
 

  

Abstract—With the development of artificial intelligence, 

deep learning has been increasingly used to achieve automatic 

detection of geographic information, replacing manual 

interpretation and improving efficiency. However, remote 

sensing images themselves have the issue of slight inter-class 

variance and significant intra-class variance, making it 

challenging to extract valuable information. Additionally, the 

increasing resolution and size of remote sensing images in 

recent years have introduced more complexity in the types of 

information, further increasing the difficulty of extracting 

valuable data. This paper proposes an improved Unet semantic 

segmentation network (referred to as RAUnet). First, in the 

encoder, continuous convolutional blocks are enhanced to 

extract features. At the same time, the EMAM multi-scale 

attention module is employed for cross-channel learning, 

capturing information from different feature channels of the 

target and using the surrounding feature information to assist 

in distinguishing target information. To capture 

multi-directional long-range dependencies, the Lo2 module is 

used for long-range modeling, which captures not only local 

contextual information but also long-range dependencies. In the 

decoder, a Dysample upsampling module is used to restore 

feature details, and in the skip connection layer, features are 

added for feature fusion. Experimental results show that 

compared to mainstream models, the proposed method achieves 

superior segmentation results on the Potsdam and Vihingen 

datasets. 

 
Index Terms—Attention Mechanisms, Deep Learning, 

Remote Sensing Images, Semantic Segmentation. 

 

I. INTRODUCTION 

N recent times,  an increasing number of satellites capable 

of capturing high-resolution images have been launched, 

allowing researchers to easily access a vast amount of 

high-quality remote sensing imagery. Surface information 

extracted from high-resolution remote sensing images plays a 

crucial role in land planning, construction, disaster 

prevention, and other fields. However, semantic 

segmentation of remote sensing images is often affected by 

the inherent characteristics of the images themselves, such as 

the complexity of ground objects, scale variability, 

occlusions, noise, and class imbalance, which can lead to 

poor segmentation results. Therefore, how to accurately and 

efficiently extract useful information from complex 
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high-resolution remote sensing images has become a key 

focus of remote sensing image analysis. 

Traditional semantic segmentation methods mainly 

include edge-based segmentation, region-based segmentation, 

threshold-based segmentation, and segmentation based on 

specific theories. These methods primarily rely on shallow 

semantic information such as color, texture, and gradients. 

While they perform well in extracting low-level semantic 

information, they struggle to meet the precision and 

efficiency requirements of modern intelligent remote sensing 

image analysis under more complex conditions. 

Recently, the swift advancement in deep learning 

techniques has offered innovative support for image analysis. 

The advancements in convolutional neural networks (CNNs) 

have brought significant progress in computer vision, 

prompting researchers to develop the first end-to-end fully 

convolutional network (FCN) based on these principles. By 

substituting the completely connected layer in CNNs with 

convolutional layers, the FCN allows for handling input 

images of varying dimensions and has demonstrated 

encouraging performance. In the subsequent development, 

the encoder-decoder structure demonstrated strong 

capabilities and gradually became the mainstream network 

structure for semantic segmentation. In this structure, the 

encoder extracts feature information, and the decoder 

integrates and reconstructs different semantic features. For 

example, Unet uses skip connections in the encoder phase to 

integrate features, capturing more semantic information and  

 

 
 

Fig. 1.  Challenges in remote sensing images, including 

material color similarity and occlusion 
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improving segmentation accuracy, while the DeepLab series 

employs the atrous spatial pyramid pooling (ASPP) module 

for multi-scale feature extraction, and the encoder integrates 

these different scales of feature information for 

segmentation. 

However, the inherent characteristics of remote sensing 

images, such as small inter-class variance, large intra-class 

variance, small object scales, scattered information, and 

occlusions, pose significant challenges to remote sensing 

semantic segmentation, as shown in Figure 1. CNN-based 

models, as the convolutional process continues, tend to lose 

small object information and blur object boundaries. 

Different ground semantic classes may share similar sizes, 

shapes, and colors, making segmentation difficult. Thus, rich 

contextual information and spatial features are needed for 

inference. CNNs succeed due to their inductive biases, but 

they also have limitations, particularly in capturing global 

context due to their localized nature. This is especially 

problematic in remote sensing semantic segmentation, where 

the useful information in remote sensing images is often 

scattered. Relying solely on CNN’s local windows to extract 

information is clearly insufficient. We can often derive 

valuable information from the background of a target, as the 

environment surrounding the target is typically correlated 

with it. 

With the success of Transformer on natural language, new 

ideas have been opened up for global relational modeling in 

the field of computer vision. ViT has surpassed mainstream 

CNN models in one fell swoop by virtue of its ability to 

extract global contextual information and its ability to model 

remote dependencies. Hlts, ignoring the image Transformer 

is originally designed for 1D results, ignoring the structure of 

2D images, and does not have the inductive bias of CNNs, 

which leads to the fact that Transformer needs more training 

data to gowever, the current ViT still has deficiencies. The 

Transformer is designed based on the self-attention 

mechanism, and its computational complexity is quadratic 

with the size of the image, especially in the intensive 

prediction task of high-resolution remote sensing images; its 

computational complexity with a large-size image input is 

unacceptable. Transformer is initially designed for the input 

of the 1D resuet a better result; Transformer only focuses on 

spatial properties and ignores channel features, and often 

different channels contain important semantic information as 

well. 

In order to address the above problems, this paper proposes 

a new network model structure, which is an Unet-like 

encoder-decoder structure, CNN used in the first three layers 

of the network's encoder, feature excitation module and Lo2 

module used in the fourth layer of the encoder-decoder and 

bottleneck layer, and DySample module used in the decoder 

to perform the up-sampling, and the jump-junction layer to 

perform the feature fusion. Specifically, in remote sensing 

images, the feature information always appears in a specific 

environment; we use the multi-scale attention module in the 

third layer of the encoder so that the network can also capture 

the practical information of different feature channels; the 

information always appears sporadically in remote sensing 

images, and the range of information read by the local 

convolution is limited, so in the stage of encoding area, we 

use the global local module (Lo2) to extract the global 

contextual information; Facing the problem that small target 

information is easily lost during the convolution process, the 

encoder features of the same scale of the jump connection 

layer fusion module are used for information enhancement, 

and the fusion of low-level and high-level semantic 

information is used to assist in the segmentation of small 

targets. 

II.  RELATED WORK 

A. CNN-Based Semantic Segmentation for Remote Sensing 

Images 

With the promotion of various remote sensing image 

recognition competitions, CNN-based remote sensing image 

semantic segmentation has received widespread attention. 

Convolutional networks (CNNs) can effectively extract 

image features and perform precise pixel-level segmentation. 

Various model architectures, including fully convolutional 

networks, encoder-decoder models, and networks utilizing 

dilated convolutions, have gained significant popularity in 

semantic segmentation. In their analysis, Zhao et al. [1] 

investigated the use of convolutional neural networks (CNNs) 

for semantic segmentation. Subsequently, they integrated 

Conditional Random Fields (CRFs) to capture the 

relationships among the identified semantic regions. D 

Marcos et al. [2] A novel CNN architecture named the 

Rotation Equivariant Vector Field Network (RotEqNet) was 

introduced to embed rotational invariance directly within the 

network structure. Drawing inspiration from the UNet 

architecture, researchers Dong et al. [3] introduced 

DenseU-Net. This model emphasizes integrating features at a 

smaller scale through a tightly-knit fusion approach. K 

Nogueira et al. [4] employed a paradigm incorporating 

multiple contexts and training networks with various patch 

dimensions to allow the system to extract diverse contextual 

features from differing environments. As the network 

evaluates these varied patch sizes, it assigns scores to each, 

aiding in identifying the most suitable size for the problem at 

hand. Zhang et al. [5] To enhance the embedding of 

contextual information, multi-scale feature maps were 

produced by parallel convolutional structures organized in 

distinct branches of HRNet. At the same time, an adaptive 

spatial pooling module was crafted to consolidate more 

localized context information. Chen et al. [6] introduced a 

convolutional network with an adaptive receptive field, 

effectively balancing extracting features related to large and 

small-scale objects. The study known as FactSeg [7] 

introduced a dual-branch decoder with a symmetrical 

structure, consisting of a branch for foreground activation 

and another for enhancing semantics, which together utilize 

multi-scale feature integration via skip connections to boost 

the precision of segmenting small objects in remote sensing 

images. 

 

B. Attention Mechanism 

In recent years, self-attention mechanisms have been 

widely applied in computer vision tasks. Zhao et al. [8] 

proposed region-level attention to encode visual-text features 

in video captioning. SENet [9] uses a global average pooling 

layer to represent the relationships between channels, 

automatically learning the importance of different channels. 

ECA-Net [10] improves SENet by avoiding dimensionality 

reduction and introducing appropriate cross-channel 

interaction to enhance segmentation accuracy. CBAM [11] 

combines channel-level attention and spatial-level attention 

for adaptive feature refinement. LANet [12] developed
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Fig. 2.  Network architecture diagram 

an attention-based module focusing on key feature map areas. 

The approach in MANet [13] focuses on capturing contextual 

relationships via various efficient attention mechanisms. It 

introduces a unique kernel attention method characterized by 

its linear complexity, which reduces the computational 

burden typically associated with attention mechanisms. Hou 

et al. [14] considered the information present across different 

channels and factors related to orientation and spatial 

position, thereby enhancing the model's capability to identify 

and locate objects precisely. Su et al. [15] examined groups 

of similar items within limited sets of images, employing a 

focused attention mechanism to discern distinctive features 

of comparable items from other images in the limited set. 

 

C. Vision Transformer 

In recent years, Transformer models have demonstrated 

powerful performance in the field of computer vision. 

Notably, the introduction of Vision Transformer (ViT) [16], 

which successfully applied the Transformer architecture to 

image classification tasks, has since sparked widespread 

research in image segmentation. For remote sensing image 

semantic segmentation, researchers have proposed various 

Transformer-based models. For example, SegFormer [17] 

uses a Transformer encoder to capture global contextual 

information of the image and generates high-quality 

segmentation results through a lightweight decoder. The 

design of SegFormer balances efficiency and accuracy, with 

the encoder effectively extracting multi-scale features and the 

decoder generating detailed segmentation maps through 

simple layer-by-layer upsampling and fusion operations. 

Additionally, the Swin Transformer [18] improves the 

model’s efficiency and segmentation accuracy by dividing 

the input image into several non-overlapping windows and 

applying the self-attention mechanism within each window to 

extract features. Then, through shifting and merging 

windows, it captures global features. This method reduces 

computational complexity while retaining the advantage of 

Transformers in capturing long-range dependencies. 

Furthermore, TransUNet [19] combines the strengths of 

UNet and Transformer, using CNN to extract local features 

and enhancing the ability to model global features through 

the Transformer module. The encoder part of TransUNet 

employs standard convolution operations to extract 

multi-scale features. At the same time, the decoder 

incorporates Transformer modules to capture long-range 

dependencies between features, thereby improving 

segmentation performance. He et al. [20] embedded the Swin 

Transformer into a dual-branch structure in CNN’s Unet to 

capture both global and local contexts. These 

Transformer-based models have performed exceptionally 

well in remote sensing image semantic segmentation tasks, 

significantly enhancing both segmentation accuracy and 

efficiency. 

III. THEORY AND METHODOLOGY 

A. Network Model Overview 

The structure of our network is shown in Figure 2, which 

continues to follow the classic encoder-decoder and skip 

connection design of UNet. The encoder and decoder each 

consist of four downsampling and DySample modules for 

upsampling. The first two layers of the decoder retain the 

same structure as the original UNet, where each layer 

contains two standard convolution blocks. In the third layer 

of the encoder, a multi-scale attention module (EMAM) is 

employed to capture information across spatial dimensions 

and different channels. In the fourth layer of both the encoder 

and decoder, the feature excitation module and Lo2 module 

are applied. The feature excitation module handles feature 

channel compression and expansion, while the Lo2 module 

captures dependencies between global and local contextual 

information. The decoder employs a highly efficient dynamic 

sampling mechanism (DySample) for upsampling. Skip 

connections use additive fusion to combine features from the 

encoder at the same scale. Finally, the primary segmentation 

head at the last layer of the encoder generates the main
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Fig. 3.  Structural design of EAMA and EMA modules; (a) EAMA module; (b) EMA module as a sub-component of EAMA 

 

output, which is used to compute the primary loss. An 

auxiliary segmentation head is applied in the penultimate 

layer of the encoder to assist the network in improving 

segmentation accuracy. The following sections provide a 

detailed explanation of each module. 

 

B. EMAM Module 

In computer vision tasks, channel and spatial attention 

mechanisms are effective in generating more distinguishable 

feature information. To balance the network's segmentation 

accuracy and parameter count, we use two consecutive 

multi-scale attention modules (EMAM) only in the third 

layer of the network encoder. The EMAM module enhances a 

residual network block. Figure 3 (a) shows the overall 

structure of EMAM. The input feature X  first passes 

through a 3 3  convolution, batch normalization (BN), and 

ReLU activation layer. It is then processed by another 3 3  

convolution, BN layer, and EMA [21] attention layer, as 

shown in Figure 3 (b). Finally, a residual connection is 

applied with the original features, followed by a ReLU 

activation output, as expressed in Formula 1. 

 ,( ) ( ( onv ( ( ))) )BN BN RELUEMAM X RELU EMA C Conv X X= +  (1) 

For any input feature
C H WX R   , the EMA (Efficient 

Multi-scale Attention) mechanism partitions X  along the 

channel dimension into G  groups of sub-features, as 

expressed by Formula 

0 1 1[ , ,..., ]GX X X X −= ， / /C G H W

iX R   . 

The parallel network structure effectively avoids extensive 

sequential structures and deep networks. Aftergrouping, two 

parallel 1 1  branches and one parallel 3 3  branch are used 

to capture dependencies across all channels. The two 1 1  

branches employ 1D  global average pooling in both 

horizontal and vertical directions to facilitate cross-channel 

information interaction. Their outputs are concatenated along 

the height dimension and undergo a 1 1  convolution to 

generate two vectors. After linear convolution, two Sigmoid 

functions approximate a 2D  binary distribution. Matrix 

multiplication is applied to fuse features across different 

channels to promote cross-channel interaction between the 

parallel paths further. The 3 3  branch captures local 

cross-channel information through 3 3  convolution, 

preserving accurate spatial structure in the channels. To 

aggregate cross-spatial information from different spatial 

dimensions, the outputs of the 1 1  and 3 3  branches 

undergo 2D  global average pooling and Softmax 

normalization. Subsequently, the features from the 1 1  

branch and the 3 3  branch before pooling are multiplied 

and summed together. A Sigmoid function is then used for 

fitting. Finally, the output is multiplied with the original input 

X  divided into G  groups of sub-features, resulting in an 

output with the same dimensions as X . This mechanism 

enhances the network's ability to capture diverse channel and 

spatial features. 

 

 
 

Fig.4.  Lo2 module 
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C. Lo2 Module 

In high-resolution remote sensing urban images, 

complexly shaped artificial objects frequently appear, 

making it challenging to achieve precise semantic 

segmentation without global context information. The Lo2 

[22] module, as shown in Figure 4, consists of a global 

branch (DOR-MLP) and a local branch (DSC). This module 

uses a combination of CNN and MLP to capture both global 

and local contextual semantic information from feature 

images. In the global branch, we employ two parallel 

OR-MLP modules to capture the global context. To enhance 

performance, we use Depthwise Separable Convolution 

(DSC) to capture local information. As illustrated in Figure 4, 

the DOR-MLP and DSC modules are run in parallel. Their 

outputs are concatenated along the channel dimension, and 

then a channel mixing calculation is applied to reduce the 

channels to C . This process constitutes the Lo2 module, as 

expressed in Formula 2. 

 Lo2( ) ( [ ( ), ( )])DORX CM Concat MLP X DSC X=  (2) 

 

 
Fig. 5.  Rolling operation 

 

R-MLP Module 

Given a feature matrix X H W C    with spatial 

resolution H W , feature channels C , height index  

( [1, ])ih i H , width index ( [1, ])jw j W , and depth 

index ( [1, ])kc k C , we perform a Rolling operation on 

each channel layer of the feature matrix. The Rolling 

operation consists of two steps: displacement and cropping. 

First, for the feature map at channel index kC , we apply a 

rolling operation with a step size of k . Then, we crop the 

feature map to remove excess parts and fill in the missing 

areas. Assuming the feature matrix is denoted as 

, , (3,3,3)C H W = , as shown in Figure 5, a Rolling 

operation with a step size of 2 is performed along the height 

direction for channel 2C = , and a Rolling operation with a 

step size of 3 is performed along the width direction for 

channel 3C = . Finally, the feature matrix is adjusted to 

( , )X H W C  , and a weight-shared channel projection 

is executed at spatial positions ( , )i jh w  to capture contextual 

semantic information. 

DOR-MLP Module 

An R-MLP module can encode long-range dependencies 

either along the height or width direction. By first applying 

R-MLP along the height direction and then applying another 

R-MLP along the width direction, we form a diagonal 

receptive field that captures feature information from 

different positions. For the input X  (as expressed in Formula 

3), we first apply R-MLP in one direction, followedby GELU 

activation. Next, we apply another R-MLP in the 

perpendicular direction and perform a residual connection 

with the input X . This process creates a Diagonal-Oriented 

R-MLP (OR-MLP) module, as illustrated in Figure 6. 

 

 
Fig.6.  Controlling of different R-MLP to capture remote 

dependencies in different directions 

 

 2 1( ) ( ( ( ( ))))ORMLP X RMLP GELU RMLP X X= +  (3) 

To capture long-range dependencies in different directions, 

we use two parallel and complementary OR-MLP modules. 

The first module applies R-MLP from left to right and then 

from top to bottom. The second module applies R-MLP from 

bottom to top and then from left to right. This parallel design 

enables long-range information exchange in four directions: 

width, height, and both positive and negative diagonals. The 

input X (as shown in Formula 4) is fed into two parallel 

OR-MLP modules operating in different directions. The 

outputs of these two modules are then concatenated along the 

channel dimension. Standard normalization (LayerNorm) 

and channel mixing are applied to reduce the number of 

feature channels back to C . Finally, a residual connection is 

made with the input X , forming the Dual-Oriented 

Rolling-MLP (DOR-MLP) module, as illustrated in Figure 7. 

 1 2( ) ( ( [ ( ), ( )]))DORMLP X CM LN Concat RMLP X RMLP X X= + (4) 

 

 
Fig.7.  DOR-MLP module 
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D. DySample Upsampling Module 

Feature upsampling is a critical factor in gradually 

restoring feature resolution in dense prediction models for 

remote sensing images. In semantic segmentation networks, 

the most commonly used upsamplers are nearest-neighbor 

and bilinear interpolation. However, these methods follow 

fixed rules for interpolation and may not be well-suited for 

complex tasks in remote sensing image segmentation. The 

DySample [23] module adopts a dynamic upsampling 

method using point sampling. As illustrated in Figure 8, a 

simple dynamic upsampling process is shown. It involves a 

feature map X  with dimensions 1 1C H W   along with a 

sampling set S  that measures 2 22 H W  . This 

grid_sample function leverages the coordinates from S  to 

interpolate the feature map X  into 'X , resulting in 

dimensions of 2 2C H W  . As shown in Equation 5. 

 _ ( , )X grid sample X S =  (5) 

 

 
 

Fig.8.  Sampling based dynamic upsampling 

 

Considering a feature map X  and a specified upsampling 

factor s , a fully connected layer featuring input and output 

dimensions of C  and 
22s , respectively, produces an offset 

O  of dimensions 
22s H W  . It undergoes a pixel 

transformation to reshape into dimensions of 2 sH sW  . 

The new sampling set S  is created by adding the original 

sampling grid G  to the offset O . If all sampling positions 

are fixed at the same initial position, the spatial relationships 

will be ignored. We change the initial positions to "bilinear 

initialization," separating the initial positions so they are 

evenly distributed. In this case, zero offset results in bilinear 

interpolation of the feature map. Due to the presence of the 

normalization layer, the sampling positions might overlap in 

their movement range, which affects the predictions near 

boundaries. To alleviate this, we multiply the offset by 0.25 

to constrain the movement range of the sampling positions. 

Additionally, we divide the feature map into g groups along 

the channel dimension, generating g groups of offsets such 

that the features in each group share the same sampling set. 

As shown in Figure 9, this process is defined by the 

following equation 6 and equation 7. 

 

 
 

Fig.9.  Sampling point generator in DySample 

 

The process is defined by the following formula: 

 0.25 ( )O Linear X=  (6) 

 S G O= +  (7) 

The reshaping operation is omitted, and the upsampled 

feature map 'X  with a size of C sH sW   can be 

generated using grid_sample. as shown in Equation 5. 

IV. EXPERIMENT PROCESS AND RESULTS ANALYSIS 

A. Experimental Data 

The Vaihingen dataset, provided by ISPRS, includes 33 

high-resolution ground images with a sampling distance of 9 

centimeters. These images cover an area of 1.38 square 

kilometers in Vaihingen, Germany, including a small village, 

multiple individual buildings, and multi-story buildings. The 

dataset is annotated with 6 categories for semantic 

segmentation research: impervious surfaces, buildings, low 

vegetation, trees, cars, and background. We divided the 

dataset into 16 images for training, with image IDs 1, 3, 5, 7, 

11, 13, 15, 17, 21, 23, 26, 28, 30, 32, 34, and 37, and the 

remaining 17 images for testing. Only RGB images are used 

for training and testing, and these original images are 

cropped to 512x512 pixels. 

The Potsdam dataset, also provided by ISPRS, includes 

38 high-resolution ground images of 6000×6000 pixels, with 

a sampling distance of 5 centimeters. These images cover an 

area of 3.42 square kilometers in the city of Potsdam, 

including numerous building clusters, narrow streets, and 

dense cluster structures. The dataset is annotated with 6 

categories for semantic segmentation research: impervious 

surfaces, buildings, low vegetation, trees, cars, and 

background. We divided the dataset into 14 images for 

testing, with image IDs 2_13, 2_14, 3_13, 3_14, 4_13, 4_14, 

4_15, 5_13, 5_14, 5_15, 6_13, 6_14, 6_15, and 7_13, and 

the remaining 24 images for training. Only RGB images are 

used for training and testing, and these original images are 

cropped to 512x512 pixels. 
 

TABLE I 

ABLATION EXPERIMENTS ON THE POTSDAM DATASET 

Model 
IoU Evaluation index 

Impervious Surface Building Low Tree Car mIoU aAcc 

Baseline 77.87 84.12 67.61 70.23 76.4 75.24 78.56 

Baseline+Lo2 80.3 86.76 70.63 73.11 79.41 78.04 80.39 

Baseline+Lo2+EMAM 81.01 87.45 71.43 73.39 79.33 78.52 80.8 

Baseline+Lo2+EMAM+Dysample 81.22 87.75 71.42 73.35 80.03 78.75 81.83 
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B. Experimental Settings 

The experiments in this study are conducted on an 

NVIDIA GeForce GTX 3090 GPU (24GB memory) using a 

Python deep learning framework. The training input images 

are 3-channel 512×512 pixels, with a batch size set to 8 and 

the training run for 100 epochs. The initial learning rate is set 

to 0.01, and the SGD optimizer is used with a momentum of 

0.9 and a weight decay of 0.0005. Additionally, image 

scaling and flipping augmentation techniques are applied 

during the training process. 

 

C. Loss Function 

In different datasets, class imbalance leads to model 

training being concentrated on the classes with larger 

proportions, while "ignoring" the classes with smaller 

proportions. During the training phase, we use not only the 

main feature refinement head but also construct an additional 

auxiliary head to assist in optimizing the network, as shown 

in Figure 2. Previous research has demonstrated the 

effectiveness of such a multi-head segmentation architecture. 

Based on this multi-head design, we train the entire network 

using the main loss 
pL  and the auxiliary loss auxL .  

Both the main loss and auxiliary loss utilize a combined 

loss function that includes cross-entropy loss and Dice loss. 

The cross-entropy loss and Dice loss are defined by Formula 

8 and Formula 9, respectively. 

 
( ) ( )

1 1

1
ˆlog

N K
n n

CE k k

N K

L y y
N = =

= −   (8) 

 

( ) ( )

( ) ( )1 1

ˆ2
1

ˆ

n n
N K k k

dice n nn k
k k

y y
L

N y y= =
= −

+
   (9) 

Where N  and K  denote the number of samples and the 

number of classes, respectively, ( )ny and ( )ˆ ny  represent the 

one-hot encoded ground truth labels and the corresponding 

softmax outputs from the network, respectively, and 

[1,..., ]n  N and ( )ˆ n

ky represent the confidence scores of 

sample n  belonging to class k . The combined loss for the 

main loss is defined by Formula 10. 

 p ce diceL L L= +  (10) 

Thus, the overall total loss can be represented by Formula 

11, where   is set to 0.4 in this experiment. 

 p auxL L L= +   (11) 

D. Evaluation Metrics 

To evaluate our model's performance on the Potsdam and 

Vaihingen datasets, we adopt Intersection over Union ( IoU ), 

Mean Intersection over Union ( MIoU ), and Overall 

Accuracy ( aAcc ) as evaluation metrics. The IoU  

calculation method is the ratio of the intersection (the 

overlapping part between the prediction and the ground truth) 

to the union (the combined part of the prediction and ground 

truth), as shown in Equation (12). MIoU  is the average of 

the IoU  values for all classes. aAcc  represents the overall 

average accuracy, as shown in Equation (13). In these 

equations, TP, FP, and FN represent True Positives, False 

Positives, and False Negatives, respectively, while C 

represents the total number of classes. 

 
TP

IoU
TP FP FN

=
+ +

 (12) 

 

C

1

1

aAcc=
( )

ii

C

i ii

TP

TP FN

=

=
+




 (13) 

 

E. Ablation Study 

To validate the effectiveness of each module, we 

conducted a series of evaluations using UNet as the baseline 

model on the Potsdam dataset, as shown in Table Ⅰ. The 

addition of the Lo2 module to the baseline network yields the 

highest improvement in performance. The EMAM and 

DySample modules are built upon the Lo2 module, with the 

EMAM module providing better overall segmentation 

performance compared to the DySample module. However, 

both modules positively impact the network. The 

experiments demonstrate that each module effectively 

enhances the segmentation accuracy of the network. 

F. comparative experiment 

To further demonstrate the superiority of our model, we 

compared different network architectures on the Potsdam and 

Vaihingen datasets and visualized the experimental results. 

The comparison experiments conducted on the Potsdam 

dataset are shown in Table Ⅱ. Table Ⅱ lists the mIoU , Ave 

1F , and IoU values for each category of each model. 

Compared to other advanced semantic segmentation 

networks, the proposed RAUnet outperforms other classic 

segmentation models overall. It achieves an 

mIoU improvement of 4.08%, 0.95%, 0.73%, 3.8%, and 

3.83% over Pspnet, UNet++, Danet, Deeplabv3+, and 

UNetformer models, respectively. Additionally, it leads in 

Ave 1F by 3.9%, 4.1%, 1.13%, 4.12%, and 3.95%, 

respectively. Figure 10 shows the segmentation results of 

different models on the Potsdam dataset. 

 

TABLE Ⅱ 

COMPARISON OF EXPERIMENTS ON THE POTSDAM DATASET 

Model 
IoU Evaluation index 

Impervious Surface Building Low Tree Car MIoU aAcc 

Pspnet 78.49 83.84 68.16 68.11 74.74 74.67 77.39 

Unet++ 79.77 85.85 69.68 73.32 80.39 77.8 77.73 

Danet 81.08 86.91 72.23 73.67 76.24 78.02 80.7 

Deeplabv3+ 79.15 86.5 68.26 67.93 72.92 74.95 77.71 

Unetformer 78.72 86.06 68.15 67.2 74.51 74.92 77.88 

Ours 81.22 87.75 71.42 73.35 80.03 78.75 81.83 
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TABLEⅢ 

COMPARISON EXPERIMENTS ON THE VAIHINGEN DATASET 

Model 
IoU Evaluation index 

Impervious Surface Building Low Tree Car MIoU aAcc 

Pspnet 72.79 74.82 62.05 73.72 28.33 62.34 64.79 

Unet++ 79.66 84.54 67.83 79.14 53.78 72.99 69.18 

Danet 74.8 77.14 60.75 72.49 31.98 63.43 63.61 

Deeplabv3+ 74.49 76.63 58.56 72.1 29.86 62.32 63.54 

Unetformer 74.7 78.91 62.66 74.29 28.39 63.79 62.48 

Ours 80.95 84.53 68.4 78.3 47.9 72.01 70.43 

 

Fig.10. Segmentation results on the Potsdam dataset 

 
Fig.11. Segmentation results on the Vaihingen dataset
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The comparison experiments conducted on the Vaihingen 

dataset are shown in Table Ⅲ. Table Ⅲ lists the mIoU , Ave 

1F , and IoU  values for each category of each model. 

Compared to other advanced semantic segmentation 

networks, the proposed RAUnet outperforms other classic 

segmentation models overall. It achieves an mIoU  

improvement of 9.67%, -0.98%, 8.58%, 9.69%, and 8.22% 

over Pspnet, UNet++, Danet, Deeplabv3+, and UNetformer 

models, respectively. Additionally, it leads in Ave 1F  by 

5.64%, 1.25%, 6.82%, 6.98%, and 7.95%, respectively. 

Figure 11 shows the segmentation results of different models 

on the Vaihingen dataset. Overall, the proposed model 

demonstrates superior segmentation performance on both the 

Potsdam and Vaihingen datasets and shows strong 

competitiveness. 

V.  CONCLUSION 

With the advancement of artificial intelligence, intelligent 

image analysis can significantly alleviate the workload for 

practitioners. This is especially true in the field of remote 

sensing image analysis, which has garnered substantial 

attention. Intelligent analysis of remote sensing images can 

be applied to numerous real-world scenarios. Significant 

progress has been made in the semantic segmentation of 

remote sensing images using deep learning, with 

improvements in segmentation accuracy and efficiency 

achieved through the optimization of model algorithms, 

architectures, and prior information. However, 

high-resolution remote sensing images present challenges 

such as sizeable intra-class variance, slight inter-class 

variance, and the complex and varied structures of objects. 

This paper proposes a feasible solution to address these issues 

by improving the classic UNet network as the base model. To 

ensure the network captures information from different 

feature channels, we use the EMAM module to focus on 

channel-specific information. The Lo2 module is employed 

to model long-range dependencies in multiple directions 

while maintaining parameter efficiency, capturing both local 

context and remote dependencies. The Dysample upsampling 

module is used in the encoder to restore features and preserve 

spatial details. Experiments conducted on the Potsdam and 

Vaihingen datasets demonstrate that the proposed modules 

are practical and competitive compared to current 

mainstream models. 

Considering practical applications, especially deployment 

on mobile platforms, future work will focus on reducing 

model parameters and improving segmentation efficiency 

while maintaining segmentation accuracy. 
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