
 

  

Abstract—The volume of power load data has increased 

significantly with the proliferation of smart grids. Clustering of 

power load profiles plays a crucial role in identifying distinct 

consumption patterns and load characteristics. However, 

traditional clustering algorithms encounter challenges, such as 

difficulties in selecting suitable initial cluster centers and the 

inability of Euclidean distance to adequately capture the 

complexity of load profile data. These issues can result in 

suboptimal clustering performance. Therefore, this study 

proposes a novel clustering algorithm to address these 

challenges. The proposed algorithm uses an improved density 

peak clustering method to determine the initial cluster centers, 

incorporates an adaptive weighting approach to account for the 

dynamic nature of the load profiles, and introduces a novel 

similarity measure that combines Euclidean and Pearson 

distances to more effectively capture the relationships between 

the load profiles. The performance of the proposed algorithm is 

evaluated using two datasets of smart meter data from 

Southwest China. The computational results demonstrate that 

the proposed algorithm outperforms other algorithms in terms 

of the sum of squared errors within clusters (SSE), the 

Davies-Bouldin Index (DBI), the silhouette coefficient (SC), and 

the Calinski-Harabasz Index (CHI), as well as in algorithmic 

stability and iterative efficiency. The proposed algorithm also 

exhibits strong robustness when applied to datasets with 

different levels of noise perturbation. This study also explores 

the impact of different algorithm parameters and initial 

clustering centers on the clustering results through a 

comprehensive analysis. Overall, the results indicate that the 

proposed method exhibits high robustness and strong 

applicability in practical scenarios. 

 
Index Terms—Smart grid, Load curve, Data weighting, 

Fusion similarity, Power load clustering 

I. INTRODUCTION 

ith the continuous development of smart grids, the 

penetration rate of smart meters has been increasing, 

resulting in the accumulation of vast amounts of 

electricity consumption data. Power load profile clustering 

refers to the segmentation of users based on their power 
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consumption characteristics, grouping users with similar 

consumption patterns. This technique helps to understand the 
electricity consumption behavior of users and assists with 

demand-side response and high-precision load forecasting [1]. 

In addition, power load profile clustering can be used for 

abnormal power usage detection [2], load control, 

distribution network planning, etc. Therefore, the analysis of 

power load profile clustering is of significant importance [3]. 
Numerous studies have explored clustering of power load 

profiles. For example, Hu et al. introduced a set of 
interpretable and distinguishable load features and proposed 

a two-step feature-based clustering method to classify 

photovoltaic (PV) and non-PV load profiles [4]. Additionally, 

a quantitative component-based method was applied to 

analyze load magnitudes and changes in load patterns. 

Yilmaz et al. proposed a clustering method based on five key 

features of load profile shapes, which was used to cluster 

daily load profiles into various categories [5]. They 
concluded that averaging the load data suppresses the 

diversity of electricity usage patterns. Ryu et al. proposed a 

compressed K-means clustering algorithm for annual load 

distribution using a deep convolutional autoencoder [6]. This 

method visualizes load patterns, daily characteristics, and 

seasonal variations as a two-dimensional load image, 

effectively capturing year-round load behavior through 

distinct vertical and horizontal features. 

Currently, mainstream clustering algorithms are 

categorized into three types: hierarchy-based, density-based, 

and partition-based [7]. Among these, partition-based 

clustering algorithms, such as K-means and Fuzzy C-means 

(FCM), are the most widely used due to their computational 

efficiency and simplicity [8, 9]. However, classical 

partition-based clustering algorithms face a significant 

challenge: sensitivity to initial cluster centers [10]. Classical 

algorithms typically randomly select the initial clustering 

centers, which may increase the number of algorithm 

iterations and reduce the efficiency of the algorithm or even 

lead to inconsistent clustering results [11]. As a result, the 

stability of the algorithm is considerably affected.  

To overcome this drawback, establishing fixed initial 

clustering centers through algorithmic approaches has 

become an important research direction for many 

improvement methods. Many researchers have focused on 

pre-selecting optimal initial clustering centers using 

optimization algorithms or other clustering methods. It is 

widely believed that selecting suitable initial centers can 

reduce the number of iterations required for convergence and 

improve the overall stability and accuracy of clustering 

algorithms. For instance, the density-based canopy algorithm 

selects the point with the highest density as the first clustering 
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center [12], while the remaining centers are automatically 

determined to ensure algorithmic stability. Zhang et al. 

Zhang et al. proposed a quantum-inspired genetic algorithm 

to identify optimal initial clustering centers, achieving a 

balance between clustering accuracy and computational 

efficiency [13]. Li et al. employed the K-means++ algorithm 

to select optimal initial clustering centers and used the 

powerful K-means++ algorithm for clustering [14], which 

can improve the stability and accuracy of the algorithm. The 

Density Peaks (DP) algorithm is a well-known density-based 

clustering algorithm, a method that does not require iteration 

and finds the clustering center at once. Liu et al. proposed a 

Fuzzy C-means algorithm based on density peaks [15], which 

addresses the sensitivity issue of the initial clustering center 

and improves the clustering accuracy. 

Meanwhile, in traditional clustering algorithms, data 

points and features are treated equally. However, in practical 

applications, features of different dimensions often vary in 

importance and should be assigned different weights. Several 

clustering algorithms have been developed to address feature 

weighting. For example, an entropy-weighted K-means 

clustering algorithm (EWKM) [16] was proposed for 

clustering high-dimensional sparse data subspaces. 

Additionally, a feature parsimonious fuzzy c-means 

clustering algorithm [17] was proposed, which automatically 

computes feature weights and reduces the number of 

irrelevant features to improve algorithmic effectiveness and 

practicality. Yang et al. proposed a feature-weighted reduced 

possibility c-means algorithm (FWR-PCM) [18], which 

eliminates irrelevant features and reduces dimensionality, 

thereby enhancing clustering performance. In contrast, 

research on data weighting, particularly in the context of 

power load profiles, remains relatively scarce. This limited 

exploration may be due to the unique characteristics and 

specific significance of load profiles. Lin et al. proposed a 

hierarchical clustering algorithm based on weighted Pearson 

distance. This approach assigns fixed weights to data points 

according to their fluctuations and uses Pearson distance to 

measure both the overall profile and local similarity of the 

power load profiles [19]. 

In functional load curve clustering, traditional similarity 

measures, such as Euclidean distance, have notable 

limitations. These methods primarily assess the similarity of 

numerical distributions but fail to effectively capture trend 

similarities between load curves [20]. To address this 

limitation, several alternative similarity measures have been 

proposed. For example, methods such as Manhattan distance, 

Mahalanobis distance, dynamic time warping (DTW), edit 

distance, Pearson correlation, cross-correlation, and Fourier 

coefficient-based distance have been explored [21]. Yang et 

al. proposed an improved dynamic time warping distance 

(GD-DTW) for measuring the similarity between two 

unequal-length time series [22]. 

To address the limitations of traditional clustering 

algorithms in power load profile clustering, this study 

proposes a novel approach. First, the data are weighted based 

on the fluctuation characteristics of the load curve, and a new 

similarity measure is proposed by combining Euclidean 

distance and Pearson distance. Then, the enhanced K-nearest 

neighbors density peak (KNNDP) algorithm is employed to 

select the initial cluster centers. Finally, clustering is 

performed using the possibility fuzzy c-means (PFCM) 

algorithm, based on the improved similarity measure, to 

obtain the final results. The proposed WF-KNNDP-PFCM 

algorithm provides several innovations and contributions, as 

outlined below. 

Optimization of Initial Clustering Centers: This study 

combines the KNNDP algorithm based on density clustering 

with the PFCM algorithm based on partitioning. By using 

KNNDP to select optimal initial clustering centers, the 

quality and stability of the clustering algorithm are 

significantly improved. 

Fusion Similarity Measure: The Euclidean distance is 

employed to measure the numerical distribution 

characteristics of load curves, while the Pearson distance 

captures the trend change characteristics. An improved 

entropy weighting method is utilized to combine these two 

measures, resulting in a robust similarity measure for the 

clustering algorithm. 

Novel Data Weighting Method: A new approach to data 

weighting is proposed. Based on the trend change 

characteristics between two neighboring points on the load 

curve and the change amplitude, data points are classified 

into non-load trend change points, ordinary load trend change 

points, and important load trend change points. Adaptive 

weighting according to the change amplitude helps 

accurately capture the load trend change characteristics. 

The remainder of this paper is organized as follows. 

Section 2 provides an overview of clustering algorithms and 

related evaluation indices. Section 3 introduces the 

algorithms pertinent to the method proposed in this study. 

Section 4 delves into the practical application of the proposed 

algorithm, presenting experimental results and comparisons 

with other algorithms. Finally, Section 5 concludes the paper 

and suggests potential avenues for future research. 

II. BACKGROUND 

A. Clustering Concepts 

Clustering is a fundamental unsupervised data mining 

technique used to uncover inherent patterns within a dataset. 

The primary objective of clustering is to group data points 

into clusters based on their similarity, ensuring that data 

points within the same cluster exhibit high similarity, while 

points in different clusters have low similarity. The DP 

clustering algorithm, the PFCM algorithm, and the cluster 

evaluation metrics relevant to this study's methodology will 

be discussed in the following sections. 

B. Density Peak Clustering Algorithm 

The DP clustering algorithm is based on density peaks, 

which involves calculating the local density and relative 

distance of each sample to construct a decision diagram. A 

point is considered a cluster center if it satisfies both of the 

following conditions: its local density is higher than that of its 

neighboring points, and its relative distance to other points 

with higher local densities is greater. This means that these 

cluster centers are far from points with higher local densities. 

The local density calculation in the DP algorithm can be 

performed using either a truncation kernel or a Gaussian 

kernel. The truncation kernel calculates the number of 

samples within a truncated distance from point xi, whereas 
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the Gaussian kernel computes the local density as the sum of 

the Gaussian distances from all samples to point xi. By 

definition, the truncation kernel is more suitable for 

clustering discrete data, while the Gaussian kernel is better 

suited for clustering continuous data. 

Truncation kernel: 
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Gaussian kernel: 
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Where dij represents the Euclidean distance between samples 

xi and xj. dc is the truncation distance, a parameter that needs 

to be set experimentally. Typically, dc is chosen as the 

distance at the 2% position after sorting all sample distances 

in ascending order. 

The relative distance is defined as the distance between the 

sample xi and other points with higher local densities. If there 

are data points with higher local densities than xi , the relative 

distance is the minimum Euclidean distance from xi to any of 

these higher-density points. If xi has the highest local density 

among all samples, the relative distance is the maximum 

distance from xi to any other sample point. The specific 

formula is as follows: 
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Decision Graph: The decision graph is constructed by 

plotting the local density on the x-axis and the relative 

distance on the y-axis. Points that have higher local densities 

and greater relative distances are more likely to serve as 

clustering centers, typically appearing in the upper right 

quadrant of the graph. 

C. Possibility Fuzzy c-means Algorithm 

The Possibility Fuzzy C-means (PFCM) algorithm, 

proposed by Pal et al., combines the advantages of fuzzy 

c-means and possibility c-means to address the limitations of 

FCM in handling noise and outliers. The algorithm defines an 

objective function that incorporates two types of 

memberships: possibility membership and fuzzy membership. 

Possibility membership quantifies the degree of absolute 

typicality of a point within a cluster, whereas fuzzy 

membership quantifies the relative degree of membership to 

a cluster. 

The formula for the objective function is presented below: 
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Where CF and CP are two constants defined by the user to 

characterize the relative importance of the fuzzy and 

possibility terms in the algorithm. When noise and outliers 

are present in the data, a larger value of CP enhances the 

algorithm's effectiveness. In addition, tij is an element in the 

typicality matrix, which indicates the typicality of the j-th 

element in the i-th cluster. η is the likelihood index (typically 

set to 2). γi is computed by the formula shown in 5, where K is 

typically 1. The process of minimizing the objective function, 

the typicality matrix, the membership matrix, and the center 

of the clusters is updated with the formulas shown in 

equations (6) to (8). 
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The PFCM algorithm involves several parameters that 

must be initialized before iteration. These include selecting 

appropriate values for CF, CP, and m; setting the stopping 

threshold for the algorithm; defining the maximum number 

of iterations; and determining the initial clustering centers. 

The detailed iterative steps of PFCM are as follows: 

(1) Initialize the clustering centers and calculate γi and μij 

according to Eqs. (5) and (8). 

(2) Update the typicality value tij according to Eq. (6). 
(3) Update the affiliation value μij according to Eq. (8). 
(4) Update the clustering center as well as γi, according to 

Eqs. (7) and (5). 
(5) If the termination condition is met or the number of 

iterations exceeds the set limit, end the algorithm and 

output the membership matrix and the clustering 

centers. If the condition is not met, increment the 

iteration count and return to step 2. 

D. Cluster Evaluation Index 

1. Within-cluster sum of square error 
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Where xi is a data point in the dataset,
j  is the centroid of 

Cluster Cj. Theoretically, a smaller value is preferable. 

However, as the number of clusters increases, the index tends 

to show an overall downward trend. This does not necessarily 

indicate that the corresponding number of clusters is optimal. 

2. Davies–Bouldin index 

The Davies-Bouldin Index (DBI), also known as the 

categorization suitability index, was proposed by David L. 

Davies and Donald W. Bouldin to evaluate the effectiveness 

of clustering algorithms. This index measures clustering 

performance by calculating the average maximum similarity 

between each cluster and the most similar one. The specific 

formula is as follows: 
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Where N denotes the number of clusters, Si represents the 

average distance from the data points within a cluster to the 

cluster's centroid, and 2|| ||i jw w−  denotes the distance 
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between the centroids of two clusters. A smaller DBI value 

indicates better clustering, characterized by compact clusters 

and a high degree of separation between clusters. Conversely, 

a larger DBI value suggests poorer clustering, indicated by 

dispersed clusters or a low degree of separation between 

clusters. 

3. Silhouette Coefficient 

The silhouette coefficient combines the cohesion and 

separation of clustering and is used to evaluate the 

effectiveness of clustering. Its value range is [-1,1]. If the 

silhouette coefficient is closer to 1, it means the clustering 

performance is better, and if the silhouette coefficient value is 

closer to -1, it means the clustering performance is worse. 

The specific formula is as follows. 
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Where bi denotes the minimum average distance of the i-th 

sample to all samples in other clusters, reflecting the degree 

of dispersion between the sample and other clusters, and ai 

denotes the average distance of the i-th sample to other 

sample points in the cluster where it is located, reflecting the 

degree of closeness of samples in the same cluster. Averaging 

the silhouette coefficients of all samples yields the average 

silhouette coefficient, ISILmean, which reflects the overall 

quality of the clusters. A value closer to 1 indicates better 

overall clustering performance, while a value closer to -1 

indicates worse overall clustering performance. 

4. Calinski-Harabasz 

Also known as the variance ratio criterion, it is an internal 

index used to assess the quality of clustering results with the 

following formula. 
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Where SSB (Sum of Squares Between) represents the overall 

inter-cluster dispersion, while SSW (Sum of Squares Within) 

represents the degree of compactness within each cluster. m 

denotes the number of samples, and k denotes the number of 

clusters. A higher value of the CH index denotes a better 

clustering result, with compactness of the samples within the 

clusters and high inter-cluster dispersion, and a lower value 

of the CH index denotes a poorer clustering result, with 

dispersed samples within clusters or low inter-cluster 

dispersion. 

III. METHODOLOGY 

A. K nearest-neighbors Density Peak Algorithm 

Although the DP clustering algorithm provides greater 

stability in selecting initial clustering centers, it is not without 

its limitations. The effectiveness of the DP clustering 

algorithm diminishes when significant differences exist 

between clusters in the dataset. Furthermore, the calculation 

of local density is dependent on the choice of cut-off distance. 

However, in the DP algorithm, the truncation distance is 

determined by the global distribution of the data, neglecting 

local information. Consequently, when the dataset exhibits 

uneven density distributions, the performance of the DP 

clustering algorithm may degrade. 

To address the shortcomings of the traditional DP 

algorithm, this study incorporates the concept of K nearest 

neighbors (KNN) into the DP algorithm. By redefining local 

density and proposing an adaptive method for calculating the 

local cut-off distance, the limitations of the manually set 

truncation distance are mitigated. 

K nearest-neighbors: The K nearest neighbors of sample xi 

are the set of K sample points that are closest to xi, denoted by 

KNN(i): 
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K nearest neighbor distance: The K nearest neighbor 

distance is defined as the sum of the distances from xi to all its 

K nearest neighbor objects. Its calculation formula is as 

follows: 
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K Nearest Neighbor Similarity： 
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Where K refers to the number of nearest neighbors of sample 

xi. The numerator is defined as the sum of the distances 

between the nearest neighbor objects of the sample xi and its 

corresponding nearest neighbor objects, which reflects the 

degree of closeness of the sample xi in the local range of 

samples, indicating that the selected initial clustering center 

must be the point with the highest density value. 

Nearest neighbor density： 
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Adaptive cut-off distance: 
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Where 
c

id is the local truncation distance of sample xi, 
K

jd is 

the maximum distance between sample point xj and its K 

nearest-neighbors. 
K

i  is the average distance between two 

K nearest-neighbors of sample xi. In equation (17), the 

second term is the standard deviation of the distance between 

the sample 𝑥𝑖 and K nearest-neighbors samples. The degree 

of dissimilarity is introduced to enhance the standard 

deviation of the distances between the K nearest-neighbors 

sample points, which helps mitigate the influence of 

individual outliers on the cut-off distance. This approach 

makes the selection of initial clustering centers more 

adaptable and robust, especially for complex datasets. The 

cut-off distance 
c

id changes continuously due to different 

neighborhoods, which can adapt to the distribution of 

different datasets. Meanwhile, the subjectivity of the initial 
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manual selection of cutoff distance is eliminated, and it is not 

affected by the global data distribution. 

To further reduce the subjectivity in the selection of initial 

clustering centers, the concept of decision value is introduced 

into the algorithm. The formula for calculating the decision 

value is as follows: 

 
i i ir  =   (20) 

Obviously, the larger the value of ri, the greater the 

possibility of becoming the initial clustering center. In the 

algorithm, the decision value of each sample is calculated, 

and the samples corresponding to the k largest values are 

selected as the k initial clustering centers. This approach 

eliminates the subjectivity of human selection of initial 

clustering centers and achieves automatic selection of initial 

clustering centers. The process for selecting initial clustering 

centers using the KNNDP algorithm is outlined below. 

Algorithm 1 Initialize centers 

Input:D: dataset, 𝐾:nearest neighbor parameter,k: the number of clusters 

Output:m={m1,m2,…,mk}: the initial cluster centers 

1:Initialzation: m=∅,n=length(D); 
2:Construct the K nearest neighbor sets according to Eq.(13); 

3:for each point xi ∈ D do 

4:   compute nearest neighbor similarity
K

idis  according to Eq.(15);  

5:   compute i ,
K

ip  and 
c

id  according to Eq.(3).Eq.(16) and Eq.(17); 

6:   compute the decision value 𝛄i according to Eq.(20); 

7:   sort( , 'descend') =  

8:end for 

9:Select the points corresponding to the first k decision values as the initial 

clustering center 

10:Return  1 2, ..., km m m m= ，  

B. Fusion Similarity Measure 

Power load profiles are typically characterized as 

functional-type data, exhibiting high dimensionality and a 

strong temporal order. Traditional Euclidean distance, which 

focuses solely on the distribution of values at corresponding 

time points on the power load profiles, may fail to adequately 

capture the shape similarity between load profiles. In contrast, 

pearson distance can capture the trend-change characteristics 

of the power load profiles. To address these issues, a fused 

Euclidean-Pearson similarity measure based on data 

weighting is proposed. This approach aims to enhance 

clustering performance by integrating both distance 

measures. 

The weighted Euclidean distance is calculated as follows. 
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Pearson distance: Unlike the geometric mean distance, the 

Pearson distance places more emphasis on the 

synchronization between the two variables. The Pearson 

distance also reflects the trend similarity between the load 

profiles. The formula for calculating it is as follows: 
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 ( ) ( )1 2 1 2, 1 ,D DLC DLC DLC DLC= −  (23) 

Where DLC1 denotes the first load curve, DLC2 denotes the 

second load curve, xi and yi represent the values on the i-th 

dimension of the two load curves. x and y  are the mean 

values of the two load curves, respectively.  

The formula for the weighted Pearson distance is as 

follows. 
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The fusion similarity formula is shown below. 

 _ _ _ _dis W e d e W p d p =  +    (28) 

Where d_e is the weighted Euclidean distance, d_p is the 

weighted Pearson distance, W_e is the weight corresponding 

to the weighted Euclidean distance, and W_p is the weight 

corresponding to the weighted Pearson distance, and the 

weight calculation is determined by the improved entropy 

weighting method, which will not be repeated in this paper. 

  is the proportion coefficient, which is intended to balance 

the orders of magnitude of the two kinds of distances. The 

corresponding formula for the proportion coefficient is as 

follows: 

 

 
_ .max

_ .max

d e
r

d p
=  (29) 

C. Data Weight 

Load curve clustering aims to group a large set of curves 

into clusters, where curves within the same cluster are similar, 

while those in different clusters differ significantly. However, 

not all data points contribute equally to the clustering process. 

Points where the load trend changes are particularly 

important and should be given higher weights to more 

effectively influence the clustering. In this paper, three types 

of load trends are defined based on the magnitude of change 

between neighboring points. These trends are classified and 

weighted based on the changes in load behavior associated 

with each point. The detailed definitions are presented below. 

Load Trend: Xi-1 and Xi are the two neighboring points on 

the load curve and ki=Xi - Xi-1 is the difference between the 

two neighboring points. Based on the sign of ki, three load 

trends are defined: ASCENSION, REDUCTION, and 

STEADY. The specific definition is shown in equation (30). 

 

, 0

, 0

,         0

i

i

i

ASCENSION k

PT REDUCTION k

STEADY k




= 
 =

 (30) 

Trend change: Xi-1, Xi and Xi+1 are three consecutive 

points on the load curve. ki=Xi - Xi-1, ki+1=Xi+1 - Xi is the 

difference between the two neighboring points. ki and ki+1 

have nine combinations, and the nine combinations are 
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shown in the table below. 

 
TABLE I 

DEFINITION OF LOAD TREND CHANGES 

 ki>0 ki<0 ki=0 

 

 
ki+1>0 

AA RA SA 
(Ascension 

-Ascension) 
(Reduction 

- Ascension） 
(Steady 

-Ascension) 

   
 

 
ki+1<0 

AR RR SR 
(Ascension 

- Reduction) 
(Reduction 

-Reduction) 
(Steady 

- Reduction) 

   
 
 

ki+1=0 

AS RS SS 
(Ascension 

- Steady) 
(Reduction 

- Steady） 
(Steady 

- Steady) 

   

 

Load Trend Change Points: Based on the above definitions, 

the three consecutive points Xi−1, Xi, and Xi+1 collectively 

represent a change in load trend. A point Xi is identified as a 

load trend change point if the differences ki and ki+1 (whether 

positive or negative) exhibit a change in trend. The six types 

of load trend change points are outlined in Table I, and the 

specific criteria for their identification are provided by the 

following formulas: 

 

 
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 

1 1

1 1

1 1
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x x x x x
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− +

  

 

 

 

 (31) 

Important Load Trend Change Points: The significance of 

load trend change points varies, with those showing larger 

changes deserving more attention and importance in the 

clustering process. Therefore, based on the distance D from 

Xi to the line formed by Xi−1 and Xi+1, load trend change 

points are categorized into common and important types. D 

represents the perpendicular distance from Xi to the line 

segment connecting Xi−1 and Xi+1. If D exceeds a threshold 

value ε, Xi is classified as an important load trend change 

point; otherwise, it is classified as a common load trend 

change point. The formulas for calculating D and ε are as 

follows: 

 ( ) 1 1

1 1 1, ,
2

i i

i i i i i

x x
D x x x x x+ −

− + −

−
=  + −  (32) 

 ( )max minL L epsonRate = −   (33) 

Where Lmax represents the maximum value of the whole load 

curve and Lmin represents the minimum value of the whole 

load curve. epsonRate represents the threshold ratio, which 

can be adjusted to control the number of important load trend 

points. 

Data weighting: To enhance the influence of specific 

points on the clustering process, appropriate weighting of the 

data points is essential. There are two methods for weighting 

data points. The first is fixed weighting, where a 

predetermined weight is assigned to both normal and 

important load trend points. However, this approach may not 

be optimal; for instance, during continuous fluctuations in the 

load profile over time, fixed weights may lose significance as 

all points receive the same weight. Additionally, assigning 

fixed weights to points during minor fluctuations in the load 

profile may result in an excessive number of weighted points. 

Alternatively, adaptive weighting adjusts the weight based 

on the magnitude of the load profile change. This method 

helps mitigate the aforementioned issues by providing 

differentiated weights that reflect the varying importance of 

points in the load profile. Points with larger changes receive 

higher weights, thereby exerting greater influence on the 

clustering results. The weighting formulas for ordinary and 

important load trend change points are as follows: 

 ( )normal max min1 /W D L L= + −  (34) 

 ( )important max min1.5 /W D L L= + −  (35) 

Load curve weight matrix: According to the above formula, 

the weight matrix W of the load curves can be calculated, 

assuming that there are N load curves used for clustering and 

each curve has a total of M points. Then, the load weight 

matrix of size N × M can be generated. The specific weight 

matrix generation algorithm is shown below. 

 

Algorithm2. Weight Matrix Generation Algorithm 

Input: D: dataset ={load1,load2,load3…,loadN},loadi={xi} 

i=1,2,3…M,epsonRate =0.1 

Output : Weight Matrix = WN×M:The weight matrix of all curves 

1:Initialize weight matrix W with all 1. 

2:for each curve loadi ∈ D do 

3:   compute threshold ε according to Eq.(33); 

4:   for point xi,i=2,3…M-1 ∈ D do 

5:      compute xi-xi-1 ,xi-xi+1; 

6:      compute vertical distance d = (xi-1,xi,xi+1) according to Eq.(32); 

7:      if  xi satisfies Eq.(31) and vertical distance d >ε  then 

8:         compute wi according to Eq.(34); 

9:      elif xi satisfies Eq.(31) and vertical distance d <ε  then 

10:        compute wi according to Eq.(35); 

11:     end if  

12:  end for 

13: end for 

14:Return Weight Matrix = WN×M 

D. Proposed Methodology 

Fig. 1 illustrates the flowchart of the algorithm proposed in 

this paper, which is divided into two primary parts: the 

initialization of clustering centers and data weighting, 

followed by the application of Possibility Fuzzy C-means for 

clustering analysis.  

The algorithm mainly includes the following key steps: 

Step 1: Initialize the clustering centers. The KNNDP 

algorithm is used to calculate the local density and relative 

distance for each sample, selecting the samples with the 

highest decision values as the initial cluster centers. 

Step 2: Generate a data weight matrix. Based on the 

fluctuation characteristics of load profiles, adaptive weights 

are assigned to different time intervals, generating a weight 

matrix that captures the trend features of each load profile. 

Step 3: Similarity Measure Calculation. A fused similarity 

measure combining Euclidean distance and Pearson 

correlation is introduced to overcome the limitations of 

Euclidean distance in capturing the similarity of load profiles. 

Step 4: Clustering using the proposed algorithm. Clustering 

is performed by optimizing membership degrees and cluster 

centers with the new similarity measure until convergence. 

Step 5: Analysis of clustering results. The final clustering 

results are analyzed to interpret the distinct load patterns 

identified. 
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Fig. 1. The flowchart of the proposed algorithm 

 

IV. EXPERIMENT 

A. Datasets 

All the experimental data in this paper come from real load 

profile data collected from January 1, 2023, to December 31, 

2023, in a region of southwest China. These data were 

gathered by smart meters at 15-minute intervals, resulting in 

96 data points per day from 00:00 to 23:45. For cluster 

analysis, two datasets are used: one containing data from 

1,000 users and another from 462 users, with the typical load 

profile of user calculated as the annual average of their data. 

B. Experimental Parameter Setting 

The parameter settings for the proposed algorithm are 

presented in Table II. The dataset contains load curves from 

various industries and users, which may have significant 

differences in amplitude. Since the goal of clustering is to 

classify load curves based on their morphological 

characteristics, it is necessary to normalize each load curve 

by its maximum daily electricity consumption. Without 

normalization, clustering would primarily reflect differences 

in load amounts, while the trend characteristics would remain 

similar. Min-max normalization, a widely used data scaling 

technique, is applied. The formula for this normalization is 

provided in equation (36). After normalization, each load 

curve is scaled to a consistent range. 

 
min( )

max( ) max( )

ij i

i j

i i

x x
x

x x

−
=

−
 (36) 

 

TABLE II 

ALGORITHM PARAMETER SETTING 

Parameter Value 

C_f 1 

C_p 3 

m 2 
       2 

Max_ iterations 1000 

epsonRate 0.1 

 

To validate the effectiveness of the proposed method, a 

comparative analysis was conducted with several established 

algorithms, including K-means, FCM, K-means++, DP-FCM, 

Interpretable Feature Extraction K-means (IFE-K-means), 

Online FCM (OFCM) [23], Single-Pass FCM (SPFCM) [24], 

and Membership Scaling FCM (MSFCM) [25]. These 

algorithms were chosen to represent both classical and novel 

algorithms for clustering. For all algorithms, the fuzzy index 

m was set to 2, and the number of clusters ranged from 3 to 8. 

The OFCM and SPFCM require the dataset to be divided into 

s subsets, and S was set to 10 in the comparison experiments. 

Since all algorithms, except DP-FCM, involve random 

initialization of the initial matrices, each algorithm was run 

100 times for each number of clusters, and the average value 

of each internal evaluation index was calculated. 
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C. Dataset 1 

C1. Evaluation of Clustering Algorithms 

Fig. 2 illustrates the graphs of the evaluation indices with 
the numbers of clusters for each algorithm. In these graphs, 

smaller DBI and SSE values indicate better clustering 

performance, while larger CH and SC values indicate better 

clustering performance. The red line represents the algorithm 

proposed in this paper. As seen in Fig. 2, the DBI index of the 

proposed algorithm outperforms other algorithms, except 

when the number of clusters is 4. The SSE index surpasses 

other clustering algorithms when the number of clusters is 3, 
5, and 8, with minimal differences from the optimal value.  

Table III shows average values for different clustering 

numbers across various algorithms. As seen in the table, the 

proposed method outperforms other methods in terms of 

average DBI, SSE, and CH evaluation indices. Specifically, 

the DBI index is reduced by an average of 13.56%, the SSE 

index by 1.95%, and the CH index by 8.64% compared to 

other methods. The SC indices are slightly lower than those 

of K-means++ and MSFCM. 

To summarize, the clustering performance of the proposed 

method surpasses that of other methods across several 

evaluation indices.  

Fig. 3 represents the internal evaluation indices of different 

similarity measures under different numbers of clusters, and 

the red line represents the method proposed in this paper and 

compared with several other similarity measures, including 

Euclidean distance (Eu), Pearson distance (Pearson), 

weighted Euclidean distance (W-Eu), Euclidean-Pearson 

distance (Eu-Pearson), and weighted Pearson distance 

(W-Pearson). From Fig. 3, it can be seen that the method 

proposed in this paper has significantly lower DBI and SSE 

indices compared with several other methods. In terms of the 

SC index, the method proposed in this paper is comparable to 

the Eu-pfcm method, with significant advantages at k = 5, 7, 

and 8. In addition to that, it can be found that the clustered 

internal evaluation indexes of Eu, Pearson, and Eu-Pearson 

after weighting are better than those before unweighting.  

Overall, the proposed method performs significantly better 

than the other methods. In order to quantify the effectiveness 

of the proposed methods, Table IV shows the mean values of 

evaluation indicators for different numbers of clusters, and 

the improvement of the proposed methods compared to the 

other methods was assessed. Specifically, the DBI index 

decreased by an average of 25.15%, the SSE index decreased 

by an average of 2.64%, the CH index increased by 6.62%, 

and the SC index improved by an average of 16.36%, 

compared to other similarity measures. 
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 Fig. 2. Evaluation indices for each algorithm with different numbers of clusters. 
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TABLE III 

AVERAGE EVALUATION INDICES OF DIFFERENT CLUSTERING ALGORITHMS 

Index K-means FCM K-means++ DP-FCM IFE- 

K-means 

OFCM SPFCM MSFCM WF-KNNDP-P

FCM 

DBI 1.569433 1.597152 1.455271 1.599523 1.466470 1.394680 1.410310 1.371692 1.305932 

SSE 1567.118 1580.945 1568.646 1577.151 1620.154 1564.531 1567.058 1552.597 1544.746 

CH 395.3075 377.1797 395.6184 377.1094 383.3275 383.1265 384.0417 389.8856 418.8841 

SC 0.311233 0.306586 0.330617 0.305659 0.305420 0.316487 0.322261 0.331034 0.323604 

 

TABLE IV 

AVERAGE VALUE OF CLUSTERING EVALUATION INDICES FOR DIFFERENT SIMILARITY MEASURES 

Index Eu-pfcm Pearson-pfcm W-Eu-pfcm Eu-Pearson-pfcm W-Pearson-pfcm WF-KNNDP-PFCM 

DBI 1.605698 1.788037 1.520125 1.530302 1.727831 1.305927 

SSE 1560.109 1622.866 1555.492 1573.901 1615.758 1544.746 

CH 386.8884 389.7609 397.2471 397.3116 393.3434 418.8841 

SC 0.306686 0.250787 0.310956 0.290833 0.245314 0.323604 
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Fig. 4. Bar charts of DBI index and iteration times for different initialization centers. 

 

C2.  Analysis of Algorithm Stability 

The proposed method is used to determine the initial 

clustering centers through the use of KNNDP, which are then 

compared with those generated through random initialization. 

The algorithm is executed ten times, and the DBI evaluation 

indices and the number of iterations for each run are 

recorded. 

As shown in Table V, the DBI index of the 

KNNDP-initialized clustering centers decreased to varying 

degrees compared to the randomly initialized clustering 

centers. The DBI index decreased by an average of 15.05%, 

and the number of iterations decreased by an average of 

38.03%. 

Fig. 4 presents the histogram for each iteration, with Figs. 

4(a) and (c) illustrate the variation in the DBI index and Figs. 

4(b) and (d) show the changes in the number of iterations. As 

observed in the figure, the clustering results with randomly 

initialized centers display significant fluctuations in both the 

DBI index and the number of iterations, reflecting poor 

algorithm stability. In contrast, after using the KNNDP 

algorithm for initialization across 10 iterations, the clustering 

results remain consistent, demonstrating a notable 

improvement in stability compared to random initialization. 

This suggests that using KNNDP for initial cluster center 

selection enhances the stability of the clustering process, 

accelerates the convergence of iterations, and improves 

overall clustering effectiveness. 
 

TABLE V 

DBI EVALUATION INDEX AND ITERATION TIMES FOR DIFFERENT 

INITIALIZATION CENTERS 

k KNNDP Random initialization 

DBI Iterations DBI Iterations 

3 1.0063 18 1.0071 22.4 

4 1.1794 9 1.2589 35.8 

5 1.3520 23 1.4784 50.1 

6 1.3451 45 1.6726 55.3 

7 1.5030 49 1.7711 63.8 

8 1.4508 54 1.9144 86.8 

 

C3. Analysis of Algorithm Convergence 

In cluster analysis, the optimal number of clusters is 

typically determined using the elbow method. The elbow 

method works as follows: as the number of clusters increases, 

the SSE index gradually decreases. Initially, the SSE index 

decreases rapidly as the number of clusters increases, but at a 

certain point, the rate of decline slows down, creating an 

inflection point. This inflection point indicates the optimal 

number of clusters. However, in some cases, the inflection 

point may not be very clear. Therefore, the DBI index is also 

used to assist in determining the optimal number of clusters. 

Fig. 5 illustrates the trends of both SSE and DBI as the 

number of clusters varies from 3 to 8. From the figure, it can 

be observed that the SSE decreases significantly between 3 

and 5 clusters, while the decrease slows considerably when 

the number of clusters increases from 5 to 6. Based on the 

elbow method, it can be concluded that the optimal number of 

clusters is 5. 
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Fig. 5. Trends of average within-cluster distance and DBI index while cluster 

number K ranging from 3 to 8. 

 

Fig. 6 illustrates the SSE convergence curves for various 

clustering algorithms with a cluster number of 5. As 

illustrated in Fig. 6, there are substantial differences between 

the algorithms with regard to their optimization capabilities 

and the convergence speed of SSE. The SSE values of all 

algorithms steadily decrease and eventually converge as the 

number of iterations increases, suggesting that they all 

operate efficiently. The proposed algorithm demonstrates 

superior performance, characterized by a low initial SSE 

value, a rapid descent rate, convergence of the SSE value 

after approximately 10 iterations, and a low final SSE value. 

These results suggest that the initial clustering center selected 

by the KNNDP algorithm is close to the final clustering 

center, thereby enhancing both the convergence rate and the 

clustering effectiveness. The K-means and K-means++ 

algorithms also exhibit a rapid convergence speed, with 

K-means++ further enhancing the convergence speed 

through improved initialization of the cluster centers.
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Fig. 6. SSE convergence curves for different clustering algorithms (k = 5). 

 

Although both algorithms converge quickly, their final 

SSE values are slightly higher than those of the proposed 

algorithm. Fuzzy clustering algorithms generally have higher 

initial SSE values and slower convergence speeds, such as 

FCM, MSFCM, SPFCM, and OFCM. Among these, 

MSFCM and SPFCM converge more slowly compared to 

FCM, but they achieve lower final SSE values. This 

improvement in clustering results comes at the expense of 

some convergence speed. Overall, each of the other 

algorithms demonstrates certain advantages, either in terms 

of convergence speed or final clustering performance. 

However, the method proposed in this paper outperforms the 

others by achieving the best balance between iteration rate 

and final clustering effect, effectively optimizing both 

convergence speed and clustering performance. 

C4. Analysis of Algorithm Robustness 

To assess the robustness of the proposed algorithm, 

random perturbations of size r (where r=5%, 10%, 15%) are 

introduced to the load curves in the dataset. These 

perturbations simulate load fluctuations caused by random 

factors in the real-world power load collection process. 

Various clustering algorithms are then applied to the 

perturbed dataset for comparative analysis, using clustering 

evaluation indices such as SSE and DBI to assess robustness. 

As shown in Table VI, the clustering quality evaluation 

indices of the different algorithms generally decrease as the 

degree of load profile perturbation increases. When the 

perturbation level is low (r = 5%), the proposed algorithm 

significantly outperforms the other algorithms, with the SSE 

and DBI indices being 3.2% and 11.5% lower, respectively. 

Additionally, the CH and SC indices are 14.09% and 7.05% 

higher, indicating better clustering quality. 

At a medium perturbation level (r = 10%), the proposed 

algorithm continues to outperform others in terms of SSE, 

DBI, and SC indices. Specifically, the SSE and DBI indices 

are 3.02% and 11.6% lower, on average, compared to the 

other algorithms, while the CH index is 12.34% higher. 

However, the SC index shows a slight decrease compared to 

the other algorithms.  

When the perturbation level is high (r = 15%), the 

clustering indices of all algorithms show a significant 

decrease, and the performance advantage of the proposed 

algorithm is further weakened. Specifically, the SSE and DBI 

indices are 2.32% and 5.21% lower than the other algorithms, 

respectively. The CH index remains 15.3% higher, indicating 

relatively better inter-cluster dispersion, while the SC index 

continues to be lower than the other algorithms. In summary, 

the proposed algorithm demonstrates strong clustering 

performance under low and medium perturbation levels. 
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TABLE VI 

CLUSTERING INDICES OF DIFFERENT ALGORITHMS WITH RANDOM PERTURBATIONS 

r/% Index K-means K-means++ IFE-K- 

means 

FCM DP-FCM OFCM SPFCM MSFCM WF-KNNDP-

PFCM 

 

5 

SSE 1732.561 1647.051 1724.711 1669.0188 1664.631 1655.551 1670.242 1636.591 1622.905 

DBI 1.746576 1.520175 1.610369 1.5597908 1.552567 1.521761 1.577568 1.473786 1.408361 

CH 361.2376 355.2882 333.7887 332.09964 331.0842 334.1064 339.7306 356.6236 390.8766 

SC 0.335386 0.304293 0.262101 0.3148430 0.312565 0.307383 0.304087 0.325672 0.328514 

 

10 

SSE 1946.227 1941.388 1950.184 2024.4439 2041.803 1975.691 1959.123 1948.543 1915.434 

DBI 1.922239 1.942195 2.161601 2.1292341 2.088036 1.879694 1.869035 1.882463 1.776937 

CH 0.293304 0.264696 0.215022 0.1983812 0.192286 0.245367 0.247637 0.259796 0.194459 

SC 324.4112 322.3353 296.6399 248.46709 247.3702 268.6126 269.9933 278.8566 318.1544 

 

15 

SSE 2180.559 2236.106 2263.408 2391.3244 2286.744 2356.079 2338.600 2375.421 2251.226 

DBI 2.031703 2.169541 2.555782 2.3261538 2.443628 2.490306 2.255088 2.143516 2.187836 

CH 0.214833 0.241806 0.166803 0.1969947 0.143019 0.179477 0.193000 0.195389 0.156224 

SC 269.9431 281.3606 257.0781 193.59804 198.8304 214.4714 204.4046 208.9494 258.4972 

 

However, its robustness diminishes under high 

perturbations, particularly in terms of the SC index. This 

decline in robustness may be due to the adaptive weighting 

algorithm, which can excessively weight certain points under 

high perturbation, thus impacting the overall clustering 

performance. Therefore, while the proposed algorithm 

exhibits excellent robustness for low and medium 

perturbations, its performance significantly degrades when 

faced with large perturbations. 

C5. Analysis of Different Paraments 

The number of K-nearest neighbors is a crucial parameter 

in the proposed algorithm. It dictates the number of neighbors 

each data point relies on when selecting the initial clustering 

centers, which in turn directly influences both the accuracy of 

the initial center selection and the subsequent convergence of 

the clustering process. Thus, analyzing the impact of 

different K values on clustering results, particularly through 

indices like SSE and DBI, can help reveal their influence on 

clustering performance, including quality, convergence 

speed, and stability. 

By comparing clustering performance indices across 

different K values, the optimal K value can be identified to 

achieve better clustering performance and increased stability. 

Therefore, various K values are tested within the optimal 

cluster range to comprehensively assess their impact on 

clustering results. 

 
TABLE VII 

EVALUATION INDICES FOR DIFFERENT K VALUES 

K DBI SSE CH SC Iterations 
10 1.547116 1561.600 402.2576 0.261281 35 

20 1.547116 1561.600 402.2584 0.261281 40 

30 1.547116 1561.600 402.2589 0.261281 41 

40 1.547116 1561.600 402.2574 0.261281 41 

50 1.353373 1536.638 415.5580 0.349371 23 

60 1.353373 1536.638 415.5581 0.349371 23 

 

As shown in Table VII, the experimental results for 

clustering performance indices and the number of iterations 

indicate that both the clustering performance and the number 

of iterations vary significantly as the value of K increases. 

Specifically, the values of DBI and SSE decreased 

significantly, indicating an improvement in clustering 

performance and more reasonable clustering results. 

Meanwhile, the CH and SC values increased, suggesting 

enhanced compactness and separation of the clusters. 

Although the performance metrics are similar for certain 

values of K (e.g., K = 10, 20, 30), the number of iterations 

varies, indicating that the number of K-nearest neighbors 

significantly affects the convergence speed. In summary, 

selecting the appropriate number of K-nearest neighbors not 

only results in more reasonable, compact, and well-separated 

clustering results but also significantly reduces the number of 

iterations, thereby increasing the convergence efficiency of 

the proposed algorithm. 

Algorithm parameters have a crucial influence on the final 

clustering results. The PFCM algorithm, in particular, 

involves several parameters, such as C_f, C_p, m, and η. 

Variations in these parameters can significantly influence 

evaluation indices like SSE, DBI, and SC. By analyzing the 

clustering results under different parameter configurations, it 

becomes clear how parameter selection affects clustering 

quality and structure. To explore the impact of different 

parameter configurations on clustering performance, six 

different combinations of parameters are evaluated in this 

paper, and the specific parameters for each combination are 

shown in Table VIII. 

 
TABLE VIII 

 DIFFERENT COMBINATIONS OF ALGORITHMIC PARAMETERS 

Combination C_f C_p m η 

1 1 3 2 2 

2 1.5 2 2 2.5 

3 2 5 3 3 

4 1 2 1.5 2 

5 2 3 2 2.5 

6 1.5 5 3 3 

 
TABLE IX 

EVALUATION INDICES FOR DIFFERENT COMBINATIONS  

Combination DBI SSE CH SC 

1 1.352012 1531.526 415.5365 0.349402 
2 1.348600 1480.623 349.9034 0.295070 
3 1.369598 1495.677 330.6745 0.294500 
4 1.296669 1601.362 329.8569 0.335391 
5 1.352449 1480.452 351.3088 0.295203 
6 1.353133 1495.605 329.1885 0.293847 

 

Table IX presents significant variations in evaluation 

indices across different parameter combinations. For instance, 

combination 1 exhibits strong performance across most 
indices, particularly in the CH and SC indices, indicating 

superior clustering performance. Other combinations exhibit 

distinct strengths and weaknesses. For instance, Combination 

2, although performing better in the DBI and SSE indices, 

shows slightly weaker results in the CH and SC indices. 

Similarly, Combination 4 has the lowest DBI value among all 

combinations and demonstrates superior performance in the 

SC index, but its SSE value is the highest.
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TABLE X 

NUMBER OF SAMPLES IN EACH CLUSTER FOR DIFFERENT METHODS 

Label KNNDP_center Random_center1 Random_center2 Eu_PFCM 
1 217 197 215 200 
2 60 134 91 99 
3 224 234 236 219 
4 243 289 205 251 
5 255 145 253 230 

 

TABLE XI 

SILHOUETTE COEFFICIENTS OF EACH CLUSTER FOR DIFFERENT METHODS 

Label KNNDP_center Random_center1 Random_center2 Eu_PFCM 
1 0.3359 0.3341 0.3314 0.3624 
2 0.0197 0.0229 0.2870 -0.0585 
3 0.3827 0.3328 0.3394 0.3812 
4 0.5475 0.4680 0.1900 0.5027 
5 0.2159 0.2708 0.2196 0.2638 
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Fig. 7. Visualization of t-SNE dimensionality reduction using different clustering methods when k =5. 
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Fig. 8. Silhouette coefficient graph of different clustering methods when k =5. 

 

TABLE XII  

EVALUATION INDICES FOR DIFFERENT METHODS 

 KNNDP_center Random_center1 Random_center2 Eu_PFCM 
DBI 1.352012 1.572361 1.545324 1.655531 
SSE 1531.526 1590.047 1561.536 1552.448 
CH 415.5365 378.1162 400.7972 373.0799 
SC 0.349402 0.321308 0.271962 0.336908 

 

These differences indicate that the parameter configuration 

has a direct impact on the clustering results, and different 

parameter combinations significantly change the accuracy, 

separateness, and compactness of the clusters. Therefore, 

optimizing the parameter configuration is the key to 

improving the clustering performance. 

C6. Analysis of Different Clustering Results 

Figs. 7 and . 8 show the t-SNE visualizations of clustering 

results with different initial centers and similarity measures 

for k = 5, along with the silhouette coefficients for each 

cluster. Fig. 7(a) presents the clustering results using initial 

centers selected by the KNNDP algorithm. Fig. 7(b) and Fig. 

7(c) show results with randomized initial centers 

(Random_center1 and Random_center2), both using the 

proposed similarity measure. Fig. 7(d) depicts clustering 

results based on Euclidean distance with KNNDP centers. 

Distinct colors represent different clusters, while Tables X 

and XI provide sample sizes and average silhouette 

coefficients for each method. 

From Fig. 7, Clusters 1, 2, and 3 show similar distributions 

across different methods, while significant differences are 

observed in Clusters 4 and 5. Table X reveals variations in 

sample sizes for Clusters 4 and 5. Random_center1 merges 

Clusters 2 and 4 from KNNDP into one cluster and splits 

Cluster 5, while Random_center2 maintains similar 

clustering for Clusters 1 and 3 but distributes Clusters 2 and 4 

differently. KNNDP-based clustering consistently shows 

more stable and clear results. In Fig. 8, silhouette coefficients 

for KNNDP_center are higher than those for 

IAENG International Journal of Computer Science

Volume 52, Issue 4, April 2025, Pages 1116-1136

 
______________________________________________________________________________________ 



 

Random_center1 and Random_center2, indicating better 

clustering quality.Random_center methods show many 

negative silhouette coefficients, reflecting poor clustering 

performance, whereas KNNDP results in higher average 

silhouette coefficients for clusters 1, 3, and 4. 

Figs. 9 to 12 display the normalized actual load curves and 

centroids for each cluster. The centroid curves of Clusters 1, 

2, 3, and 5 are similar, with minor differences in amplitude 

and timing. However, Clusters 3 and 4, using KNNDP, are 

more compact with less noise compared to the random 

methods. Random_center1 and Random_center2 show 

similar centroids, indicating poor cluster separation. In 

contrast, KNNDP's clustering results show greater 

differentiation between clusters and higher compactness 

within each cluster. Overall, KNNDP-based initialization 

improves clustering stability by producing clearer, more 

distinct clusters with lower intra-cluster noise. This results in 

better separation, as reflected by lower DBI and SSE values 

and higher CH and SC values. 

A comparison of Fig. 7(a) and Fig. 7(d) reveals the impact 

of different similarity measures. Cluster 2, using Euclidean 

distance, groups edge points from other clusters, resulting in 

poor separation and a negative silhouette coefficient. The 

centroid of Cluster 2 also fails to reflect the actual load trends. 

Table XI and Fig. 11(b) show that the proposed similarity 

measure outperforms Euclidean distance in terms of 

clustering quality, as reflected in higher silhouette 

coefficients and better separation for Clusters 3 and 4. 

In conclusion, the proposed method, incorporating 

KNNDP-based initialization and a weighted fusion similarity 

measure, offers improved clustering performance by 

enhancing intra-cluster compactness, reducing noise, and 

achieving better cluster separation. 

C7. Analysis of Power Load Characteristics 

Based on the above analysis, it is evident that the 

clustering results obtained using the proposed

 algorithm outperform the other algorithms. Therefore, a 

detailed analysis of the actual power consumption curves 

from the clustering results is conducted. As shown in Fig. 9, 

the following power usage patterns can be identified: 

⚫ Typical double-peak power consumption patterns 

(Cluster 5) 

⚫ Typical single-peak power consumption patterns 

(Cluster 1） 

⚫ Multi-peak power consumption patterns (Cluster 3, 

Cluster 4) 

⚫ Single-peak power consumption pattern (Cluster 2) 

Of the various power consumption patterns, Cluster 2 and 

Cluster 5 are the more common power consumption patterns 

that match the work patterns of most commercial and 

industrial businesses. Cluster 1 peaks at 9:00 a.m. and 

continues until 8:00 p.m. Cluster 5 peaks at 9:00 a.m., similar 

to Cluster 1, but unlike Cluster 1, Cluster 5 declines for a 

period of time at 12:00 p.m., peaks again at 2:00 p.m., and 

then declines at 5:00 p.m., a typical double-peak pattern for a 

midday lunch break.  

Cluster 2 is similar to the single peak pattern in that it 

peaks around 2:00 and then gradually declines until 12:00 

when it slowly rises again; it is likely to be a manufacturing 

facility that operates at night. 

Cluster 3 and Cluster 4 have more fluctuating patterns of 
electricity consumption. Cluster 3 is on a downward trend 

between 0:00 and 6:00 o'clock. It rises briefly between 06:00 

and 10:00 and continues to rise between 10:00 and 16:00, 

reaching its peak for the day. After that, there is a constant 

fluctuation until 24:00. 

Cluster 4 is very similar to Cluster 3 in that it rises for a 

period of time and then falls rapidly, but Cluster 4 fluctuates 

more frequently and does not have high power usage for most 
of the day, like Cluster 3. 

These insights into the load profiles help in understanding 

the electricity consumption behaviors, aiding in better load 

management and optimization strategies for different groups. 
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Fig. 9. Clustering results of KNNDP_center when k =5. 
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Fig. 10. Clustering results of Random_center1 when k =5. 
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Fig. 11. Clustering results of Random_center2 when k =5. 
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Fig. 12. Clustering results of Eu_Pfcm when k =5. 
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D. Dataset 2 

D1. Evaluation of Clustering Algorithms 

To further validate the effectiveness of the proposed 

algorithm, the experiment was repeated on an additional 

dataset. Fig. 13 illustrates the values of various evaluation 

indices across different numbers of clusters. As shown, the 

DBI and SSE values achieved by the proposed algorithm 

significantly outperform those of other clustering algorithms, 

except when the number of clusters is four. The CH index 

consistently outperforms all other algorithms across all 

numbers of clusters, and the SC metric performs best in most 

cluster configurations. 

Table XIII presents a comprehensive summary of the 

average values of various evaluation indices for different 

clustering algorithms. From Table XIII, it is evident that the 

proposed algorithm surpasses other algorithms in average 

DBI, SSE, CH, and SC indices. The proposed algorithm 

reduces the DBI index by 15.63% and the SSE index by 3.5% 

compared to alternative algorithms. Additionally, the CH and  

SC indices improve by 18.29% and 16.57%, respectively, 

highlighting the superior performance of the algorithm. 

In conclusion, these results confirm that the proposed 

clustering algorithm outperforms other methods, offering 

better clustering quality across multiple evaluation indices. 

Fig. 14 demonstrates that the proposed similarity measure 

outperforms other methods in terms of DBI and SSE, with the 

exception of when the number of clusters is 4. Similarly, it 

achieves significantly better CH and SC values, except when 

the number of clusters is 4 or 7. 

Table XIV further confirms the effectiveness of the 

proposed method, showing superior average values for DBI, 

SSE, CH, and SC across all numbers of clusters. Specifically, 

the proposed method reduces the DBI index by 11.38% and 

the SSE index by 2.4%, while increasing the CH and SC 

indices by an average of 11.42% and 13.49%, respectively, 

compared to other methods. Additionally, Table XIV 

demonstrates that the evaluation metrics using weighted 

similarity surpass those without weighting, confirming the 

effectiveness of the proposed method in this study. 
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Fig. 13. Evaluation indices for each algorithm with different numbers of clusters. 
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TABLE XIII 

EVALUATION INDICES FOR DIFFERENT CLUSTERING ALGORITHMS OF DATASTET2 

Index K-means FCM K-means++ DP-FCM IFE- 

K-means 

OFCM SPFCM MSFCM WF-KNNDP- 

PFCM 

DBI 1.455523 1.496423 1.346441 1.576632 1.401574 1.384424 1.398475 1.339121 1.232193 

SSE 783.8324 801.8062 764.0312 795.3383 796.0156 777.3572 781.7441 781.9386 758.6911 

CH 158.3195 151.7235 170.9976 152.2864 172.7058 163.7924 159.5983 161.9372 190.5694 

SC 0.269203 0.279022 0.302821 0.254932 0.271811 0.282777 0.282605 0.291986 0.324906 

 
TABLE XIV 

AVERAGE VALUE OF CLUSTERING EVALUATION INDICES FOR DIFFERENT SIMILARITY MEASURES 

Index Eu_pfcm Pearson_pfcm W_eu_pfcm Eu_pearson_pfcm W_pearson_pfcm WF-KNNDP-PFCM 

DBI 1.441234 1.357762 1.398747 1.323479 1.340923 1.232191 

SSE 783.7333 780.8563 776.2546 764.5662 777.4135 758.6925 

CH 158.6377 176.2249 161.6961 184.5369 176.9357 190.5694 

SC 0.280512 0.280313 0.287031 0.307421 0.283453 0.324906 
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Fig. 15. Bar charts of DBI index and iteration times for different initialization centers. 

D2. Analysis of Algorithm Stability 

Table XV presents the DBI values and number of iterations 

for Dataset 2, comparing the performance of using the 

KNNDP algorithm to select initial cluster centers with that of 

random initialization. As shown in the table, initializing with 

KNNDP results in better DBI indices and fewer iterations 

across different numbers of clusters compared to random 

initialization. Specifically, the average DBI index is reduced 

by 10.20%, while the average number of iterations decreases 

by 59.14%, demonstrating the effectiveness of KNNDP in 

improving clustering performance. 

 
TABLE XV 

DBI EVALUATION INDEX AND ITERATION TIMES FOR DIFFERENT 

INITIALIZATION CENTERS 

k KNNDP Random initialization 

DBI Iterations DBI Iterations 

3 1.2113 14 1.4307 34.9 

4 1.4259 15 1.4259 40.4 

5 1.2000 30 1.3062 44.6 

6 1.1613 26 1.2584 73.3 

7 1.2200 23 1.3639 85.5 

 

Fig. 15 presents the variation in DBI across iterations and 

illustrates the changes in the iteration count. As observed, the 

DBI values and iteration counts fluctuate considerably for the 

10 clustering centers initialized randomly, in contrast to the 

consistent outcomes achieved using the KNNDP algorithm. 

This consistency indicates that the KNNDP algorithm yields 

a higher level of stability compared to random initialization. 

Thus, initializing clustering centers with the KNNDP 

algorithm not only enhances the stability of the clustering 

process but also reduces the required iteration count, 

contributing to improved clustering efficiency and 

performance. 

D3. Analysis of Algorithm Convergence 

Fig. 16 illustrates the trends of the DBI and SSE indices for 

Dataset 2 as the number of clusters increases. According to 

the elbow method and the observed trends, the inflection 

point occurs at 5 or 6 clusters. However, since the DBI value 

is lower at 6, this is considered the optimal number of 

clusters. 
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Fig. 16. Trends of average within-cluster distance and DBI index while 

cluster number k ranging from 3 to 8. 

 

Fig. 17 illustrates the SSE convergence curve for the 

second dataset. The results show that the proposed algorithm 

performs well, with both its initial and final SSE values being 

lower than those of the other algorithms. The K-means 

algorithm converges the fastest, reaching convergence in 

fewer than ten iterations. However, its final SSE value is 

higher, suggesting that it may converge to a local optimum. 

The K-means++ algorithm, while requiring slightly more 

iterations, achieves a lower final SSE value than K-means, 

indicating an improvement in avoiding local optima. Fuzzy 

clustering algorithms, such as FCM, OFCM, and MSFCM, 

exhibit higher initial SSE values and slower convergence 

speeds. The DP-FCM algorithm reduces the initial SSE value 

by improving the initial clustering centers, though its 

iteration speed remains slower.  In summary, the algorithm 

proposed in this paper outperforms all other algorithms in 

terms of convergence effectiveness and demonstrates better 

clustering accuracy and convergence speed.
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Fig. 17. SSE convergence curves for different clustering algorithms (k = 6). 

 

TABLE XVI 

CLUSTERING INDICES OF DIFFERENT ALGORITHMS WITH RANDOM PERTURBATIONS 

r/% Index K-means K-means++ IFE-Kmeans FCM DP-FCM OFCM SPFCM MSFCM WF-KNNDP-

PFCM 

 

5 

SSE 802.2382 781.5552 822.1179 861.6233 827.4254 790.6215 811.2552 796.1234 761.6619 

DBI 1.647676 1.413709 1.766698 1.611991 1.564964 1.467967 1.605911 1.478096 1.220757 

CH 124.1108 139.8232 129.1899 107.7807 111.8542 133.8724 122.0148 120.8016 153.2932 

SC 0.229449 0.271341 0.201596 0.251178 0.251120 0.260964 0.250458 0.268631 0.306136 

 

10 

SSE 948.3732 882.9309 927.7822 976.2041 858.4407 928.8511 938.4304 957.6302 886.4289 

DBI 1.842816 1.667926 2.050694 2.062706 1.756672 1.834252 1.917575 1.706574 1.526744 

CH 103.2721 121.6084 113.6077 89.76891 102.2129 110.2845 98.86763 94.34256 121.5125 

SC 0.165465 0.216401 0.162861 0.191672 0.197795 0.202391 0.198491 0.203729 0.228258 

 

15 

SSE 1044.416 1043.175 1071.202 1182.781 1021.824 1140.933 1127.932 1135.789 1080.725 

DBI 2.142197 2.056513 2.380635 2.540991 3.033249 2.253901 2.346158 2.218686 2.065741 

CH 107.6176 98.87705 99.04407 63.50561 71.68734 84.95625 73.95903 69.52874 94.43683 

SC 0.167591 0.163659 0.133747 0.178327 0.050013 0.140668 0.143095 0.165678 0.154021 

 

D4. Analysis of Algorithm Robustness 

Table XVI presents the evaluation indices of each 

clustering algorithm for the second dataset at various 

perturbation levels. When the perturbation level is low (r ≤ 

10%), the proposed algorithm outperforms all other 

algorithms across all indices. Specifically, at r = 5%, the SSE 

and DBI indices are 6.5% and 28.5% lower, while the CH and 

SC indices are 24.76% and 24.4% higher, respectively. At r = 

10%, SSE and DBI indices are 4.61% and 21.49% lower, and 

CH and SC indices are 17.58% and 19.74% higher, 

respectively. At r = 15%, although SSE and DBI indices 

remain lower than those of the other algorithms, the SC index 

approaches the average. In general, the proposed algorithm 

performs well under small and medium perturbations, but its 

advantage diminishes under large perturbations, particularly 

for the SC index. 

D5. Analysis of Different Paraments 

Table XVII presents the clustering performance indices 

and the number of iterations for different numbers of 

K-nearest neighbors on dataset 2. As shown, K = 30 emerges 

as the optimal choice. It achieves superior results across 

several clustering performance metrics while maintaining a 

moderate number of iterations, striking a balance between 

clustering quality and algorithmic efficiency. While 

increasing K further reduces the number of iterations, it 

results in a noticeable degradation in clustering quality. 
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Therefore, K = 30 is identified as the optimal number of 

K-nearest neighbors, providing both high clustering quality 

and acceptable algorithmic efficiency. 
 

TABLE XVII 

EVALUATION INDICES FOR DIFFERENT K VALUES 

K DBI SSE CH SC Iterations 
10 1.547117 1561.600 402.2577 0.261281 35 

20 1.547117 1561.601 402.2585 0.261281 40 

30 1.547117 1561.601 402.2589 0.261281 41 

40 1.547117 1561.600 402.2576 0.261281 41 

50 1.353374 1536.638 415.5581 0.349371 23 

60 1.353374 1536.639 415.5582 0.349371 23 

 

The parameter combinations used in this experiment are 

consistent with those in Table VIII. As shown in Table XVIII, 

the experimental results of different parameter combinations 

show that there are significant differences in the DBI, SSE, 

CH, and SC indices for different parameter combinations. 

Among them, DBI and SSE of combination 4 are the lowest 

among all combinations, while CH and SC are the highest 

among all combinations, which indicates that the clustering 

effect of combination 4 is the best. The clustering 

performance of combination 1 is second only to combination 

4, while the clustering effect of combination 3 is the worst 

among all combinations. Therefore, optimizing the parameter 

configuration is the key to improving the clustering 

performance. 

 
TABLE XVIII 

EVALUATION INDICES FOR DIFFERENT COMBINATIONS  

Combination DBI SSE CH SC 

1 1.352012 1531.526 415.5365 0.349402 
2 1.348600 1480.623 349.9034 0.295070 
3 1.369598 1495.677 330.6745 0.294500 
4 1.296669 1601.362 329.8569 0.335391 
5 1.352449 1480.452 351.3088 0.295203 
6 1.353133 1495.605 329.1885 0.293847 

D6. Analysis of Different Clustering Results 

Figs. 18 and 19 provide visualizations of t-SNE 

dimensionality reduction for different initial cluster centers 

and classical Euclidean distances, focusing on the case where 

the number of clusters is set to 6. These figures also display 

the silhouette coefficients for each cluster. Fig. 18(a) shows 

the clustering results based on initial cluster centers selected 

by the KNNDP algorithm, Fig. 18(b) presents the results 

from randomly initialized cluster centers, and Fig. 18(c) 

depicts the results using Euclidean distance-based clustering. 
 

TABLE XIX 

NUMBER OF SAMPLES IN EACH CLUSTER FOR DIFFERENT METHODS 

Label KNNDP_center Random_center Eu_pfcm 

1 140 137 118 

2 71 51 94 

3 41 43 41 

4 35 80 50 

5 163 129 95 

6 26 36 78 

 
TABLE XX  

SILHOUETTE COEFFICIENTS OF EACH CLUSTER FOR DIFFERENT METHODS 

Label KNNDP_center Random_center Eu_pfcm 

1 0.3013 0.2561 0.3579 

2 0.6144 0.5108 0.4160 

3 0.4384 0.4226 0.4653 

4 0.2905 0.1216 -0.010 

5 0.2336 0.2347 0.2758 

6 0.1781 0.0413 0.1189 

 

TABLE XXI 

EVALUATION INDICES FOR DIFFERENT METHODS 

Label KNNDP_center Random_center Eu_pfcm 

DBI 1.16132 1.53268 1.54531 

SSE 719.088 744.546 771.042 

CH 163.666 152.517 125.334 

SC 0.32901 0.25376 0.28421 
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Fig. 18. Visualization of t-SNE dimensionality reduction using different clustering methods when k=6. 
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Fig. 19. Silhouette coefficient graph of different clustering methods when k=6. 
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Additionally, Table XIX presents the distribution of 

sample counts across categories for each clustering method, 

Table XX summarizes the average silhouette coefficient for 

each cluster, and Table XXI provides key clustering 

evaluation indices. 

As illustrated in Fig. 18, the dataset is partitioned into six 

distinct clusters. Clusters 1, 2, and 3 exhibit similar 

distributions across the different clustering methods, with the 

primary differences observed in the allocation of Clusters 4, 5, 

and 6. Table XIX further highlights significant discrepancies 

in sample sizes for Clusters 4, 5, and 6. 

 As shown in Fig. 18, the Random_center method divides 

Cluster 5 from the KNNDP_center method into two separate 

clusters, merging one segment with Cluster 4 and reallocating 

some samples from Cluster 2 to Cluster 6. In contrast, the 

clustering results based on Euclidean distance show 

significant differences from the other two methods. 

Specifically, this approach creates a new cluster by 

reassigning samples from Clusters 1, 5, and 6 (as identified in 

the KNNDP_center method), while also grouping portions of 

Clusters 4 and 5 into a distinct cluster. 

As shown in Fig. 19, the average silhouette coefficient for 

KNNDP_center is significantly higher than those of the other 

two clustering methods, indicating superior clustering 

performance. In contrast, the silhouette coefficient plots for 

both Random_center and Eu_pfcm show a substantial 

number of clusters with sample silhouette coefficients below 

zero, leading to much lower overall average silhouette 

coefficients compared to KNNDP_center. When combined 

with other clustering evaluation indices presented in Table 

XXI, these results suggest that initializing cluster centers 

using KNNDP enhances clustering effectiveness. 

Figs. 20-22 present the normalized actual load curves and 

centroids for each cluster under different clustering methods. 

A comparison of the actual load curves reveals that the 

centroid curves of Clusters 1, 2, 3, and 5 exhibit similar 

trends, with only slight differences in amplitude and peak 

timing. However, the compactness within each cluster varies. 

Notably, Cluster 2 in the Euclidean distance-based 

clustering exhibits considerable noise, with many load curves 

deviating from the centroid trend. This is reflected in its 

average silhouette coefficient, which, as shown in Table XX, 

is the lowest among all methods. Additionally, the clustering 

results from both Random_center and Euclidean distance 

show clusters with similar curve trends. For example, 

Clusters 2 and 6 in the Random_center method have nearly 

identical peak times, differing only in peak magnitudes. This 

suggests that samples in Cluster 6 would be more 

appropriately assigned to Cluster 2. Furthermore, Cluster 6 in 

the Random_center method contains numerous load curves 

that do not align with its centroid, leading to suboptimal 

clustering performance. 

Similarly, the centroid curves of Clusters 4 and 5 in the 

Euclidean distance clustering results exhibit comparable 

trends and amplitudes, suggesting redundancy in the 

clustering process. In summary, both random initialization 

and Euclidean distance-based methods produce clusters with 

overlapping centroid curves and high intra-cluster noise; the 

KNNDP-based initialization facilitates clearer differentiation 

of trends among clusters and reduces intra-cluster noise, 

resulting in more distinct and meaningful clusters. 

In conclusion, using KNNDP to initialize cluster centers 

and applying the proposed similarity measurement method 

significantly enhances algorithm stability and improves 

clustering accuracy. Moreover, the integration of the 

data-weighted fusion similarity measure further refines the 

clustering results by more effectively capturing the 

underlying patterns in the load profiles, which traditional 

distance-based methods often overlook. These combined 

improvements lead to a clearer differentiation between 

clusters, reduced intra-cluster noise, and more meaningful 

clustering outcomes. Ultimately, the proposed method not 

only ensures more reliable and consistent clustering results 

but also facilitates more accurate identification of distinct 

power consumption patterns. 
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Fig. 20 . Clustering results of KNNDP_center when k=6. 
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Fig. 21 . Clustering results of Random_center when k=6. 
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Fig. 22 . Clustering results of Eu_pfcm when k=6. 

 

D7. Analysis of Power Load Characteristics 

From the above analysis, it can be seen that the clustering 

effect of the method proposed in this article is the best. 

Therefore, an in-depth analysis was conducted on the actual 

load curve of the clustering results. From Fig. 20, the 

following power consumption modes can be observed. 

⚫ Typical double-peak power consumption patterns 

(Cluster 1) 
⚫ Multi-peak power consumption patterns (Cluster 2) 

⚫ Typical nighttime power consumption patterns 

(Cluster 3) 

⚫ Typical two-shift power consumption patterns 

(Cluster 5) 

Cluster 1 represents the most common load consumption 

pattern, typical for the majority of commercial and industrial 

enterprises. At 9:00 AM, the load rises sharply as equipment 

like lighting, office machinery, and air conditioning are 

activated, reaching a peak. During the lunch break, the load 

decreases, rising again to a second peak at around 2:00 PM. 

After work ends, the load rapidly drops, resulting in a 

bimodal pattern with morning and afternoon peaks. This 

pattern aligns with the daily routines of office staff. 

Cluster 5 displays a characteristic two-shift load pattern, 

commonly seen in the manufacturing sector. The morning 

shift begins with a gradual load increase at 8:00 AM, 

maintaining high levels throughout the shift. The evening 

shift starts after the shift change at 6:00 PM, with the load 

returning to high levels and sustaining until around 4:00 AM 

the next day. 

Cluster 3 is a typical nighttime load pattern, frequently 
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observed in venues like hotels, nightclubs, and bars. The load 

begins to rise at 8:00 PM, remaining high and relatively 

stable until around 4:00 AM. 

Cluster 4 represents a single-peak nighttime load pattern, 

with the load rising at 6:00 PM, peaking at 8:00 PM, and then 

gradually declining. Cluster 6, on the other hand, is less 

common, as its load remains high throughout the day with a 

moderate decline at night, likely due to the specific 

operational characteristics of certain enterprises. 

V. CONCLUSION 

This paper addresses the limitations of traditional 

algorithms in power load profile clustering by proposing the 

WF-KNNDP-PFCM algorithm. The proposed algorithm 
effectively overcomes the shortcomings of conventional 

clustering methods when applied to power load profiles. 

Experimental results demonstrate that the 

WF-KNNDP-PFCM algorithm outperforms existing 

algorithms in terms of clustering effectiveness, stability, 

iteration efficiency, and robustness. Compared to methods 

that use randomly initialized clustering centers, the KNNDP 

algorithm generates more effective initial cluster centers, 
significantly reducing the number of iterations, improving 

clustering stability, and enhancing overall algorithm 

performance. Furthermore, the combination of data 

weighting and the fusion similarity measure optimizes 

clustering quality. The results also highlight the significant 

impact of different initial clustering centers on clustering 

quality, further validating the effectiveness of the proposed 

algorithm. 

Although the experimental results demonstrate the 

superior performance of the proposed algorithm, potential 

improvements remain: 

(1) The PFCM algorithm involves multiple parameters 

that influence clustering performance. Integrating the 

algorithm with meta-heuristic methods to identify 

optimal parameter combinations could further 

enhance its performance. 
(2) The clustering algorithm requires the number of 

clusters as an input parameter. Future work could 
develop an algorithm that automatically determines 

the optimal number of clusters. 
(3) The current analysis focuses on population-level 

clustering results. Given the volatility in individual 

electricity consumption patterns, future research 

should conduct deeper analyses of user-specific 

consumption characteristics. 
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