
 

 
Abstract—Manual methods involve a large workload and 

high risk in electric power inspections. Additionally, drone 
inspections are constrained by limited range, making inspecting 
areas with complex terrain difficult. Spurred by these 
limitations, this study proposes an integrated power inspection 
system that synergistically combines an inspection vehicle and a 
drone to confront these problems. The primary objective of this 
research is to establish a vehicle-mounted drone inspection 
system model and formulate an optimization goal using the total 
inspection distance as the objective function. Specifically, an 
improved ant colony optimization (IACO) algorithm is 
employed to optimize the solution, and the proposed multi-path 
selection mechanism and elite strategy improve the algorithm's 
performance. The results are compared against the original ant 
colony optimization (ACO) algorithm, dynamic evaporation 
rate adaptive ant colony optimization (DERAACO) algorithm, 
A* algorithm, and genetic algorithm on a city's transmission 
tower map and actual tower data. The simulation results 
indicate that the IACO significantly improves route planning 
efficiency, enhances operational efficiency, and validates the 
feasibility of the proposed vehicle-mounted drone inspection 
model. This research provides essential theoretical insights and 
practical implications for advancing electric power inspection 
methodologies. 
 

Index Terms—Path planning, Power inspection, Ant colony 
algorithm, Drone, Inspection vehicle 

I. INTRODUCTION 
OWER grid is essential for maintaining the security and 
reliability of electricity provision, as well as harmonizing 

the equilibrium between energy generation and consumption 
across different areas [1-2]. The escalation in household 
power consumption, alongside the ongoing enlargement of 
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Fig. 1. Inspection Vehicle and Drone Collaborative Inspection 
 
the electrical grid's infrastructure, has markedly increased the 
demands for safeguarding the consistent and secure 
functioning of power networks.Power inspection has become 
a standard method of power maintenance. Traditional 
maintenance relies on manual inspections, which involve a 
large workload and face the complexity and dynamic nature 
of the inspected areas, posing numerous challenges for 
manual inspection. Considering both the safety of inspectors 
and the effectiveness of the inspection in a comprehensive 
manner, using drones and other intelligent devices for power 
autonomous inspection has become a new mode of power 
inspection [3-6], which significantly improves the efficiency 
of line inspection and reduces inspection risks. However, the 
complex terrain of the inspection, combined with the limited 
operating range of the drone, simply relying on the drone for 
inspection will cause a waste of resources. Consequently, a 
novel collaborative inspection mode has emerged, integrating 
an inspection vehicle and a drone. 

Currently, the literature offers several path-inspection 
methods in power inspection. For example, Chen et al. [7] 
optimized the robot inspection route based on a genetic 
algorithm and applied grid processing on the substation plan 
in the mobile robot inspection system. Lu et al. [8] proposed a 
path-planning method for electric emergency robots by 
combining the analytic hierarchy process (AHP) and the A* 
algorithm for global and local dynamic path planning, 
thereby avoiding operational risks. Based on the ant colony 
algorithm, Xie et al. [9] relied on the directional Angle factor 
and the Laplacian probability distribution function to 
significantly improve the robot's work efficiency in the 
inspection substation. For the study of vehicle and drone 
cooperative inspection, Huang et al. [10] developed a new 
mode of collaborative power detection of “UAV and 
operating vehicle (OV)”, which adopted an improved 
K-means algorithm and a genetic algorithm to solve the 
model. They also conducted a case analysis demonstrating 
the capability of their method. Zhao et al. [11] focused on the  

 

Research of Power Inspection Based on 
Intelligent Algorithm  

Lei Tian, Member, IAENG, Minhang Mao, Member, IAENG, Baoyu Hou, Gao Ma 

P

IAENG International Journal of Computer Science

Volume 52, Issue 4, April 2025, Pages 1169-1177

 
______________________________________________________________________________________ 



 

TABLE I 
SETS AND PARAMETERS  

Symbol Meaning 
Set S the set of the control center, S={s0} 

P the set of parking points, P={p0} 
O the set of obstacle area, O={o0} 
C the set of inspection vehicles, C={c0} 
D the set of drones, D={d0} 
T the set of towers, T={t1,t2...tm} 

Parameter LC the length of the inspection vehicle, km 
LD the length of the drone, m 

km = kilometer, m =meter. 
 
realization of UAVs and vehicles in time and space 
cooperation and proposed an integrated vehicle-mounted 
UAV cooperative operation mode based on a space-time 
network.  

This study uses drones and inspection vehicles to complete 
cross-area inspections jointly. The inspection area is divided 
into different regions, and the developed method realizes 
reasonable obstacle avoidance routes in the vehicle-mounted 
drone inspection area, facilitating the optimization of the 
shortest path for the tower inspection task. The ant colony 
algorithm is employed to address this challenge effectively, 
which is a NP-hard problem, it can solve the problem faster 
and get a better solution [12-13]. The model is evaluated on a 
simulated problem to verify the distribution of transmission 
line towers in a city, followed by a thorough examination of 
the results. The proposed method offers a scientific and 
practical decision-making approach for power enterprises to 
devise reasonable path-planning schemes.  
 

II. COLLABORATIVE INSPECTION MODE OF DRONE AND 
INSPECTION VEHICLE 

A. Problem Description 
Assuming a need for power inspection of transmission 

towers in a specific area, the inspection mode is illustrated in 
Fig. 1. 

The power company utilizes inspection vehicles and 
drones in a collaborative power inspection mode, during 
which the inspection is divided into two areas. The first is the 
obstacle avoidance area for the inspection vehicles. In this 
area, the inspection process involves the deployment of a 
vehicle-mounted drone from the intelligent control center, 
which navigates through a complex obstacle environment 
that requires practical obstacle avoidance operations. The 
second is the drone inspection area. After passing the 
obstacle avoidance area, the inspection vehicle will park at 
the designated parking spot and release the drone by remote 
control to inspect the transmission tower. After completing 
the corresponding inspection task, the drone lands on the 
take-off and landing platform of the inspection vehicle, and 
along with the vehicle, they both return to the control center. 

 

B. Problem Assumption 
Based on the inspection of transmission towers and 

combined with the operation constraints of inspection 
equipment. In order to facilitate quantitative research and 
increase the understanding of the model, the following 
assumptions are made for the collaborative inspection model  

 
Fig. 2. Flowchart of the IACO Algorithm 
 
of inspection vehicles and drones: 

(1) Access hypothesis: Given that the distance between the 
operation and maintenance station and the power tower to be 
inspected significantly exceeds the farthest distance of a 
single flight of the drone, the drone must be transported by 
the inspection vehicle to the vicinity of the tower before 
initiating the inspection. Due to road restrictions, the 
inspection vehicle is only active from the operation and 
maintenance station to the docking point. 

(2) Starting hypothesis of the control center: The 
inspection vehicle departs from the control center and waits 
for the drone to return to the control center after completing 
its inspection tasks. 

(3) Path hypothesis: The path focuses on the sequence in 
which the drones visit the points to be inspected. It does not 
rely entirely on the exact locations of inspection towers or 
power grid points. The drone inspection path planning is 
simplified from a three-dimensional problem to a  
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TABLE II 
POSITION COORDINATES OF 20 TOWERS IN A CITY 

Tower number (x, y) Tower number (x, y) 

1 (220,55) 11 (538,87) 

2 (367,314) 12 (764,320) 

3 (382,409) 13 (806,293) 

4 (413,526) 14 (917,462) 

5 (320,611) 15 (987,216) 

6 (178,784) 16 (625,509) 

7 (515,703) 17 (782,735) 

8 (571,600) 18 (811,784) 

9 (605,414) 19 (929,690) 

10 (631,223) 20 (958,525) 

 
two-dimensional path optimization problem. Therefore, the 
distance traveled by the drone from one inspection point to 
the next is assumed to be a two-dimensional linear distance, 
which can be directly calculated using the Euclidean distance 
formula between two points. It can be obtained directly from 
the Euclidean distance formula between two points. 

(4) Drone inspection hypothesis: Due to cost and practical 
constraints, the inspection vehicle is equipped with a single 
drone, capable of inspecting all towers in one trip. The 
drone’s flying speed is assumed to be the same both during 
transit to and from the inspection area and between the towers. 
The inspection time at each tower is also considered to be the 
same. The drone must begin and end its flight at the same 
point, flying in a straight line between the inspection area and 
each tower, with the take-off and landing distances ignored 
for simplicity. 

 

C. Model Construction 
Table I reports some basic sets and parameters to clarify 

the subsequent description. 
The total inspection path length can be calculated as 

follows: 
( ) C Df L L L                                 (1) 

 

III. ALGORITHM DESIGN 
Traditional path planning algorithms, such as the A* 

algorithm, have the advantage of quickly finding the optimal 
path. They can adapt to various terrains and obstacles based 
on heuristic functions. However, with the advancement of 
artificial intelligence algorithms, intelligent algorithms have 
shown superiority over traditional path-planning algorithms. 
For instance, the genetic algorithm, which simulates the 
genetic and evolutionary processes of biology in nature, 
exhibits characteristics of parallelism, high efficiency, and 
global search capabilities. Among the various path-planning 
algorithms, this paper utilizes the ant colony algorithm, 
owing to its excellent global search capability and potential 
parallelism, which is appropriate for solving path-planning 
problems. Dorigo first proposed the ant colony algorithm 
[14], which is a type of bionic swarm intelligence algorithm. 
Specifically, the optimal solution is constructed based on the 
ant's foraging behavior, i.e., when ants seek a path to feed, 
they release pheromones to record the current path. The  

Inspection Drone

Tower 1Tower 2Tower 3

Drone Inspection Area：
Coverage zone of the inspection drone

 
Fig. 3. Transmission Towers Map 
 
probability that the ants choose the path is related to the 
pheromone concentration. 
 

A. Obstacle Avoidance Path Planning Algorithm for 
Inspection Vehicle 
It is necessary to conduct environmental modeling 

according to obstacle avoidance path planning characteristics 
[15]. For environmental modeling, this study adopts a 
structured discretization approach based on grid 
decomposition. The grid-based modeling approach was 
selected for its computational practicality, combining 
intuitive spatial representation with efficient algorithmic 
implementation. The grid map is constituted by a matrix of 
0s and 1s, where 0 represents a free grid that the inspection 
vehicle can pass through, while 1 denotes an obstacle grid 
that the vehicle cannot traverse. The sequence number 
method is typically applied when the grid method is used to 
build the environment model and transform the 
environmental information into identifiable information. 
Each smallest square of the grid map is added in numbered 
order until the last square is identified. 

Each grid in a grid map has a corresponding number, with 
the following formula expressing the coordinates of the 
different sequence grids in the coordinate system: 

              (2) 

where a denotes grid resolution, mod means complementary 
operation, ceil stands for integer up operation. The position of 
the ith grid is defined as (xi,yi), with Nx and Ny representing 
row/column grid counts respectively. The length of each 
complete path is calculated as follows: 

         (3) 

When designing the motion method, it is necessary to 
determine the strategy for changing route direction. We adopt 
an eight-way turning strategy, i.e., during the path search 
process, the path can turn in any of the eight directions. While 
turning, it is crucial to determine whether the adjacent grids 
around the current grid are obstacles or open grids. Thus, a 
matrix D is introduced to represent the adjacency of the grids 
and whether they are obstacles. Matrix D records the 
transition values between each grid point and its neighboring 
one. The grid map established comprises 20×20 grid points; 
thus, the size of matrix D is 400×400. The value from each  
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Fig. 4. Inspection Vehicle Path Results 

 
grid point to its neighboring obstacle-free grid points is set to 
1, while the value to obstacle grids or non-neighboring grids 
is set to 0. 
 

B. Path Planning Algorithm for Inspection Drone 
The drone inspection path adopts the shortest path 

algorithm to solve the traversal inspection. Since the order of 
the inspection points affects the distance length of the path, 
we employ the Traveling Salesman Problem (TSP) solution 
in the ant colony algorithm to find the shortest path [16]. The 
traveling salesman problem states that if a traveling 
businessman wants to visit n cities, he needs to choose a route 
that passes from all cities back to the starting point while 
minimizing the distance covered. This method utilized to 
address this issue is delineated in the following manner:  

For spatial modeling, the Euclidean distance between any 
two nodes i and j within the set S={1,2,...,n} is defined as: 

            (4) 

Each ant maintains a dynamic tabu list to store its traversal 
history. The initial entry in this list corresponds to the ant's 
starting position. As the ant navigates through the 
environment, it sequentially appends visited points to the list. 
Traversal completion is achieved when the tabu list contains  

TABLE III 
COMPARISON OF EXPERIMENTAL RESULTS 

Algorithms Minimum 

distance/km 

Iterations  Turn times 

A* 29.8 122 12 

IACO 29.5 24 11 

 
all target points. Following the colony's exploration from 
iteration t to t+n, the pheromone concentration on the path 
connecting points i and j at iteration t+n is updated as 
follows: 

               (5) 

The pheromone level aij(t) between points i and j is 
initialized to a predefined constant. The update mechanism 
incorporates a volatilization factor ρ (0 ≤ ρ ≤ 1), which 
governs the rate of pheromone decay between iterations t and 
t+n. The term (1-ρ) quantifies the residual pheromone 
retention, while ∆aij captures the incremental pheromone 
deposition during this interval, computed as： 





m

k

k
ijij aa

1

                                   (6) 

where ∆aij
k represents the pheromone increment of the kth ant 

on the path from i to j during this iteration, calculated as 
follows using the ant cycle model: 

        (7) 

where Q is a normal number, representing the ant’s path in its 
journey. The advantage of the ant cycle model lies in its 
ability to incorporate pheromone information on a global 
scale. 

The probabilistic transition mechanism governing ant 
movement at iteration t follows the rule: 

( )

( ) * ( )
( )

( ) * ( )( )

0, ( )
k

ij ij
kk

ij ijij
S J i

k
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j J i
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
，

    (8) 

where ηij(t) is a heuristic factor represented by a normal 
number, formulated as: 

( ) 1/ij ijt d                                (9) 
where ηij represents the heuristic desirability of moving from 
point i to j, and Jk(i) denotes the set of feasible neighboring 
points accessible to the kth ant from its current position i. 
Parameters α and β modulate the relative weights of 
pheromone concentration and heuristic information, 
respectively, in the decision-making process. 
 

C. Improved Ant Colony Optimization (IACO) Algorithm  

1) Multi-path Selection Mechanism 
According to the state selection probability, the ant moves 

to the next path point in the original ACO. As the number of 
iterations increases, ants tend to concentrate on selecting 
specific paths, which can result in the algorithm becoming 
trapped in a local optimum. Thus, introducing a multi-path 
selection mechanism based on path similarity can improve 
the algorithm’s global search capability. Assuming that the  
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Fig. 5. Convergence Results 

 
(a) Optimal Path Generated by Original ACO 

 
(b)Optimal Path Generated by DERAACO 

Fig. 6. Optimal Path Generated by Different ACO Algorithms 
 
route rk of the current ant k has a certain similarity with the 
previously selected route rm, the route similarity sim(rk,rm) is 
defined as: 

 1
1 ( ) ( )

( , )
L k m

k m i
r i r i

sim r r
L





            (10) 

where rk(i) and rm(i) represent the ith node of routes rk and rm, 
L is the minimum length of the route, and 1{rk(i)= rm(i)} is  
the indicator function, which returns 1 if rk(i)= rm(i), and 0 
otherwise. 

TABLE IV 
EXPERIMENTAL RESULTS OF DIFFERENT ALGORITHMS 

Algorithm 
Path length 

Convergence 

generation 
Turn 

times 
Best Mean Std Best Mean Std 

A* 29.80 29.80 0.00 - - - 12.00 

ACO 29.50 31.87 0.95 23.00 25.30 0.93 15.00 

DERAACO 29.50 30.04 0.66 47.00 49.00 0.89 13.00 

IACO 29.50 29.50 0.0 18.00 18.33 0.22 11.00 

 
 
The selection probability pij

k(t) can be adjusted according 
to the path similarity to guide exploring different paths. The  
formula for the adjusted path selection probability is: 

( )

( ) * ( )
( ) (1 ( , ))

( ) * ( )
k

ij ijk k m
ij

ij ij
S J i

a t t
p t sim r r

a t t

 

 






        
         (11)

 

where (1-sim(rk,rm)) reduces the likelihood of being similar to 
previous paths, thereby increasing the diversity of paths. 
 

2) Elite Strategy 
In the traditional pheromone update rule, the uniform 

update strategy applied to all paths lacks differentiation, 
which results in slower convergence of the algorithm. 
Therefore, the convergence efficiency of the proposed 
algorithm is improved with the centralized pheromone 
updates on some excellent paths, speeding up the search 
process for the optimal solution. In this strategy, only the best 
partial routes from the current generation are reinforced with 
pheromone updates. In the ith iteration, there are M ants in 
total, each ant k has a route length of Lk, and the algorithm 
selects the top Me routes (elite routes) that performed the best 
for pheromone updates. Me represents the number of elite 
paths, and we choose the shortest top 20% as elite paths, 
defined as: Me=max(1,[0.2M]) The pheromone update 
method is as follows: 

      (12) 

where δij
k is an indicator function. If path k passes through 

the edge (i, j), then δij
k=1; otherwise, δij

k=0. 
 

3)The Step of Improved Ant Colony Optimization 
Algorithm 

The operational framework of IACO for power 
inspection path optimization is illustrated in Fig. 2. 
 

IV. RESULTS AND ANALYSIS 
According to the layout map of the transmission towers in 

a city, the reliability and rationality of the algorithm are 
verified and analyzed through simulation experiments. 
 

A. Actual Environment Description 
Fig. 3 illustrates the distribution of transmission towers in 

a city, which are located in remote areas and distributed in the 
suburbs of cities, meeting the requirements of the ideal model 
established above. We select 20 towers in this area for the  
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Fig. 7. Convergence Curves of Different Algorithms. 

TABLE V 
SIMULATION RESULTS FOR DIFFERENT ANT NUMBERS 

Number of ants Minimum distance/m Running time/s 

10 3493.912 1.562 

20 3493.721 2.032 

30 3493.144 2.763 

50 3492.875 4.126 

75 3492.674 6.158 

100 3492.529 7.342 

150 3492.529 10.753 

 
 
experiment and obtain their plane coordinates on the map 
(Table II). Each tower is assigned a randomly generated 
number, which is not related to the tower's sequence. 

 

B. Experimental Results and Analysis 

1) 20×20 Obstacle Avoidance Area Simulation  
The proposed IACO is compared with several 

well-performing algorithms involving the original ACO, 
dynamic evaporation rate adaptive ant colony optimization 
(DERAACO) [17], and the A* algorithm to verify its 
appealing performance. A standardized grid-based 
simulation framework was established to ensure 
experimental comparability. The navigation terrain was 
configured as a 400-cell lattice (20×20 resolution) with 
diagonally symmetric node placement - initial coordinates at 
(0.5, 19.5) and terminal coordinates at (19.5, 0.5). This 
orthogonal configuration eliminates directional bias while 
maintaining uniform path-search complexity across all 
algorithmic implementations. Due to the complexity of the 
actual inspection area environment, we modify the simulated 
testing environment based on the grid environment, aiming to 
enhance the practicality of the algorithm. Precisely, the 
proposed IACO is compared with A* algorithms to assess its 
effectiveness in route optimization, with the corresponding 
paths depicted in Fig. 4(a) and (b). Table III reports the 
corresponding results. 

In this experiment, the algorithm initially fails to converge 
in the early iterations, and the result fluctuates constantly. 
Algorithmic stability improves monotonically with iteration 
progression. At 23 iterations, the optimal optimization effect  

 
(a) Path Map of the IACO 

(b) Path Map of the Genetic Algorithm 

Fig. 8. Drone Inspection Path Map 

 
has been achieved, and the whole operation stabilizes. The 
findings indicate that the vehicle's path length, while 
navigating through the obstacle-filled area, measured 29.5 
km.  

Table III highlights that IACO has a 1% shorter path length 
than the A* algorithm. Regarding search efficiency (number 
of iterations), IACO improves by 80% compared to the A* 
algorithm, while for the number of turns, IACO has 8.3% less  
than the A* algorithm. Notably, the A* and proposed 
algorithms obtain the optimal solution. IACO demonstrates 
superior convergence efficiency, optimized path length, and 
enhanced robustness compared to the A* algorithm. 

In Fig. 4, the black area represents obstacles, while the area 
indicates the regions where the inspection vehicle can pass. A 
collision-free path graph is obtained using the algorithm 
proposed in this paper for obstacle avoidance path planning. 
For 200 iterations and 80 ants, Fig. 5 compares the 
corresponding convergence curves. 

To objectively evaluate the proposed algorithm's efficacy, 
comparative assessments were conducted against two 
benchmark algorithms: the original ACO and dynamic 
evaporation rate adaptive ant colony optimization 
(DERAACO). Accounting for the stochastic nature of 
probabilistic optimization algorithms, 30 independent trials 
were executed under identical conditions to ensure statistical  
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Fig. 9. Convergence Results 

TABLE VI 
SIMULATION RESULTS FOR DIFFERENT ITERATIONS 

Number of iterations Minimum 

distance/m 

Running time /s 

40 4259.784 2.037 

60 4108.532 2.270 

80 3791.360. 3.035 

100 3492.529 3.237 

150 3492.529 5.238 

200 3492.529 10.296 

 
reliability. The optimal path length (expressed as Best), 
average path length (expressed as Mean), standard deviation 
(expressed as Std), and other indicators are used to evaluate 
the performance. The optimal path of the model is shown in 
Fig. 6, while the convergence curves for the three ACOs are 
illustrated in Figure 7.Table IV summarizes the statistical 
outcomes of the optimal paths achieved by all the algorithms. 

As demonstrated in Table IV, the Improved Ant Colony 
Optimization (IACO) exhibits comprehensive advantages in 
path-planning performance. Regarding optimal path length, 
IACO achieves parity with ACO and DERAACO at 29.5 
units, outperforming the A* algorithm (29.8 units) by a 
1.01% reduction. Statistically, IACO dominates in both 
central tendency and dispersion metrics: its mean path length 
(29.5) surpasses ACO (29.8), DERAACO (30.04), and A* 
(31.87), while its standard deviation (0) reflects absolute 
consistency, representing 100% reductions compared to 
DERAACO (0.66) and ACO (0.95). These metrics confirm 
IACO’s superior robustness and solution stability. In 
maneuverability optimization, IACO reduces turn counts to 
11 on optimal paths, yielding 8.3%, 15.4%, and 26.7% 
improvements over ACO (12), DERAACO (13), and A* (15), 
respectively. Convergence analysis further highlights 
IACO’s computational efficiency: it attains optimal solutions 
in 18 iterations, 21.7% and 61.7% faster than ACO (23) and 
DERAACO (47). The mean convergence iteration (18.33 ± 
0.22) demonstrates significantly tighter dispersion than ACO 
(25.30 ± 0.95) and DERAACO (49 ± 0.66), underscoring its 
algorithmic stability. Collectively, these results validate  

 

TABLE VII 
EACH ALGORITHM OPTIMIZES THE SHORTEST DISTANCE 

Algorithm Genetic algorithm The algorithm in this article 

Number Optimal 

value/m 

Running 

time/s 

Optimal 

value/m 

Running 

time/s 

1 3561.242 9.71 3492.529 7.34 

2 3541.514 9.57 3492.529 7.51 

3 3671.660 9.75 3492.529 7.30 

4 3636.478 9.76 3492.529 7.68 

5 3525.035 9.68 3492.529 7.42 

6 3677.582 9.80 3492.529 7.43 

7 3708.115 9.91 3492.529 7.52 

8 3500.647 9.56 3492.529 7.61 

9 3570.098 9.67 3492.529 7.38 

10 3525.525 9.68 3492.529 7.55 

Average 

value 

3591.790 9.71. 3492.529 7.47 

 
IACO’s triple advancements in solution quality, 
computational efficiency, and operational reliability. 

 

2) Drone Inspection Area Simulation  
The number of towers in the drone inspection area is 20, 

and the parameters are set to α=1.5, β=2, ρ=0.1, and Q=k100. 
The initial population size of the genetic algorithm is 2000, 
the chromosome gene dimension is 31, and the maximum 
number of generations is 1000. The inspection route starts 
from the initial point. Each tower is passed once without 
repetition or returning, and the drone returns to the starting  
point. The simulation results are presented next. 

The best inspection path is presented in Fig. 8, with Fig. 
8(a) depicting the path planning results of the proposed 
method and Fig. 8(b) the genetic algorithm path planning 
results. The position of each transmission tower is presented 
in a blue hollow point, and the number on each point is the 
tower's serial number. The inspection-specific path order is 6
→5→4→3→2→1→11→10→12→13→15→14→20→19
→18→17→16→9→8→7. The path traverses all towers 
without repetition.  

Fig. 9 compares the performance of the genetic algorithm 
(blue curve) and IACO (red curve) based on the number of 
iterations and the length of the inspection path. The results 
show that the proposed algorithm converges faster. The drone 
inspection path is 3492.529 m, and the total inspection path 
length is 32.992529 km.  

To compare the performance difference, we modify the 
value of the parameters. Table V reports the simulation 
results for 200 iterations while modifying the number of ants. 
Table VI presents the results for 100 ants under various 
number of iterations. 

Tables V and VI infer that changing the number of ants and 
iterations significantly impacts the simulation results. When 
the number of ants is 100, the shortest distance of path  
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(a) Path Map of ACO 

 
(b) Path Map of DERAACO 

Fig. 10. Drone Inspection Path Map 

 

 
Fig. 11. Convergence Results 

 
planning reaches the convergence value (3492.529 m), and 
the running time is 7.342 s, which has a higher solution 
quality than using a smaller number of ants (such as 30 or 50). 
At the same time, although a more significant number of ants  
(such as 150) can be used, the running time will increase 
significantly. When the number of iterations is 100, the 
shortest distance of path planning stabilizes (3492.529 m),  

 

TABLE VIII 
EXPERIMENTAL RESULTS OF DIFFERENT ALGORITHMS 

Algorithm Minimum 

distance/m 

Average 

distance/m 

Variance Running 

time /s 

ACO 3492.529 3517.673 2.777 9.386 

DERAACO 3492.529 3532.428 6.148 11.528 

IACO 3492.529 3502.509 1.281 6.199 

 
and the running time is 3.237 s. This setting provides a better 
path solution than a smaller number of iterations (such as 40 
or 60), while further increasing the number of iterations (such 
as 150 or 200) does not improve the path length but 
significantly increases Run time. Therefore, 100 iterations 
balance quality and computational efficiency. Hence, 
considering the solution quality and operation efficiency, the 
optimal settings are 100 ants and 100 iterations. 

Table VII presents the experimental results from 10 
independent runs of each algorithm, suggesting that the 
optimized path distance of the proposed algorithm is shorter 
than that of the genetic algorithm, demonstrating the 
superiority of our method. Regarding the running time of 
each algorithm, superiority of our method. The proposed 
algorithm exhibits significantly improved computational 
efficiency compared to traditional genetic algorithms, 
achieving faster execution times while maintaining solution 
quality. Furthermore, the running highlights that the 
proposed algorithm consistently produces the same results, 
whereas the genetic algorithm shows some variability, 
indicating better stability for the proposed algorithm.  

ACO and DERAACO are compared with IACO to verify 
the optimization performance further. The best inspection 
path is depicted in Fig. 10, with Fig. 10(a) and Fig. 10(b) 
presenting the ACO and DERAACO path planning results, 
respectively. The convergence results are illustrated in Fig. 
11. It can be observed that all algorithms exhibit a decreasing 
trend in path length as iterations increase, demonstrating their 
ability to optimize the solution over time. Among the three, 
IACO consistently achieves the shortest path length and 
converges faster than the other methods. ACO performs 
moderately, while DERAACO provides intermediate results, 
indicating a balance between optimization speed and solution 
quality. 

In the simulation experiment, the three algorithms are 
executed 20 times, and the minimum value, average value, 
variance, and running time of the above results are used for 
comparison. The corresponding results are reported in Table 
VIII, highlighting that IACO has better optimization ability. 
Its minimum and average values and variance are the smallest, 
indicating that IACO has better stability than ACO and 
DERAACO. In general, the solution quality of the developed 
IACO algorithm is the best, and its running time is also better  
than ACO and DERAACO. Thus, it can effectively improve 
the comprehensive optimization performance of solving 
power inspection problems. 
 

V. CONCLUSION 
This study has demonstrated the effectiveness of the 

proposed inspection system model and the improved ant 
colony optimization algorithm (IACO) in addressing the 
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challenges of power inspection. By integrating an advanced 
obstacle avoidance strategy with the IACO algorithm, the 
framework offers a reliable and effective solution for 
optimizing path planning in intricate power grid 
environments. IACO introduces a multi-path selection 
mechanism and elite strategy, and its performance is 
evaluated through effectiveness verification. Combined with 
practical inspection, the constraint conditions in an 
inspection are studied, and the mathematical model and 
objective function are established. The simulation 
experiments are carried out in 20×20 grid environments, and 
the actual transmission towers are considered the 
experimental objects. The performance of the proposed 
algorithm is validated through experimental simulations 
conducted in MATLAB. 

To validate its outstanding performance in power 
inspection path planning, IACO is challenged against several 
advanced algorithms, including the original ACO, dynamic 
evaporation rate adaptive ant colony optimization 
(DERAACO), A* algorithm, and genetic algorithm. The 
comprehensive statistical analysis shows that IACO provides 
superior path-planning solutions, offering benefits in terms of 
path length, convergence rate, and number of turns. 

Thus, the proposed algorithm demonstrates an appealing 
performance in power inspection path planning in complex 
environments. Future works will focus on improving 
path-planning techniques and inspection efficiency. IACO 
provides theoretical guidance for the power company in 
formulating inspection plans. 
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