementation of regional autonomy had been available effectively 
effectively effectively effectively. 

 
 

TABLE XIII 
AN EXAMPLE OF GOOD SUMMARIZATION USING BERT EMBEDDING MODEL TRAINED ON 75K DATA 

Original 
document 

Petugas Badan Pengawasan Obat dan Makanan ( BPOM ) Mataram, Nusatenggara Barat, menyita 
ribuan butir obat keras daftar G dari berbagai merek yang diedarkan secara ilegal. Jenis obat tersebut, 
antara lain antibiotik, analgetic, dan sejumlah merek lain. Hal itu diungkapkan Kepala BPOM Mataram 
Sriutami Ekaningtyas, baru-baru ini. Menurut Sriutami, saat disita, obat-obatan ini masih disimpan di 
dalam sebuah mobil boks yang biasa digunakan tersangka K. S. untuk pemasaran. Obat-obatan tersebut, 
menurut K. S, biasa disalurkan lewat sejumlah toko obat dan pasar obat, terutama di tempat yang 
terisolir. Sriutami mengakui, sebenarnya, peredaran obatan tersebut telah tercium sejak lama. Tapi, 
karena sulit menangkap pengedar, pemasaran obat tersebut terus berlanjut. [2 kalimat dengan 28 kata 
setelahnya tidak ditampilkan] 
Translation: Officers from the Food and Drug Monitoring Agency (BPOM) Mataram, West Nusa 
Tenggara, confiscated thousands of pills of category G hard drugs from various brands that were being 
distributed illegally. These drugs included antibiotics, analgesics, and several other brands. This was 
revealed by the Head of BPOM Mataram, Sriutami Ekaningtyas, recently. According to Sriutami, when 
seized, the drugs were still stored in a box truck typically used by the suspect, K.S., for marketing. The 
drugs, according to K.S., were usually distributed through several drugstores and medicine markets, 
especially in isolated areas. Sriutami admitted that the distribution of these drugs had actually been 
detected for a long time. However, because it was difficult to catch the dealers, the drug marketing still 
continued. [2 sentences with 28 words are not shown from here]  

Reference 
summary 

Ribuan butir obat keras daftar G dari berbagai merek yang diedarkan secara ilegal di Mataram, NTT, 
disita petugas BPOM. Jenis obat tersebut, antara lain antibiotik, analgetic, dan sejumlah merek lain. 
Translation: Thousands of category G hard drugs from various brands that were being distributed 
illegally in Mataram, NTT, were confiscated by BPOM officers. These drugs included antibiotics, 
analgesics, and several other brands. 

Generated 
summary 

petugas bpom mataram menyita ribuan butir obat keras daftar g dari berbagai merek yang diedarkan 
secara ilegal. jenis obat tersebut, antara lain antibiotik, ringotika, dan sejumlah merek lain. 
Translation: BPOM Mataram officers confiscated thousands of category G hard drugs from various 
brands that were distributed illegally. These drugs included antibiotics, ringotics, and several other 
brands. 
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layers in BERT outperforms other layer combinations in 
BERT, with training and validation accuracy of  49.06 and 
36.36, respectively. 

The research proves that the amount of training data affects 
the model performance. For the models trained with 50K 
data, the combination of BERT, CE, and BPE results in the 
best performance with F1 scores of 34.17 (R1), 13.98 (R2), 
and 31.51 (RL). Meanwhile, for the models trained with 75K 
data, the stacked embeddings do not give better results than 
the BERT embedding. The BERT model results in the best 
performance F1 scores of 37.18 (R1), 18.19 (R2), and 34.28 
(RL). Our proposed model achieves performance close to 
state-of-the-art models described in [26] and [40] despite a 
significant reduction in training data. 

In future research, we can explore several avenues to 
extend this study. These include experimenting with different 
combinations of pre-trained embeddings, with or without 
BERT as the base model, and fine-tuning various parameters 
within the Transformer decoder. Additionally, we could 
investigate the impact of increasing the volume of training 
data or focus on improving the quality of the existing training 
data while maintaining a small dataset size. Each approach 
can enhance model performance and deepen our 
understanding of the model's behavior under different 
conditions. 
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