
 

 

 
Abstract—This paper presents a multilevel detection-

trajectory prediction FairMOT (MD-TPFairMOT) pedestrian 
multi-object tracking approach to address the challenges of 
missed tracking and frequent identity switches in dense scenes. 
These issues are often exacerbated by factors such as object 
occlusion, irregular motion patterns, and the high visual 
similarity among pedestrians. The MD-TPFairMOT approach 
combines a multilevel detection (MLD) and LSTM-based 
trajectory prediction network (TP-LSTM). Specifically, the 
MLD categorizes pedestrian objects into five levels based on 
their scales for detection, and employs an adaptive pedestrian 
central sampling region to reduce the missed tracking in 
complex environments. The TP-LSTM uses the object bounding 
box and velocity information from previous frames to address 
prediction failures caused by occlusion. Moreover, the network 
fuses the appearance and motion features during the data 
association, thereby mitigating excessive reliance on the 
appearance feature. Finally, the superiority of MD-TPFairMOT 
over other algorithms (see, e.g., FairMOT, CTrackerV1, and 
CenterTrack) is verified on the MOTChallenge dataset. The 
results indicate that MD-TPFairMOT exhibits superior 
occlusion resistance and accuracy. 

 
Index Terms—pedestrian multi-object tracking, multilevel 

detection, trajectory prediction, data association, FairMOT 
 

I. INTRODUCTION 
N the field of computer vision, pedestrian multi-object 
tracking (MOT) has extensive applications in areas 

including the automatic driving, video surveillance, action 
recognition, and motion analysis [1]-[2]. The prevailing 
framework for pedestrian MOT revolves around the 
detection-and-tracking paradigm in the realm of deep 
learning. The framework initially detects all pedestrian 
objects in each video frame, subsequently utilizing 
discriminatory features, such as appearance and motion, to 
correlate the same pedestrian across different video frames,  
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thereby constructing the motion trajectories and achieving the 
goal of pedestrian MOT [3]. 

Tracking multiple pedestrian objects in dense scenarios 
will face numerous problems due to the complexity of objects 
and environments [4]. The frequent occlusion, uncertainty in 
movement, and high similarity in appearance may exert 
negative impacts on pedestrian detection and subsequent 
identity (ID) matching [5]. For this reason, some scholars 
have proposed detection-based MOT methods. Based on the 
degree of integration within the algorithmic framework, the 
existing algorithms can be categorized into two-step, one-step, 
and end-to-end methods. Among these methods, SORT [6], 
DeepSort [7], and other two-step methods could choose the 
optimal model when realizing the sub-tasks of detection, re-
identification (Re-ID), and motion prediction. However, 
these sub-tasks are heavily reliant on the performance of the 
detector and will increase the redundant computation and 
introduce the redundancy in computation, rendering the 
algorithms unable to fulfill real-time requirements. Although 
MOT can be implemented using a single network, such an 
approach often results in significant computational time due 
to the extensive size and complexity of the network model. 
One-step methods such as DAN [8], MOTR [9], Track R-
CNN [10], JDE [11], and FairMOT [12] combine the 
detection and Re-ID tasks, which reduces the redundant 
computation and the dependence of the Re-ID task on the 
object detection. These methods offer faster training and 
deployment times, and are more straightforward to 
implement, compared to traditional detection-tracking 
models, while still achieving the state-of-the-art performance. 

To tackle the challenges of ID switching and tracking 
failure in dense scenes, which are often caused by frequent 
occlusions, irregular motion patterns, and high appearance 
similarity among objects, this paper proposes a novel MOT 
method called MD-TPFairMOT. This method is built upon 
the FairMOT algorithm from the one-step approach and 
integrates multilevel detection with trajectory prediction. The 
main contributions are summarized as follows. 

(1) This paper proposes a multilevel detection method, 
MLD, to solve the problem of missed detection and following 
of pedestrians caused by frequent occlusion. The method 
utilizes the different sizes of pedestrians during occlusion to 
assign pedestrians of different scales to five separate levels 
for detection. In addition, the method solves the centroid 
offset problem through the multilevel detection. Finally, 
MLD designs an adaptive pedestrian central sampling region 
so that the detection frame contains more accurate pedestrian 
object features. 
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Fig. 1.  The model architecture of MD-TPFairMOT 
 

(2) In order to solve the problem of inaccurate prediction 
due to the uncertainty in pedestrian motion state, this paper 
proposes LSTM-based trajectory prediction (TP-LSTM). 
This method utilizes the object bounding box and velocity 
information from previous frames to predict the current 
frame’s position, and compares the prediction information 
with the real information to adjust the corresponding weights, 
thereby enhancing the accuracy of pedestrian motion 
prediction. 

(3) During the matching process, it integrates appearance 
and motion features, thereby minimizing the reliance on 
appearance features alone and substantially enhancing the 
matching accuracy. Addressing the problem of ID matching 
error caused by the high similarity of pedestrian appearance, 
a data association method based on fused features (Fuse-
association) is proposed. It fuses the appearance and motion 
features during the matching process, which reduces the 
dependence on appearance features and improves the 
matching accuracy. 

This paper is an expanded and refined version of our 
conference paper [13], with much more contents (e.g., the 
length is more than doubled). It provides more innovations 
and experiments based on [13], including mainly the 
following: (a) A multilevel detection method which is more 
suitable for pedestrian multi-object tracking is proposed. (b) 
A data association method based on fusion features is 
proposed. (c) The working principle and steps of the 
trajectory prediction branch are described in more detail, and 
(d) ablation experiments and comparison experiments are 
added, and more results and better discussions are obtained. 

This paper is organized as follows. Section II introduces 
the overall framework of the MD-TPFairMOT and the details 
of each branch. In Section III, the experimental scheme and 
results are introduced. The conclusions are presented in 
Section IV. 

II. PROPOSED METHOD 

A. Overall Framework 
In crowded pedestrian scenes, individuals frequently 

obstruct each another, causing the bounding boxes to have 
closely positioned or even overlapping center points. In this 
case, CenterNet [14], the detection branch of FairMOT, will 
only detect and return one object, which will result in the 
missed detections and missed follow-ups, and when occluded 
pedestrians reappear, they may be matched incorrectly, 
causing frequent ID changes. In addition, the original 
algorithm uses Kalman filtering for trajectory prediction to 

assist with the Re-ID features when completing the matching 
of the trajectory with the new frame detection. Pedestrian 
movements often influence one another and do not adhere to 
linear motion patterns, but Kalman filtering ignores these 
interactions between pedestrians and is only applicable to 
predicting the trajectory state of linear motion.  

The MD-TPFairMOT algorithm is proposed to solve the 
above problems existing in the pedestrian MOT method, and 
its network architecture is shown in Fig. 1. For 
accommodating the multilevel detection, the original 
backbone network DLA-34 has been enhanced to extract 
more accurate features, and then the proposed MLD is 
combined with the Re-ID branch to carry out the detection 
and feature extraction tasks at the same time. In addition, the 
proposed TP-LSTM method leverages the past bounding box 
information to predict the pedestrian’s trajectories [15]. 
Finally, the Fuse-association fuses the Re-ID features with the 
motion features to match the detection results and finally 
complete the pedestrian MOT task. Each part is explained in 
detail in the following sections. 

B. Feature Extraction Network 
The detection branch of the MD-TPFairMOT adopts the 

multilevel detection method to assign pedestrian objects to 
different levels for being detected. Inspired by the algorithmic 
structure of the FPN [16], this study designs a DLA-34_FPN 
backbone network for multilevel detection, which is based on 
the DLA-34 feature extraction network of FairMOT. The 
schematic structures of DLA-34_FPN and DLA-34 are shown 
in Fig. 2. In DLA-34_FPN, feature maps 2C , 3C , 4C , and 

5C  are taken to generate 3P , 4P , and 5P  levels. The 4P  and 

5P  levels are down-sampled to generate 6P  and 7P , 
respectively. 3P  to 7P  are defined as five different levels that 
are used for the final prediction of the MLD, replacing the 
single final detection level P  from DLA-34. s  is the down-
sampling ratio of the feature map at the level to the input 
image. DLA-34_FPN is constructed by downsampling the 
original output feature maps and subsequently integrating 
these downsampled maps with the features sourced from the 
corresponding convolutional layers within the DLA-34 
backbone network. This process enables the DLA-34_FPN to 
leverage multi-scale feature information, thereby enhancing 
its detection capabilities. By effectively combining the low-
level details from early convolutional layers with the high-
level semantics from later layers, DLA-34_FPN achieves 
robust performance in multi-level detection tasks. 
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Fig. 2.  Schematic structures of DLA-34 and DLA-34_FPN 
 

 
Fig. 3.  Shared output head for detection and Re-ID 
 

C. MLD for the MD-TPFairMOT 
The MD-TPFairMOT adopts the identical one-step 

architecture as FairMOT. The input image is initially 
processed through DLA-34_FPN to obtain the multi-level 
feature map, which is subsequently fed into the detection and 
Re-ID branches for detection and feature extraction purposes. 
Both detection and Re-ID share a common output head, and 
the structure is shown in Fig. 3. The classification task is 
identical to FairMOT, requiring only the distinction between 
pedestrians and the background. The heat map prediction 
employed in the original algorithm is unsuitable for multilevel 
detection, as it requires a larger feature map to prevent center 
point offset. This paper introduces pixel-by-pixel detection 
for multilevel detection and proposes two methods, largest-
area bounding box regression (box-largest) and adaptive 
pedestrian central sampling region (sampling-adaptive), 
specifically designed for the unique characteristics of 
pedestrian objects. The Re-ID component has been modified 
accordingly. 

(1) Multilevel detection 
The DLA-34_FPN provides various levels for multilevel 

detection of the MLD, and the subsequent step is to assign the 
objects to these levels according to the size of the bounding 
box. The idea of the hierarchical level of the MLD is to assign 
the smaller-scale pedestrian objects to the larger feature maps 
to extract more information, so as to prevent obscured or 
distant pedestrians from being missed. 

 
Fig. 4.  (a) Example figure of the distances from the positivity sample point 
to the four edges of the bounding box and (b) schematic of the regression of 
the ambiguity point 
 

Given the varying sizes at each level, the points on each 
feature level must be mapped back to the original image to 
accurately assess the object size during model training. Then 
learn the category information of each pixel point and the 
distance of each point to the left, top, right, and bottom edges 
of the object bounding box: *l , *t , *r , and *b , which allows 
the model to learn how to infer the bounding box information 
from the pixel features and to ensure good consistency 
between predictions from different pixel points. The range of 
sizes that need to be regressed for different feature levels is 
defined as iM . 3M , 4M , 5M , 6M , and 7M  are (0, 64], (64, 
128], (128, 256], (256, 512], and (512,  ), respectively. If 
the * * * *max( , , , ) it r b Ml  , then the pedestrian detection box 
belongs to the level i , otherwise, it is set as the negative 
sample. The distances from the positive sample to the four 
sides of the bounding box are shown in Fig. 4 (a). 

(2) Largest-area bounding box regression 
After defining the range of regression objects at each level, 

this paper still encounters a scenario where a point needs to 
regress multiple bounding boxes for pedestrian objects. As 
shown in Fig. 4 (b), such a point is designated as the 
regression point. The MLD selects the pedestrian object with 
the largest bounding box area as the primary object for 
regression at that specific point. In video sequences, 
pedestrians that obscure other objects are usually closer to the 
camera and have a larger bounding box, and regression 
ambiguity typically arises on objects that are close to the 
camera. Hence, selecting the pedestrian object with a larger 
bounding box when the ambiguity point occurs is justifiable, 
as it enables the model to capture more precise appearance 
features, thereby facilitating the subsequent trajectory 
prediction and ID matching tasks. 

(3) Adaptive pedestrian central sampling region 
By utilizing each pixel point for classification and 

regression of the bounding box, this paper observes an 
increase in the number of positive samples. However, this 
methodology simultaneously introduces a significant amount 
of interfering information. When directly applied to the MOT 
of the pedestrian, the tracking performance will be affected 
[17]. FCOS [18] proposes a square central sampling region to 
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avoid introducing too much interfering information in the 
detection process. However, it fails to adapt to the boundary 
boxes of pedestrians with unequal height and width, which 
leads to inaccurate Re-ID feature selection that does not fully 
represent the object. To address this issue, the MLD proposes 
an adaptive pedestrian central sampling region method, which 
dynamically adjusts the central sampling region to a 
rectangular shape that conforms to the aspect ratio of the 
pedestrian boundary box. The adaptive pedestrian central 
sampling region sets the position coordinates of the central 
region as ( ' , , ' , )x y x yc r s c rs c r s c rs    , where ( , )x yc c  
is the central position coordinate of the real object boundary 
box. ' ( / )r w h r  , h  and w  are the height and width of the 
object boundary box, respectively, r is a hyperparameter and 
sets to 2. 

Fig. 5 shows the comparison between the square central 
sampling region and the adaptive pedestrian central sampling 
region. The large blue boxes demarcate the boundaries of the 
object bounding box, while the small yellow boxes depict the 
sampling region of the corresponding pedestrian object. The 
red circles highlight the incorrect features of the pedestrian 
objects. The adaptive pedestrian central sampling region 
contains more accurate pedestrian object features, and can 
adaptively adjust the center sampling range according to the 
aspect ratio of the pedestrian object bounding box, thereby 
ensuring that the sampling area corresponds to the shape of 
the object. 

(4) Re-ID for the MD-TPFairMOT 
The task of Re-ID also necessitates feature extraction from 

multiple levels. The size of the feature maps in each level is 
1/8, 1/16, 1/32, 1/64, and 1/128 of the input image, 
respectively. Even when the feature maps from all levels are 
summed together, the resultant size is significantly smaller 
compared to the feature map outputted by FairMOT, which is 
1/4 the size of the input image.  

MD-TPFairMOT combines the tasks of object detection 
and Re-ID, which share the feature output of the backbone 

network. The combined loss function for the detection and 
Re-ID branches is used for joint training, and the overall loss 
function is 

1 21 det 1 2

1 1 1
2total identitywwL L L w w

e e
    

 
 

           (1) 

where the identityL and detL  are the loss functions for detection 

and Re-ID, respectively. The 1w  and 2w  are learnable 
parameters that can be used to balance the conflict better 
between the detection and Re-ID. 

 
 

Fig. 5.  The comparison of pedestrian sampling regions: (a) square central 
sampling region and (b) adaptive pedestrian central sampling region 

 

 
Fig. 6.  The network structure of TP-LSTM 
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D. TP-LSTM for the MD-TPFairMOT 
The TP-LSTM method predicts the object’s position in the 

future frame by learning the bounding box information of the 
object in the past frame. This innovative approach 
circumvents the constraints associated with the trajectory 
prediction capabilities of the Kalman filter used in FairMOT, 
particularly in terms of the object’s motion state. 
Consequently, this prediction method enhances the accuracy 
of object position prediction, especially when the object is 
occluded. The network structure of the TP-LSTM is shown in 
Fig. 6. The functions and working processes of the modules 
in the network are described as follows. 

Step 1 The Past Encoder continuously iterates the 
bounding box position and velocity information of each 
object through LSTM [19]. At frame t , the bounding box 
information of the past p  frames of each object k  is 

expressed as set  k
t pb  ,  1

k
t pb   , … ,  1

k
tb  , and 

 , , , , , , ,k k k k k k k k k
t t t t t t t t tx y w h x y w hb      , where  ,k k

t tx y  

denotes the center position of the corresponding bounding 
box, and  ,k k

t tw h  denotes the width and height of the 
bounding box.   is the change between continuous time 
steps, and  , , ,k k k k

t t t tx y w h     denotes the velocity 

information, The calculation is as follows. 
 1 , , ,,k k

t t
k
tg g g x y w hg                   (2) 

Step 2 The feature encoding level is used to encode the 
appearance features of the object. These features are extracted 
from the feature extraction branch of the DLA-34_FPN. The 
information provided by the feature encoding level provides 
crucial visual context information for the objects being 
predicted in the current frame. During the process of object 
trajectory prediction, utilizing the information of these 
appearance features not only enhances the accuracy of 
matching objects with similar appearances but also 
significantly improves the ability to match IDs when 
occluded objects reappear.  

Step 3 In order to check the accuracy of the past frame 
information learned by the LSTM network and promptly 
adjust the corresponding weights, the trajectory prediction 
network uses the Past Decoder to reconstruct the bounding 
boxes and velocities of the decoded past frames. The hidden 
state vector of the Past Decoder is initialized by the final 
result of the Past Encoder, and the hidden level state vector 
includes e

ph  and memory cells in the LSTM. The output of the 
decoder is the predicted value of the past frame information, 
which can be expressed as 8ˆ PB  . The L1 loss function is 
used to adjust the weight parameters of the Past Decoder as 
follows. 

1

1

1 ˆ
8

K t
k k

past j j
k j t p

L B B
K p



  

 
 

                 (3) 

where p  is the number of frames using the object 
information of the past frames, and K is the total number of 
objects 

Step 4 The K  objects that have been detected are 
predicted by the Future Decoder to predict their velocities in 

future frames. As shown in Fig. 6, the coding vector e
B  of 

the bounding box and speed information of the past frame is 
connected with the embedding feature e

B  extracted by the 
DLA-34_FPN to synthesize the feature vector C . At each 
time step, the previous hidden state vector needs to be 
updated, and the predicted future frame velocity vector 

4ˆ qV   is generated by the fully connected level, where
ˆˆ ˆ ˆ ˆ( , , , )k k k k k

t t t t tV x y w h     . 
Step 5 The bounding box regression level regresses the 

bounding box of the object in the future frame, utilizing the 
predicted velocity vectors of the future frame and the known 
bounding box information of the previous frame. As shown 
in Fig. 6, the “Cusum” is used to calculate the cumulative sum 
of the predicted velocities of the future frames. The value of 
the “Cusum” and the information of the previous frame are 
used to calculate the predicted bounding box information 

4ˆ qF   of the future frame, which 
      1

ˆ ˆ ˆˆ , , ,k k k
t t t qF b b b   . 

The calculation formula of the “Cusum” is 

1

ˆ , 1ˆ
ˆˆ , 2

k
jK

j k k
j j

V j
S

V S j q

  
  

               (4) 

where ˆ k
jS  denotes the predicted position of the object in 

frame j . The calculation formula of the bounding box 
information of the future frame is 

1 1
ˆ ˆ , 1k k k
t j t jb b S j q                     (5) 

The accurate measurement of future frame information 
prediction is consistent with the Past Decoder, L1 loss 
function is adopted, and the calculation formula of futureL  is 
as follows. 

1

1 ˆ
4

t qK
k k
j j

k
futu e

j
r

s
b bL

K q



 


                  (6) 

So the loss function of the predicted branch can be defined 
as 

pre past futureL L L                 (7) 

In the TP-LSTM branch, the inputs to the network consist 
of the object bounding box and velocity vector of the previous 
frame, and the image embedding is the feature extracted by 
the backbone network. The initial three frames of the past 
frame are initialized to zero, and then computed based on the 
position information of the bounding box of the first two 
frames to predict the position of the object in the future frame. 
The Past Encoder, Past Decoder, and Future Decoder utilize 
LSTM to encode and decode the object information of the 
past frames, thereby predicting the object information of the 
future frames. In addition, the proposed method dispenses 
with the need to use the bounding box information of the past 
frames at each level, instead, it feeds the image embedding 
information, derived from the integrated output features of 
the backbone network, into the trajectory prediction branch. 
By integrating object detection, Re-ID, and trajectory 
prediction, the Uncertainty loss function is employed for 
multi-task training. The formulation of this loss function is as 
follows. 
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Algorithm 1: The Fuse-association of MD-TPFairMOT 
Input: The detection and Re-ID information: D  and R , the trajectory of previous frames: T , and the predicted 

trajectory box: preBox  

Output: The matched trajectory: matchT  and the new trajectory: newT  
Parameter: 1 0.7  , max 30time  , 2 0.5   

Initialization: In the first frame, all detection results with confidence higher than the threshold are initialized as newT  

for number of frames do 
Calculating cosine distance cd : 1 cos( , )c R Dd    

Calculating
IOUdistance id : pre
i

pre

D

D

Box

Box
d 




 

Fuse cd  and id : 1 1 min(1 )fuse c id dd      
First match: Hungarian matching ( , )fused T  
Second match: IOU match the unmatched trajectory and the unmatched detection 
Initialize the unmatched detection as newT  
Define the unmatched trajectory as lostT  
Predict the location of the lostT : lostBox  
Converting the number of lost frames lostC : max/lost lostC time time  
Calculate the consumption cost : 2 2(1 )lost lostcost Box C     
When the 0.55cost < , match lostBox  and lostT  

end for 
 

1 2 331 22 det
1 1 1 1

2total id preww wL L L L w w w
e e e

      
 
 

  (8) 

where preL  is the loss function and 3w  is the learnable 
weight parameters for trajectory prediction. 

E. Fuse-association for the MD-TPFairMOT 
The data association step of MD-TPFairMOT is 

accomplished through the collaboration of three tasks: object 
detection, Re-ID, and trajectory prediction. The cosine 
distance cd  between the Re-ID features and detections and 
the IOU distance id  between the predicted positions by TP-
LSTM and the detections are fused to match the existing 
trajectories with the recognizable objects in the current frame. 
Re-ID features may be less reliable in dense scenarios [20], 
and relying only on them will lead to too much object ID 
switching. Hence, if the minimum IOU distance between the 
detection result and the trajectory prediction is excessively 
large at the first matching, the cosine distance of the Re-ID 
feature can be increased appropriately. After matching Re-ID 
features and predicted positions, unmatched trajectories and 
detections are further correlated using IOU distance, with the 
Hungarian algorithm used for bisection matching. 
Unmatched detections after these two matches are initialized 
as new trajectories, while unmatched trajectories are assessed 
for matching or removal. The algorithmic pseudocode is 
outlined in Algorithm 1. 

III. EXPERIMENTAL RESULTS AND ANALYSIS 

A. Experiments Settings 
(1) Datasets 
This article utilizes the identical training dataset, 

MOTChallenge, as employed by FairMOT, and proceeds to 

compare the tracking outcomes of our algorithm against those 
of FairMOT, as well as other one-step pedestrian multi-object 
tracking algorithms, across the MOT15, MOT16, MOT17, 
and MOT20 datasets. These datasets offer a diverse range of 
scenarios, including urban streets, pedestrian zones, and 
public transportation hubs, which pose different challenges 
for tracking algorithms. The exhaustive details concerning 
these datasets are presented in Table I. 

(2) Evaluation indicators 
The MOTChallenge evaluation standard is selected to 

evaluate the performance of the designed network, which 
drew on the CLEAR index and IDF1 value [21]. This 
benchmark provides a comprehensive set of metrics to assess 
tracking accuracy and robustness. In this evaluation 
framework, MOTA denotes the overall tracking accuracy, 
taking into account errors such as false positives, false 
negatives, and ID switches. It is a crucial metric that reflects 
the precision of the tracking algorithm in localizing and 
identifying objects. IDF1 indicates the proportion of objects 
with the correct ID among the total objects, emphasizing the 
consistency of object identities over time. MT denotes the 
proportion of hit trajectories to the total trajectories, and the 
hit trajectory is defined as the trajectories whose length is 
more than 80% of the true value. Conversely, ML denotes the 
proportion of lost trajectories to the total trajectories, and the 
lost trajectories are defined as the trajectories whose length is 
less than 20% of the true value. FPS stands for the frame rate 
of the tracking algorithm, which measures the speed of the 
algorithm in processing video frames. Additionally, IDs 
denotes the total number of object ID switches during the 
tracking process. A lower number of ID switches indicates 
that the algorithm maintains a more consistent and accurate 
tracking of object identities. 
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TABLE I 
THE DETAILS OF DATASETS MOT15, MOT16, MOT17, AND MOT20 

Dataset Number of 
Video sequences Average length (s) Average number of 

objects/ frame Characteristic 

MOT15 22 45.3 9.0 The scene is diverse and low-density. 

MOT16 14 33.1 20.9 It improves the density of the object and standardizes the 
annotation. 

MOT17 14 33.1 26.7 More attention is paid to some difficult samples, and a larger 
number of public detectors are provided. 

MOT20 8 66.9 156.8 The density is the highest and the mutual occlusion is serious. 
 

TABLE II 
THE RESULTS OF ABLATION EXPERIMENTS OF THE MLD 

Multilevel detection Box-largest Sampling-adaptable MOTA↑ IDF1↑ IDs↓ 
      67.1 70.9 441 

      69.8 (++4.02%) 71.6 (++0.98%) 416 (--5.67%) 

      70.2 (++0.57%) 72.0 (++0.56%) 364 (--12.5%) 

      70.6 (++0.57%) 72.3 (++0.42%) 335 (--7.97%) 

 
(3) Parameter settings 
The experimental environment includes Python3.7, 

CUDA11.2, and PyTorch 1.12.0. The GPU type is Nvidia 
GeForce RTX 2080Ti, and the operating system is Windows 
11. On the basis of the COCO pre-trained model, train 
another 30 epochs, with a learning rate initially set to 10-4 and 
reduced by 10 times after 20 epochs, and the momentum 
factor set to 0.9. The input image is resized to 1088 × 608. 

B. Experimental Results and Analysis 
(1) Experiment of MLD  
The ablation experiments are conducted on the MLD 

branch, using 50% of the training set provided by the MOT17 
dataset for training purposes, while the other remaining 50% 
for evaluation. The results are shown in Table II, where the 
“  ” denotes that the corresponding algorithm is used, and 
“” denotes that the corresponding algorithm is not used. 
“++” represents the percentage increase in performance 
compared to the previous experimental results, while “--” 
represents the percentage decrease. “ ” means a larger value 
for a better tracking effect, while “↓” means a smaller value 
for a better tracking effect, and the bold numbers represent 
the optimal results, the same as below. 

From Table II, it is evident that after using the multilevel 
detection, the MOTA and IDF1 are improved by 4.02% and 
0.98%, respectively, and the IDs is reduced by 5.67%. The 
largest-area bounding box regression contributes to a 0.57% 
increase in MOTA and a 0.56% increase in IDF1, while 
decreasing the number of ID switches by 12.5%. This 
indicates that the method is effective in significantly 
minimizing the number of ID changes for pedestrian objects. 
Incorporating the positive sample sampling region for 
adaptable pedestrians into the algorithm results in a 0.57% 
increase in MOTA and a 0.42% increase in IDF1, while 
reducing the number of ID switches by 7.97%. This approach 
effectively takes into account the unique characteristics of 
adaptable pedestrians during sampling, ensuring that the 
algorithm can better capture relevant features.The adaptive 
pedestrian central sampling area reduces the influence of 
ambiguity sampling points on the algorithm performance, 
thus improving the accuracy of Re-ID feature selection and 
reducing the number of pedestrian ID switches. 

TABLE III 
COMPARISON RESULTS OF DLA-34_FPN AND OTHER MULTI-SCALE 

BACKBONE NETWORKS 
Backbone Network MOTA↑ IDF1↑ IDs↓ 

Baseline 67.1 70.9 441 
ResNet-34_FPN 64.4 69.6 369 
ResNet-50_FPN 65.1 70.1 355 

DLA-34_FPN(ours) 70.6 72.3 335 
 

To validate the superiority of DLA-34_FPN, this paper 
constructs multi-scale feature fusion architectures by 
combining ResNet-34 and ResNet-50 from the ResNet [22] 
series with the FPN, respectively, namely ResNet-34_FPN 
and ResNet-50_FPN, for comparison with DLA-34_FPN. 
Half of the training set provided by the MOT17 dataset was 
used for training, while the remaining half was utilized for 
evaluation. As shown in Table III, compared to the Baseline, 
the three multi-scale feature fusion backbone networks 
exhibit improvements in the MOTA, IDF1, and IDs metrics, 
with DLA-34_FPN demonstrating the largest enhancement. 
Specifically, its MOTA is 6.2 and 5.5 higher than that of 
ResNet-34_FPN and ResNet-50_FPN, respectively. 
Additionally, its IDF1 is 2.7 and 2.2 higher, while the number 
of IDs is reduced by 34 and 20, respectively. These results 
indicate that DLA-34_FPN has a significant advantage in 
improving tracking performance. 

(2) Experiment of TP-LSTM and Fuse-association 
In order to verify the performance improvement of the TP-

LSTM and Fuse-association on FairMOT, comparative 
experiments are conducted on the trajectory prediction branch 
(TP branch) and data association branch (DA branch) of 
FairMOT on datasets MOT16, MOT17, and MOT20, 
respectively. In Table IV, The symbol “—” signifies the 
utilization of the original method in FairMOT and “TP-RNN” 
represents the substitution of LSTM with RNN within the TP-
LSTM framework. “+” represents the percentage 
improvement in the performance compared to the original 
method, while “-” means the percentage decrease in the 
performance, the same as below. 

As shown in Table IV, in dataset MOT16, the combined 
effect of the TP-LSTM and Fuse-association increased 
MOTA by 0.13%, IDF1 by 3.85%, and MT by 1.1%, and the 
method also reduced the number of ID switches by 44.3%. 
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The TP-LSTM is designed to address the problem of 
nonlinear motion prediction, and its performance surpasses 
other trajectory prediction methods, with an improvement of 
1.65% in IDF1 and a reduction of 43.95% in IDs compared 
to the baseline. Fuse-association reduces the dependence of 
data association on appearance features. After using Fuse-
association, the performance of each trajectory prediction 
method is improved, and the combined effect of TP-LSTM 
and Fuse-association is the best one. As Table IV 
demonstrates, similar patterns emerge with even more 
significant improvements in the MOT17 and MOT20 datasets. 
This is attributed to TP-LSTM’s ability to better leverage its 
strength in predicting the trajectories of occluded pedestrians 
as crowd density increases, especially in the more densely 
populated MOT17 and MOT20 datasets, while Fuse-
association effectively addresses more challenging pedestrian 
matching scenarios with high appearance similarity in these 
same datasets.  

(3) Experiment of MD-TPFairMOT 
In order to verify the gains of MLD, TP-LSTM, and Fuse-

association in pedestrian MOT algorithms, 50% of the 
MOT17 training set is selected for training, and the remaining 
50% of the data is used for evaluation. Ablation experiments 
are conducted on these three parts, and the results are shown 
in Table V. “+” represents the percentage increase in 
performance compared to FairMOT, and “-” represents the 
percentage decrease. 

After adding the MLD, the tracking metrics increased by 
5.1% MOTA and 2.0% IDF1, and decreased by 21.8% IDs. 
These results suggest that MLD can effectively solve the 
detection problem during occlusion and improve tracking 
accuracy. TP-LSTM is designed to address the challenge of 
position prediction following occlusion. With the addition of 

TP-LSTM, MOTA, and IDF1 increased by 1.01% and 2.23% 
respectively, and IDs decreased by 10.63%, indicating its 
significant effect. Fuse-association analyzes that pedestrians 
with high appearance similarity in dense scenes may lead to 
matching errors, and fuses two features for matching. After 
integrating the fuse-association, MOTA increased by 0.79%, 
IDF1 increased by 0.47%, and IDs decreased by 10.87%, 
which proves that it alleviates the problem of high appearance 
similarity. 

The experimental validation of MD-TPFairMOT has been 
conducted using the MOT15, MOT16, MOT17, and MOT20 
datasets, which are renowned benchmarks in the field of 
MOT. In a comparative analysis with several state-of-the-art 
one-step MOT methods, MD-TPFairMOT demonstrates 
superior performance, as evident from Table VI. Specifically, 
MD-TPFairMOT achieves the highest scores in both MOTA 
and IDF1, highlighting its robustness and accuracy in 
tracking pedestrian objects. The enhancement in detection 
accuracy achieved by the MLD method is a key factor 
contributing to MD-TPFairMOT’s superior performance. By 
assigning pedestrians of different scales to separate detection 
levels, MLD effectively reduces missed detections and 
improves the precision of Re-ID feature selection. This, in 
turn, enhances the representation ability of MD-TPFairMOT 
for pedestrian objects, leading to more accurate tracking 
results. Furthermore, TP-LSTM addresses the challenges 
posed by the dynamic motion states of objects. By leveraging 
past frame information, including object bounding boxes and 
velocity data, TP-LSTM accurately predicts the future 
positions of pedestrian objects. This predictive capability 
enhances the robustness of MD-TPFairMOT in handling 
complex tracking scenarios, where the motion patterns of 
pedestrians can be highly unpredictable.

 
TABLE IV 

COMPARISON RESULTS ON THE DATASETS MOT16, MOT17, AND MOT20 OF TP-LSTM AND FUSE-ASSOCIATION 
Dataset TP branch DA branch MOTA↑ IDF1↑ MT↑ IDs↓ 

MOT16 

— — 74.9 72.8 44.7% 1074 
— Fuse-association 75.0 (+0.13%) 73.4 (+0.82%) 45.0% (+0.3%) 889 (-17.22%) 

TP-RNN — 74.0 (-1.2%) 73.3 (+0.69%) 44.2% (-0.5%) 875 (-18.53%) 
TP-RNN Fuse-association 73.8 (-1.47%) 75.0 (+3.02%) 44.9% (+0.2%) 719 (-33.06%) 

TP-LSTM — 74.3 (-0.8%) 74.0 (+1.65%) 44.7% (+0%) 603 (-43.95%) 
TP-LSTM Fuse-association 74.2 (-0.93%) 75.6 (+3.85%) 45.8% (+1.1%) 598 (-44.33%) 

MOT17 

— — 73.7 72.3 43.2% 3303 
— Fuse-association 73.6 (-0.14%) 73.5 (+1.66%) 43.8% (+0.6%) 2703 (-18.17%) 

TP-RNN — 73.9 (+0.27%) 73.7 (+1.93%) 44.3% (+1.1%) 2630 (-20.38%) 
TP-RNN Fuse-association 74.0 (+0.41%) 74.0 (+2.35%) 45.1% (+1.9%) 2092 (-36.67%) 

TP-LSTM — 74.1 (+0.54%) 74.8 (+3.46%) 45.0% (+1.8%) 2109 (-36.12%) 
TP-LSTM Fuse-association 74.4 (+0.95%) 75.3 (+4.15%) 46.0% (+2.8%) 1825 (-44.75%) 

MOT20 

— — 61.8 67.3 68.8% 5243 
— Fuse-association 61.4 (-0.65%) 67.8 (+0.74%) 69.2% (+0.4%) 4269 (-18.56%) 

TP-RNN — 60.4 (-2.26%) 67.3 (+0%) 59.6% (-9.2%) 3532 (-32.45%) 
TP-RNN Fuse-association 60.2 (-2.59%) 68.7 (+2.08%) 59.8% (-9.0%) 2780 (-0.74%) 

TP-LSTM — 61.2 (-0.97%) 67.5 (+0.3%) 61.5% (-7.3%) 3025 (-46.95%) 
TP-LSTM Fuse-association 61.9 (+0.16%) 69.1 (+2.68%) 62.4% (-6.4%) 2325 (-55.66%) 

 
TABLE V 

THE RESULTS OF ABLATION EXPERIMENTS OF MD-TPFAIRMOT 
MLD TP-LSTM Fuse-association MOTA↑ IDF1↑ IDs↓ 
      67.1 70.9 441 
      70.6 (+5.1%) 72.3 (+2.0%) 335 (-21.8%) 
      71.2 (+6.11%) 73.9 (+4.23%) 298 (-32.43%) 
      71.7 (+6.9%) 74.2 (+4.7%) 249 (-43.3%) 
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When evaluating the IDs of tracked objects, MD-
TPFairMOT demonstrates the lowest ID count across all 
datasets, outperforming FairMOT and other methods 
significantly. The number of IDs directly reflects the ability 
of a tracking algorithm to maintain the consistency of object 
identities. In complex tracking scenarios, if an algorithm can 
stably assign a unique ID to each object and keep it 
unchanged throughout the entire tracking process, then the 
number of IDs will be relatively low. Lastly, the experimental 
results also reveal that MD-TPFairMOT maintains a 

competitive FPS despite its increased complexity. This 
balance between performance and efficiency is crucial for 
real-time applications, where both accuracy and speed are 
essential. Fig. 7 depicts a point-line chart that graphically 
illustrates the three key indicators—MOTA, IDF1, and IDs—
extracted from Table VI. It is evident that MD-TPFairMOT 
exhibits superior overall performance across these three 
indicators on all four datasets, demonstrating its excellence in 
tracking accuracy, target identification capability, and 
identity linkage performance. 

 
TABLE VI 

THE EXPERIMENTAL COMPARATIVE RESULTS OF MD-TPFAIRMOT WITH OTHER ONE-STEP MOT METHODS 
Dataset Tracking algorithm MOTA↑ IDF1↑ MT↑ ML↓ IDs↓ FPS↑ 

MOT15 

TubeTK [23] 58.4 53.1 39.3% 18.0% 854 5.8 
JDE 58.2 52.8 40.7% 16.2% 741 20.4 

CTrackerV1 [24] 59.8 51.7 39.0% 16.8% 672 7.2 
CenterTrack [25] 60.3 53.4 42.7% 15.9% 647 16.8 

FairMOT 60.6 64.7 47.6% 11.0% 591 30.5 
MD-TPFairMOT (ours) 62.0 65.6 48.3% 17.2% 535 20.7 

MOT16 

TubeTK 64.0 59.4 33.5% 20.4% 854 1.0 
JDE 64.4 55.8 35.4% 20.0% 741 18.5 

CTrackerV1 67.6 57.2 32.9% 18.1% 672 6.8 
CenterTrack  67.9 65.6 35.2% 18.3% 647 16.9 

FairMOT 74.9 72.8 44.7% 15.9% 591 25.9 
MD-TPFairMOT (ours) 75.4 75.9 46.2% 19.8% 535 16.3 

MOT17 

TubeTK 63.0 58.6 31.2% 19.9% 4137 3.0 
JDE 63.3 59.7 31.8% 23.0% 5327 18.5 

CTrackerV1 66.6 57.4 32.2% 24.2% 5529 6.8 
CenterTrack 67.8 64.7 34.6% 22.6% 2583 17.5 

FairMOT 73.7 72.3 43.2% 17.3% 3303 25.9 
MD-TPFairMOT (ours) 75.2 75.6 46.9% 20.7% 1673 16.2 

MOT20 

TubeTK 50.3 49.3 52.4% 13.8% 4448 6.9 
JDE 55.7 50.4 56.4% 10.4% 4661 10.5 

CTrackerV1 57.6 60.2 57.9% 8.9% 5197 6.8 
CenterTrack  58.8 59.3 61.6% 9.8% 4818 18.7 

FairMOT 61.8 67.3 68.8% 7.6% 5243 23.2 
MD-TPFairMOT (ours) 61.5 68.0 62.2% 10.3% 2220 11.5 

 

 
Fig. 7.  The point-line chart comparing MD-TPFairMOT with other one-step methods in terms of MOTA, IDF1, and IDs indicators 
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Fig. 8.  Visual comparison of tracking results between FairMOT and MD-TPFairMOT in complex and blurry scenarios: (a) tracking images of FairMOT and 
(b) tracking images of MD-TPFaiMOT 

 
To directly compare the tracking performance of MD-

TPFairMOT and FairMOT under dense, occluded, and blurry 
conditions, Fig. 8 presents partial comparison images of the 
two algorithms on the MOT15, MOT16, MOT17, and 
MOT20 datasets. Fig. 8(a) shows the tracking results of 
FairMOT, with pedestrians that are not successfully tracked 
marked in yellow boxes. In contrast, Fig. 8(b) displays the 
tracking outcomes of MD-TPFairMOT, where the 
corresponding successfully tracked pedestrians are 
highlighted with red boxes. It is evident that in scenes with 
high density, occlusion, or blurring, FairMOT fails to 
correctly track some pedestrians, whereas MD-TPFairMOT 
is able to capture those that FairMOT misses. MD-
TPFairMOT demonstrates a superior ability to track 
pedestrians more effectively and exhibits better performance 
in handling dense and occluded situations. Furthermore, 
when tracking pedestrians, it is necessary to consider not only 
the influence of other pedestrians but also the impact of the 
background environment on tracking performance. This 
indirectly demonstrates that our proposed algorithm improves 
the accuracy of ReID feature selection and pedestrian motion 
prediction for pedestrian objects, leading to more precise 
tracking of pedestrian objects. 

IV. CONCLUSION 
This paper addresses the challenge of degraded tracking 

performance in dense scenes for the pedestrian tracking 
method FairMOT, stemming from frequent pedestrian 
occlusions and the high similarity of their appearance. By 
analyzing the characteristics of large-scale differences and 
uncertain motion states of pedestrians in dense scenarios, this 
paper proposes a new pedestrian MOT method, MD-
TPFairMOT. The method uses MLD for hierarchical 
detection of pedestrians of different sizes, and its largest-area 
bounding box regression and adaptive pedestrian central 
sampling region are more in line with the characteristics of 
pedestrian occlusion, improving the accuracy of object 

detection. Simultaneously, using TP-LSTM for trajectory 
prediction and utilizing past frame information to predict 
pedestrian positions solves the problem of nonlinear motion 
prediction. In addition, Fuse-association is used to fuse Re-
ID features and motion features to avoid incorrect matching 
caused by high appearance similarity. Experiments on the 
datasets MOT15, MOT16, MOT17, and MOT20 demonstrate 
that the proposed method offers improved accuracy and 
occlusion resistance in dense scenes. 

REFERENCES 
[1] Z. F. Hu, H. L. Yu, and K. H. Linghu, “Siamese network tracker based 

on dynamic convolution and attention fusion of shallow and deep 
information,” Engineering Letters, vol. 32, no. 1, pp. 30-42, 2024. 

[2] A. Gullapelly and B.G. Banik, “Multiple object tracking with behavior 
detection in crowded scenes using deep learning,” Journal of 
Intelligent & Fuzzy Systems, vol. 44, no. 3, pp. 5107-5121, 2023. 

[3] S. H. Park, B. D. Kim, C. M. Kang, C. C. Chung, and J. W. Choi, 
“Sequence-to-sequence prediction of vehicle trajectory via LSTM 
encoder-decoder architecture,” IEEE Intelligent Vehicles Symposium 
(IV), June 26–30, 2018, Changshu, Suzhou, China, pp. 1672-1678. 

[4] X.P. Dai, “Visual recognition and performance prediction of athletes 
based on target tracking EIA algorithm,” Journal of Intelligent & Fuzzy 
Systems, vol. 40, no. 4, pp.7233-7246, 2021. 

[5] D. Merad, K. E. Aziz, R. Iguernaissi, B. Fertil, and P. Drap, “Tracking 
multiple persons under partial and global occlusions: Application to 
customers’ behavior analysis,” Pattern Recognition Letters, vol. 81, no. 
1, pp. 11-20. 

[6] A. Bewley, Z. Y. Ge, L. Ott, F. Ramos, and B Upcroft, “Simple online 
and realtime tracking,” 2016 IEEE International Conference on Image 
Processing (ICIP), 25-28 September, 2016, Phoenix, Arizona, USA, 
pp. 3464-3468. 

[7] N. Wojke, A. Bewley, D. Paulus, “Simple online and real-time tracking 
with a deep association metric,” 2017 IEEE International Conference 
on Image Processing (ICIP), 17-20 September, 2017, Beijing, China, 
pp. 3645-3649. 

[8] S. J. Sun, N. Akhtar, H. S. Song, A. Mian, and S. Mubarak, “Deep 
affinity network for multiple object tracking,” IEEE Transactions on 
Pattern Analysis and Machine Intelligence, vol. 43, no. 1, pp. 104-119, 
2021. 

[9] F. Zeng, B. Dong, Y. Zhang, T. Wang, X. Y. Zhang, et al, “Motr: end-
to-end multiple-object tracking with transformer,” European 
Conference on Computer Vision, 23-27 October, 2022, Tel Aviv, Israel, 
pp. 659-675. 

IAENG International Journal of Computer Science

Volume 52, Issue 4, April 2025, Pages 1137-1147

 
______________________________________________________________________________________ 



 

 

[10] P. Voigtlaender, M. Krause, A. Osep, J. Luiten, B. B. G. Sekar, et al, 
“Mots: Multi-object tracking and segmentation,” Proceedings of The 
ieee/cvf Conference on Computer Vision and Pattern Recognition, 16-
20 June, 2019, Long Beach, CA, USA, pp. 7942-7951. 

[11] Z. D. Wang, L. Zheng, Y. X. Liu, S. J. Wang, “Towards real-time 
multi-object tracking,” European Conference on Computer Vision, 23-
27 October, 2020, Glasgow, UK, pp.107-122. 

[12] Y. Zhang, C. Wang, X. Wang, W. Zeng, and Y. Wen, “Fairmot: On the 
fairness of detection and re-identification in multiple object tracking,” 
International Journal of Computer Vision, vol. 129, pp. 3069-3087, 
2021. 

[13] B. Liu, Z. M. Wang, W. Y. Chen, and J. X. Wang, “Trajectory 
prediction combined with FairMOT for multi-object tracking,” Eighth 
International Symposium on Advances in Electrical, Electronics and 
Computer Engineering (ISAEECE 2023), 31 May, 2023, Hangzhou, 
China, pp. 693-696. 

[14] K. W. Duan, S. Bai, L. X. Xie, H. G. Qi, Q. M. Huang, et al, “Centernet: 
Keypoint triplets for object detection,” Proceedings of The IEEE/CVF 
International Conference on Computer Vision, 15-20 June, 2019, Long 
Beach, CA, USA, pp. 6569-6578. 

[15] O. S. Berot, H. Canot, P. Durand, B. Hassoune-Rhabbour, H. 
Acheritobehere, C. Laforet, V. Nassiet, “Choice of parameters of an 
LSTM network, based on a small experimental dataset,” Engineering 
Letters, vol. 32, no. 1, pp. 59-71, 2024. 

[16] T.Y. Lin, P. Dollár, R. Girshick, K. M. He, B. Hariharan, et al, “Feature 
pyramid networks for object detection,” Proceedings of The IEEE 
Conference on Computer Vision and Pattern Recognition, 21-26 July, 
2017, Honolulu, HI, USA, pp. 2117-2125. 

[17] F. Yu, D. Wang, E. Shelhamer, and T. Darrell, “Deep level aggregation,” 
Proceedings of The IEEE Conference on Computer Vision and Pattern 
Recognition, 18-23 June, 2018, Salt Lake City, UT, USA, 2018. pp. 
2403-2412. 

[18] Z. Tian, C. Shen, H. Chen, and T. He, “FCOS: A simple and strong 
anchor-free object detector,” Proceedings of the IEEE/CVF 
International Conference on Computer Vision, 15-20 June, 2019, Long 
Beach, CA, USA, pp. 9627-9636. 

[19] Y. Yuan, L. Lin, L. Z. Huo, Y.L. Huo, Y. L. Kong, et al, “Using an 
attention-based LSTM encoder-decoder network for near real-time 
disturbance detection,” IEEE Journal of Selected Topics in Applied 
Earth Observations and Remote Sensing, vol. 13, pp. 1819-1832, 2020. 

[20] X. P. Chen and Y. Xu, “A Multi-Dimensional Attention Feature Fusion 
Method for Pedestrian Re-identification,” Engineering Letters, vol. 31, 
no. 4, pp. 1365-1373, 2023. 

[21] E. Ristani, F. Solera, R. Zou, R. Cucchiara, and C. Tomasi, 
“Performance measures and a data set for multi-object, multi-camera 
tracking,” European Conference on Computer Vision, 11-14 October, 
2016, Amsterdam, The Netherlands. 2016. pp. 17-35. 

[22] K. He, X. Zhang, S. Ren, et al, “Deep residual learning for image 
recognition,” Proceedings of the IEEE conference on computer vision 
and pattern recognition, 770-778, June, 2016, Las Vegas, NV, USA 
pp.1063-6919. 

[23] B. Pang, Y. Li, Y. Zhang, M. Li, C. Lu, “Tubetk: Adopting tubes to 
track multi-object in a one-step training model,” Proceedings of The 
IEEE/CVF Conference on Computer Vision and Pattern Recognition, 
13-19 June, 2020, Seattle, WA, USA, pp.6308-6318. 

[24] J. L. Peng, C. G. Wang, F. B. Wan, Y. Wu, Y. B. Wang, et al, “Chained-
tracker: Chaining paired attentive regression results for end-to-end 
joint multiple-object detection and tracking,” Computer Vision–ECCV 
2020, 23-28 August, 2020, Glasgow, UK, pp.145-161. 

[25] X. Zhou, V. Koltun, and P. Krähenbühl, “Tracking objects as points,” 
European Conference on Computer Vision, 23-27 October, 2020, 
Glasgow, UK, pp.474-490. 

IAENG International Journal of Computer Science

Volume 52, Issue 4, April 2025, Pages 1137-1147

 
______________________________________________________________________________________ 




