
Intelligent Tutoring System: A Pedagogical Model
Approach Based on Deep Reinforcement Learning

Fatema Alshaikh , Nabil Hewahi

Abstract—The primary goals of research in the fields of
Artificial Intelligence (AI) and Machine Learning (ML) are to
develop an autonomous agent that can perform tasks or make
decisions without human intervention. Deep Reinforcement
Learning (DRL) is a machine learning technique employed in
Intelligent Tutoring Systems (ITS). Deep reinforcement learning
is the integration of Reinforcement Learning (RL) and Deep
learning (DL) techniques. In ITS, DRL provides students with
individualized learning experiences based on their learning
styles and preferences. This work uses a deep reinforcement
learning architecture to build a pedagogical model for ITS.
We present four different models. The first model is based
on the Deep Q-Network (DQN) structure. The second and
third models (Double DQN and Dueling DQN) are extensions
of the DQN algorithm and have been further developed to
address some limitations of the DQN approach. Double DQN
solves the problem of overestimation of Q-values, while Dueling
DQN improves the representation of the value function. The
last proposed model is a hybrid model that combines the
standard DQN with a learning classifier system based on
Genetic Algorithms (GA). The findings of the study indicate
that both Double DQN and Dueling DQN showed complete data
efficiency with 100% accuracy, 1.0 F1 score, and 1.0 precision at
the highest training level of 1000 episodes and 10 steps, whereas
DQN performed fairly but was outperformed by advanced
techniques at the same configuration level. The standard DQN
achieves a precision of 0.975, an F1 score of 0.987, and an
accuracy of 98%. On the other hand, the hybrid approach,
which combines GA with DQN, consistently performed worse
than the other three individual models in all training setups.

Index Terms—Deep Q-Network, Deep Reinforcement Learn-
ing, Double DQN, Dueling DQN, Intelligent Tutoring System.

I. INTRODUCTION

THE field of Artificial Intelligence (AI) and education
aims to provide individualized, pedagogically sound,

and accessible lifelong educational material to learners. The
vision of AI in education is to create a ”teacher for every
student” or ”community of teachers,” transforming learning
into a social activity, incorporating multimodal input from
students, and supporting various teaching strategies like
collaboration, inquiry, and discussion [1]. Machine learn-
ing (ML) provides automated techniques that can discover
patterns in data and utilize them to accomplish specific
tasks. Reinforcement Learning (RL) is a machine learning
technique in which agents can gain knowledge through inter-
actions with an environment to optimize a cumulative reward.
RL depends on the principle of trial and error, in which the
RL agent can learn by executing a series of actions in an

Manuscript received September 20, 2024; revised February 22, 2025.
F. Alshaikh is a PhD candidate in the Computing and Information

Science program at the University of Bahrain, Bahrain. (e-mail: faal-
shaikh@uob.edu.bh)

N. Hewahi is a professor of computer science working at the University
of Bahrain, Bahrain. (e-mail: nhewahi@uob.edu.bh)

environment. The purpose is to acquire knowledge through
receiving feedback in the form of rewards or punishments.

Reinforcement learning has recently gained popularity
because it can effectively handle difficult sequential decision-
making challenges. Sequential decision-making is a funda-
mental concept in machine learning that helps determine
the best course of action to follow in an uncertain situation
to accomplish specific goals based on past experience. The
development of reinforcement learning is moving into an ad-
vanced chapter toward integration with Deep learning (DL).
Traditional reinforcement learning techniques are restricted
to simple decision-making problems and have constraints on
representing solutions. The development of deep learning
overcomes this restriction, and when combined with rein-
forcement learning, it gives more strength to RL applications
[2].

One application of reinforcement learning is Intelligent
Tutoring Systems (ITS). ITS are computer-based educational
systems that incorporate independent databases or knowledge
bases containing educational content and teaching strategies.
These systems can analyze the learner’s comprehension and
identify their strengths and weaknesses [3]. These systems
aim to adapt the learning process dynamically based on
this analysis. The ITS system consists of four fundamental
components: a pedagogical model, a student model, a knowl-
edge model, and a user interface [4]. The pedagogical model
provides a benchmark of expert performance against which
the learner’s performance is assessed. ITS employs dynamic
modeling techniques to simulate the learner’s behavior across
different situations or scenarios [5].

ITS mimics human tutors and aims to deliver immediate
customized instruction or feedback to learners, typically
without the need for teacher involvement [6]. It is a relevant
method for individualized learning and provides a tailored
educational experience for students [7]. The development of
deep reinforcement learning opened new avenues for improv-
ing ITS, allowing them to learn optimal policies for guiding
students through tailored learning pathways [1],[8]. There-
fore, the ability of Deep Reinforcement Learning (DRL)
algorithms to learn from interactions with the environment
improves the capacity of the pedagogical model in ITS to
model student behaviour to adapt to their individual needs
and optimize their tutoring process [9].

Deep Q-Network (DQN), Double DQN, and Dueling
DQN are three DRL algorithms that have gained significant
attention due to their performance in several applications.
The DQN algorithm is a milestone in utilizing deep neural
networks to estimate the Q-function, allowing DRL agents
to operate complex and high-dimensional environments effi-
ciently [10]. Double DQN and Dueling DQN are extensions
to the DQN algorithm that solve many problems and optimize
the performance of the standard DQN algorithm. Double

IAENG International Journal of Computer Science

Volume 52, Issue 4, April 2025, Pages 1196-1212

__

DQN solves the issue of overestimating the Q-values [11],
while the Dueling DQN aims to improve the representation of
the value function [12]. These developments have shown en-
hanced performance and increased data efficiency in several
fields, making them suitable for investigating their potential
in the field of intelligent tutoring systems [13].

While the applications of DRL algorithms have been
extensively studied and applied in various domains like
game playing [14], robotics [15], network intrusion detection
[16] and resource management [17], their uses in intelligent
tutoring systems are still mostly unexplored. Understanding
the relative strengths and weaknesses of deep reinforcement
algorithms, as well as their suitability for ITS, is crucial to
unlocking their full potential in enhancing personalized and
adaptive learning experiences [18]. This paper tries to fill
the gap in research by exploring the effectiveness of DRL
to enhance the pedagogical model in ITS and comparing the
performance of these algorithms within an intelligent tutoring
system context in detail, aiming to provide valuable insights
that guide the development and deployment of DRL-powered
ITS.

The primary contribution of this study is to propose four
different architectures based on deep reinforcement learning
algorithms to develop a pedagogical model in an intelligent
tutoring system and determine the most effective model for
students learning. The model improves the decision-making
skills of the ITS. Based on the student’s preferences, current
level of knowledge, and other factors, the model would
determine the most effective feedback from the teacher /ITS
to the student from a list of possibilities. Furthermore, the
study evaluates the effectiveness of the four proposed models,
DQN, Double DQN, Dueling DQN, and Genetic Algorithm
(GA) with DQN, where we explore the effect of GA on the
DQN model.

The plan of the work is as follows. It begins with an
introductory section that provides a framework for the topic
and highlights its importance and contributions. The next
section presents an overview of deep reinforcement learning
algorithms, followed by the literature review section. The
fourth section explains the four proposed models with the
pseudocode of the algorithms. The model evaluation is shown
in section five, while the experimentation and the paper’s
results are presented in section six. The discussion and the
conclusion with future works are covered in section seven
and eight respectively.

II. BACKGROUND

This section provides a brief overview of deep reinforce-
ment learning algorithms. Our main focus is on the Deep
Q-Network, a recent breakthrough with extensions (Double
DQN and Dueling DQN).

A. Deep Q-network (DQN)

Deep Q-network (DQN) is an extension of the Q-learning
algorithm. DQN is a combination of two parts: a class
of Artificial Neural Networks (ANNs) called Deep Neural
Networks (DNNs) [19], which are capable of processing
complicated environmental data, and a reinforcement learn-
ing part that analyzes these data and determines what should
be done next. DQN was developed in 2015 by Mnih et al.

[10]. The main idea of a deep Q-network is to use DNN
rather than Q-tables to estimate the Q-values, which indicates
the future expected reward for performing an action in a
specific state. The difference between Q-learning and deep
Q-network is clearly shown in Figure 1. In the Q-learning
algorithm, both the current state and action are taken as input
to calculate the Q-values for that state-action pair. In the
DQN algorithm, the inputs are the states, and the outputs are
the Q-values associated with all possible actions. The neural
network in DQN learns to estimate the Q-value function
directly by receiving only the current state as input. This
means that DQN is more computationally efficient than Q-
learning. It eliminates the need to calculate the Q-value for
each expected action in each state. Furthermore, in complex
problems in a real-world scenario, the number of states could
be large, making the creation of a Q-table very difficult.

Figure 2 shows the difference between Q-Learning and
DQN. An agent at every time step in a state s takes an action
a, receives a reward r, and transitions to the next state s′

from the environment. The agent attempts to learn a policy
or map the states to actions in the form of a Q-table, as
shown in Figure 2a, to maximize the rewards. However, in
many decision-making problems with high-dimensional state
space, we can use artificial neural networks instead of a Q-
table to predict values for actions in a given state, as shown in
Figure 2b. Once the AI agent has accumulated experience, it
should be capable of optimizing goals in the form of rewards.

B. DQN main components

The following are the deep Q-network major components
[20]:

• Environment: The DQN algorithm involves with an
environment which can be a task or problem that the RL
agent must solve. The environment provides the agent with
observations and rewards for taking suitable actions.

• Replay Buffer: The DQN algorithm involves a memory
called replay buffer to preserve past experiences. Every
experience is a tuple consisting of four elements: state,
action, reward, and next state. This tuple represents a single
transition from one state to another. Experiences are stored
in replay memory for random sampling to be used as input
data.

• Q Neural Network: The DQN algorithm utilizes a deep
neural network (Q-network) to approximate the Q-values
associated with each (state, action) combination. The Q-
network is the agent that learns to generate the optimal state-
action value. The architecture of the neural network consists
of the following layers [19]:

1. Input layer: This layer takes the state representation as
input. The dimensionality of the state space determines the
size of the input layer.

2. Hidden layers: These layers represent the links between
the input state and the Q-values for actions. The number of
layers depends on the nature and complexity of the problem.
One common activation function used in the hidden layers
is ReLU (Rectified Linear Unit).

3. Output layer: The output layer generates Q-values for
all possible actions in the specified state. The total number of
actions available in the environment sets the dimension of the
output layer. The output layer commonly employs a linear
activation function because it directly reflects the Q-values.

IAENG International Journal of Computer Science

Volume 52, Issue 4, April 2025, Pages 1196-1212

__

a3a2a1
.Q(s1,a3)Q(s1,a2)Q(s1,a1)s1
.Q(s2,a3)Q(s2,a2)Q(s2,a1)s2
.Q(s3,a3)Q(s3,a2)Q(s3,a1)s3
.

actions
states

b. Deep Q-learning

a. Q-Learning

Q-value (s,a1)

Q-value (s,a2)

Q-value (s,a3)
State s

State s

Action a

Q-value

Fig. 1. Q-Learning vs Deep Q-Learning.

Environment

a3a2a1
.Q(s1,a3)Q(s1,a2)Q(s1,a1)s1
.Q(s2,a3)Q(s2,a2)Q(s2,a1)s2
.Q(s3,a3)Q(s3,a2)Q(s3,a1)s3
.

actions
states

Agent

Take action a

Reward r

Next state 𝑠!

Environment

Agent

Take action a

Reward r

Next state 𝑠!

States

Output layer Input layerHidden layers

Q(s,a1)

Q(s,a2)

Q(s,a3)

Q(s,a4)

s1

s2

s3

a. Q-Learning

b. Deep Q-learning (DQN)

Fig. 2. Reinforcement learning vs Deep reinforcement learning.

The framework of the neural network used in DQN can
vary depending on the specific problem and the complexity of
the state space. For example, employing convolutional layers
for image-based inputs [21] or the integration of recurrent
layers for sequential data [22]. Moreover, advanced ap-
proaches such as dueling networks or prioritized experience
replay [23] can enhance the effectiveness and consistency of
the standard DQN in certain situations. However, the main
idea of the neural network is to receive the state as input and
produce the Q-value for each action as output.

• Target Neural Network: The target network (Q-target) is
a copy of the primary neural network with fixed parameters.
It estimates the target Q-values in DQN. The parameters of

the Q-network are copied over to the target network in the
training phase [23].

The DQN approach employs a deep neural network to
estimate the Q-values for the current state, a replay memory
buffer to store previous experiences, and a target network
that is identical to the main network to estimate the Q-
values for the next state. During the training phase, the
agent uses an exploration strategy known as epsilon-greedy
[24] to select an action. The epsilon value represents the
probability of selecting a random action versus selecting the
action with the highest predicted Q-value. The agent chooses
an action randomly with a probability of epsilon value and
selects the action with the greatest Q-value with a chance

IAENG International Journal of Computer Science

Volume 52, Issue 4, April 2025, Pages 1196-1212

__

of (1 - epsilon). Both networks use random batches from
the experience replay to calculate Q-values and then do the
backpropagation [25]. The Q-network trains by computing
the loss function using the predicted Q-values, the target
Q-values, and the observed reward from the data sample.
After several rounds of iterations, the Q-network directly
synchronizes its parameters with the Q-target, which is not
involved in the training process. To update the network, the
experience replay method [26] stores observed transitions for
a certain period and then takes a uniform sample from this
memory bank. The target network and the experience replay
significantly enhance the algorithm’s performance. Figure 3
illustrates the flow structure of the DQN algorithm.

Mathematically, a deep Q-network is represented as a
neural network that, for a given state s, produces a vector of
action values Q(s, a; θ), where θ represents the Q-network
parameters. The Q-target network is identical to the Q-
network, with parameters denoted by θ−.

However, its parameters are updated by copying the
parameters from the Q-network every t step, resulting in
θ−t = θt. Equation 1 defines the target value Y that DQN
uses, while Equation 2 displays the updated Q-values. The
loss function calculation in equation 3 uses the squared
difference between the target Q-value and the predicted Q-
value.

Y = r + γmax
a′

Q(s′, a′; θ−) (1)

where r represents the reward, γ indicates the discount factor,
and Q(s′, a′; θ−) denotes the Q-value for the next state s′

and the optimal action a′ with parameter θ−.

Q(s, a) = Q(s, a)+α
[
r + γmax

a′
Q(s′, a′; θ−)−Q(s, a; θ)

]
(2)

where r is the reward, γ is the discount factor, α is the
learning rate, Q(s, a) is the predicted Q-value for state s
and action a, Q(s′, a′) is the Q-value for the next state s′

and the optimal action a′ as computed by the target network.

Loss =
(
r + γmax

a′
Q(s′, a′; θ−)−Q(s, a; θ)

)2
(3)

where r+γmaxa′ Q(s′, a′) is the target Q-value and Q(s, a)
is the predicted Q-value.

To improve the performance and stability of the deep Q-
network, two extensions were proposed: the Double DQN
(DDQN) [11] and the Dueling DQN [12]. The following
subsections show the main concept and purpose of these
algorithms.

C. Double DQN

One issue with the DQN algorithm is the overestimation of
the Q-values. This problem refers to the tendency of the Q-
learning algorithm to overestimate the true future rewards,
particularly in the beginning stages of learning, when the
agent knows nothing about the environment. Selecting the
action with the highest Q-value can lead to overestimating
future rewards [27]. The maximum operator with environ-
mental noise and uncertainty might induce the algorithm to
choose the most optimistic Q-value estimate, resulting in an
upward bias in Q-value estimations.

Hasselt et al. [28] proposed Double DQN, a new version
of the DQN algorithm, to address the problem of Q-value

overestimation by splitting the max term in DQN into action
selection and action evaluation. The DQN algorithm employs
a single network for both action selection and evaluation,
whereas the Double DQN algorithm utilizes two distinct
networks: the main neural network for action selection and
the target network for action evaluation. So, only the target
is changes in Double DQN, as shown in equation 4.

Y = r + γQ(s′, argmax
a′

Q(s′, a′; θ); θ−) (4)

where r is the reward, γ represents the discount factor,
Q(s′, a′; θ−) is the Q-value for the next state s′ and the
optimal action a′ with parameter θ−.

Initially, the primary neural network (Q-network) selects
the optimal next action a′ from a range of potential actions.
After that, the target neural network (Q-target) evaluates this
action to determine its Q-value. Therefore, the evaluation
policy replaces the Q-network’s weights with the Q-target’s,
and it regularly updates the Q-target by copying parameters
from the Q-network. Using two separate networks reduces
the Q-value overestimation problem and improves the final
policy [29].

D. Dueling DQN

Dueling Deep Q-network architectures were proposed in
2016 by Wang et al. [12]. The main idea is to split the
network into two streams: the value stream (V), which
evaluates the value of a state regardless of actions taken, and
the advantage stream (A), which calculates the additional
value of a given action from a state compared to other
actions. Then, by combining the value and the advantage
streams, we can get the final Q-values. This change is
beneficial, as there are situations where knowing the exact
value of each action is unnecessary. In such cases, simply
learning about the state-value function will be enough. Figure
4 presents the differences between the neural networks of
standard DQN and dueling DQN.

How Dueling DQN integrates the value and advantage
streams is the key innovation. The aggregation is performed
in a manner that keeps the relative advantage of each action,
while also ensuring that the Q-values are based on the actual
value of being present in that state. One common way to
do this is to take advantage of each action and deduct its
mean or maximum from the advantage stream. In this way,
the Q-value is still determined by the value function.

The Q-value estimate may be obtained by using the two
aggregation techniques shown below: average advantage ag-
gregation, as shown in equation 5, and maximum advantage
aggregation, as shown in equation 6.

Q(s, a) = V (s) +

(
A(s, a)− 1

|A|
∑
a′

A(s, a′)

)
(5)

Q(s, a) = V (s) +
(
A(s, a)−max

a′
A(s, a′)

)
(6)

where Q(s, a) is the Q-value for state s and action a, V (s)
is the value function for state s, A(s, a) is the advantage
function, maxa′ A(s, a′) is the maximum advantage value
for all possible actions a′,

∑
a′ A(s, a′) is the sum of the

advantage values for all possible actions, |A| is the number
of possible actions.

IAENG International Journal of Computer Science

Volume 52, Issue 4, April 2025, Pages 1196-1212

__

Random
patch of the
experiences

Replay Buffer

< s1,a1,r1,s2 >

< s2,a2,r2,s3 >

……………..

……………..

Agent / Q-target-network
States

Output layer Input layerHidden layers

Q(s,a1)

Q(s,a2)

Q(s,a3)

Q(s,a4)

s1

s2

s3

Agent / Q-network States

Output layer Input layerHidden layers

Q(s,a1)

Q(s,a2)

Q(s,a3)

Q(s,a4)

s1

s2

s3

Copy every c steps

Environment

Compute
Loss Function

State s
e-greedy

action

reward

Store
transition

Start

gradient
descent

Predicted Q- value
Q(s,a)

Target Q-value
Q(s’,a’)

(s,a)

S’ r

Fig. 3. DQN flow structure.

A

V
States

Output layerInput layer

Hidden layers

Q(s,a1)

Q(s,a2)

Q(s,a3)

s1

s2

s3

s4

(V) Value fully connected
(A) Advantage fully connected

b. Dueling DQN architecture

States

Output layerInput layer Hidden layers

Q(s,a1)

Q(s,a2)

Q(s,a3)

s1

s2

s3

s4

a. Standard DQN architecture

Fig. 4. Neural network architecture vs Dueling neural network architecture.

Dueling DQN enhances learning efficiency by separating
state value estimation from action advantages, especially
when the action does not significantly affect the result. This
distinction allows the agent to focus on gaining a deeper

understanding of the significance of each state, resulting in
effective learning and improved policy-making.

III. RELATED WORK

Artificial intelligence has achieved significant advance-
ments in reinforcement learning (RL) throughout the past
century. The 1990s saw the introduction of deep learning
(DL) and the subsequent breakthrough of convolutional net-
works in computer vision. Early in the 2000s, researchers
combined deep learning neural networks with RL to cre-
ate a comprehensive framework called deep reinforcement
learning (DRL). This framework extended the capabilities
of human-level agents and autonomous systems. A large
and growing body of literature has investigated the effect of
deep reinforcement learning in intelligent systems, games,
robotics, and natural language processing.

Several comprehensive reviews have been published on
deep reinforcement learning. For instance, Mousavi et al.
[30] summarized various early RL algorithms with an
overview of fundamental and contemporary issues in rein-
forcement learning, covering core elements, important mech-
anisms, and applications. A survey by Wang et al. [31] clas-
sified the existing deep RL algorithms into three categories:
model-based methods, model-free methods, and advanced
RL methods. They examined some recent developments, such
as exploration, inverse RL, and transfer RL. In addition,
research in 2018 by Fenjiro and Benbrahim [32] delved into
the development timeline of reinforcement learning and deep
learning technologies, emphasizing powerful advancements
in these fields. Further, it discussed DRL’s current challenges,
real-world applications, and the hardware and frameworks
used. Arulkumaran et al. [33] presented a comprehensive
overview of the field, focusing on the promise of deep
reinforcement learning and its application in robotics.

A considerable amount of literature has explored the
potential of deep reinforcement learning in education. Reddy

IAENG International Journal of Computer Science

Volume 52, Issue 4, April 2025, Pages 1196-1212

__

et al. [34] and Li et al. [35] demonstrated the effectiveness
of DRL in adaptive learning systems. It assists in creating
individualized learning plans and optimizing student learning
material selection. Recently, Ruan et al. [36] supported
these findings, showing that deep reinforcement learning can
provide adaptive pedagogical support, particularly for lower-
performing students.

A range of studies have explored the use of deep rein-
forcement learning in intelligent tutoring systems [29], [37],
[38]. Ausin et al. [37] and Abdelshiheed et al. [29] highlight
the potential of DRL in inducing pedagogical policies and
providing metacognitive interventions, respectively. In Ausin
et al.’s work, a credit assignment problem was addressed
using DRL with Gaussian processes and adaptive pedagog-
ical tactics were induced using the DQN and Double DQN
algorithms. The main findings showed that combining the
DQN policy with inferred rewards outperformed the random
policy, especially for educators with high pre-test scores.
Abdelshiheed et al. compared the effectiveness of metacog-
nitive interventions for student learning using a Random
Forest Classifier (RFC) for static interventions and Deep
Reinforcement Learning (DRL) for adaptive interventions
on ITS. The result shows that, despite what the RFC said,
the DRL method offered adaptive interventions by using
Double DQN to avoid overestimation issues and keep the
focus on metacognitive interventions. In 2021, Subramanian
and Mostow [38] used DRL to train pedagogical policies
in ITS, achieving higher learning gains than traditional
methods. Furthermore, Paduraru et al. [39] developed the
Agent to Human Recommender System (AHRec) framework
to construct ITS using DRL techniques. Using texts, images,
and arrows, their proposed framework can provide students
with appropriate online suggestions from their teacher agents.

Other studies focus on exploration strategies and using
a tutor-student network to improve system performance.
Koroveshi and Ktona [24] focus on the ITS’s pedagogical
module by investigating different exploration strategies in
RL and comparing their performance during training and
testing phases. Their study [24] explored four methods:
random, greedy, epsilon-greedy, and Boltzmann. According
to the findings, the Boltzmann policy outperformed all other
strategies during the testing phase, showing efficient learning
and decision-making. One issue with using RL is that it
requires many iterations and data for effective training. On
the other hand, Zeng et al. [40] introduced a tutor-guided
policy that consists of tutor and student modules to accelerate
deep reinforcement learning. Their paper focuses on the
following algorithms: deep Q-learning, deep deterministic
policy gradient, asynchronous advantage actor-critic, trust
region policy optimization, and proximal policy optimization.
This approach [40] improves the ability to navigate by
offering more information, resulting in accelerated learning
and higher rewards. Another study by Markel Ausin [37]
focuses on assessing the impact of offline DRL on promot-
ing pedagogical policies in intelligent tutoring systems. Its
goal is to improve DRL algorithms so they work better in
educational environments. It tackled challenges such as de-
layed and noisy rewards, enhanced communication between
tutors and students, and improved policy generalizability and
transferability.

A number of authors have explored the integration of

genetic algorithms into deep reinforcement learning. In 2019,
research by Sehgal et al. [41] utilized a GA to optimize
parameters in the deep deterministic policy gradient algo-
rithm, leading to improved performance and faster learning
in robotic manipulation tasks. In 2021, Kryvenchuk et al.
[42] concentrate on selecting network hyperparameters and
model design to enhance model performance and decrease
development time. These works highlighted the potential of
genetic algorithms in enhancing the effectiveness of deep
reinforcement learning systems. In short, prior research has
shown the effectiveness of deep reinforcement learning al-
gorithms in various domains, like education. Moreover, most
researchers confirmed the ability of DRL to build an intelli-
gent tutoring system. However, DRL’s major contribution to
ITS has not yet been fully explored, and there has been a lack
of studies on creating a pedagogical strategy that improves
students’ learning efficiency.

IV. PROPOSED MODELS ARCHITECTURES

This section explains the main procedure for building
a pedagogical model for an intelligent tutoring system. It
describes the structure of four different proposed models
in detail. The first model is based on a DQN structure.
The second and third models are advanced versions of the
standard DQN, which solve some of the problems in DQN
(Double DQN and Dueling DQN). Fourth, we present a
hybrid approach integrating GA with DQN.

The primary goal of implementing those models is to de-
termine the most efficient strategies for decision-making by
identifying the best policies (tactics) to choose from various
options. For instance, the instructor, or ITS, may employ
these strategies to direct learners according to their responses
to certain challenges. This technique assists teachers /ITS in
providing students with optimal feedback, thus helping them
fix their errors and solve problems successfully. Therefore,
various tactics might have a substantial impact on students’
academic advancement.

The following outline is the main procedures for building
such models.

1. Determine the models dimensions
Initialize the model dimensions by determining the input

and output sizes. The input size is equal to the number of
states, and the output size is equal to the number of actions.

• States: We defined states as the problems that each
student must solve. We assigned six problems to each
student. Each answer to the problem can either be
0, 1, or 2. A value of 0 indicates no solution or a
totally incorrect solution, a value of 1 indicates a partial
solution, and a value of 2 indicates a complete solution.

• Actions: We introduce eight different actions called
tactics (T1, T2, T3, T4, T5, T6, T7, and T8), which are
the manners and behaviors of the system that should be
adopted as a teaching tactic for the student based on
his/her answer.

2. Define the model parameters
After determining the model’s input and output sizes, we

should define some crucial parameters for each algorithm’s
training.

IAENG International Journal of Computer Science

Volume 52, Issue 4, April 2025, Pages 1196-1212

__

• Number of episodes: is the number of iterations where
each episode corresponds to one problem case.

• Number of steps: each episode has a maximum number
of steps where the agent interacts with the environment
during the training.

• Epsilon parameters: the variables that control the bal-
ance between exploration and exploitation (epsilon start,
epsilon end, and epsilon decay)

3. Define the neural network architecture
The neural network’s primary architecture is a feedforward

neural network with three fully connected layers:
• The input layer is a fully connected layer that receives

the state representation as input. The size of the input
layer is determined by the dimensionality of the state
space, which in our situation is 6.

• Hidden layers: Two fully connected layers, each in-
cluding 64 neurons, are followed by a ReLU activation
function.

• The output layer is a fully connected layer that produces
the Q-values for each action in the state. The output
layer’s size is determined by the number of actions,
which is 8 (tactics from T1 to T8).

4. Generate random problem cases
Generate a random problem case, which is defined as a

list of six characters with values ’0’, ’1’, or ’2’. The problem
case presents the input (state) to the neural networks.

5. Maturity function
A mathematical equation known as the maturity function

determines the appropriate tactic for the student’s perfor-
mance. After determining the tactic to be used, it is compared
with the predicted tactic during the training phase to measure
whether the model produces a correct tactic or not. The
range of maturity function is between 0 and 7.8 based on
a predefined weight for each type of problem given to the
student. If the student solves all the problems correctly, the
maturity function will be 7.8, and if the student does not
solve any problem correctly, the maturity function will be
0. In case some problems are partially solved correctly, or
some are solved incorrectly, and others are solved correctly,
the maturity function will be some value between 0 and 7.8.
The predefined weight is assumed to be assigned based on
the importance of the problem and its objective.

Let (E) be a set of problem evaluations, where
E=[e1,e2,. . . .en]. The maturity equation can be written as
follows:

Maturity function =
n∑

i=1

ei (7)

Where ei is calculated by multiplying si by its cor-
responding weight wi. For example, e1 is calculated by
multiplying s1 by the corresponding weight w1. Similarly,
e2 is calculated by multiplying s2 with w2 , and so on as
the following:

Maturity function = (s1 · w1) + (s2 · w2) + (s3 · w3)

+(s4 · w4) + (s5 · w5) + (s6 · w6) + (sn · wn)
(8)

where ei is the evaluation result of pi, and pi has a corre-
sponding value si, which is one of three possible values, 0

(not solved the problem), 1 (partially solved the problem),
and 2 (solved the problem).

The result of the maturity function can be matched against
a specific tactic that could be suitable for an individual
based on maturity ranges. The ranges used here are only for
scientific research and do not reflect real tactics. The used
maturity ranges are as follows:

• Assign tactic T1 if the maturity range is between 0 and
1.

• Assign tactic T2 if the maturity range is more than 1
and up to 2.

• Assign tactic T3 if the maturity range is more than 2
and up to 3.

• Assign tactic T4 if the maturity range is higher than 3
and up to 4.

• Assign tactic T5 if the maturity range is higher than 4
and up to 5.

• Assign tactic T6 if the maturity range is higher than 5
and up to 6.

• Assign tactic T7 if the maturity range is higher than 6
and up to 7.

• Assign tactic T8 if the maturity range is higher than 7
and up to 7.8.

6. Model 1: Deep Q-Network (DQN)
Deep Q-network architecture is based on two neural net-

works (Q-network and Q-target). The Q-network calculates
the Q-value in state s, whereas the Q-target calculates the
Q-value in the next state s′.

A large number of episodes are used to train the DQN
over multiple steps. At each time step, it performs a series of
operations as presented in Algorithm 4 and Figure 5. More
details about the training procedures of the model in the
following:

• For each episode:
o Generate a random problem case (state) and provide it

to the environment.
o For each step:
• The agent chooses an action using an epsilon-greedy

strategy. The epsilon value starts at 1.0 and gradually
decreases to 0.01 over the training process.

• Execute the action in the environment.
• Compute the actual action based on the current state.

If the actual action matches the agent-selected action
(predicted action), then the agent receives a positive
reward of 1. Otherwise, it receives a negative reward
of -1.

• Generate a new problem case (next state)
• The agent stores the experience tuple (current state,

action, reward, next state) in the replay buffer.
• Sample random batches from the experience replay

memory.
• The neural network model is updated using the stored

transition which helps in making the right decisions
following these steps:

• Compute the target Q-values using the target network
(Q-target) for the sampled next states as presented
previously in equation 1.

• Compute the loss between the predicted Q-values and
the target Q-values and the observed rewards as shown

IAENG International Journal of Computer Science

Volume 52, Issue 4, April 2025, Pages 1196-1212

__

in equation 3.
• The neural network weights are modified by using

the method of backpropagation and stochastic gradient
descent.

• The agent’s target Q-network is updated every specific
number of steps to match the main Q-network and
stabilize the learning process.

o The total reward for each episode is recorded and the
process repeats for the next episode.

o DQN tests the learn policy by making environmental
decisions after training. The agent chooses the action with
the highest Q-value for a specific condition.

Algorithm 1. Deep Q-Network

Input: Input size, output size, learning rate,

discount factor, number of episodes, number of steps,

epsilon start, epsilon end, epsilon decay.

Output: Q-values.

1. Initialize Q-network weights θ

2. Initialize Q-target network with weights θ− = θ

3. Initialize replay memory size.

4. For each episode from 1 to number of episodes:

5. Select a random problem case (state)

6. For each step from 1 to number of steps:

7. Select action based on the state using an greedy strategy.

8. Get current state and predicted action

9. Calculate the actual action using the maturity function

10. if predicted action = actual action:

11. reward = 1

12. else:
13. reward = -1

14. Select a random problem case (get the next state)

15. Store the transition in replay memory

16. Sample a batch of transitions from replay memory

17. Calculate the target Q-value:

18. target Q-value = r + γmaxa′∈A Q(s′, a′; θ−)

19. Compute loss:

20. Loss = (target Q-value −Q(s, a))2

21. Copy Q-network weights to Q-target network every C steps

22. End for (steps).

23. End for (episodes).

7. Model 2: Double DQN
The second proposed model in this study is based on

DQN’s structure, with some modifications in calculating the
target Q-values. Using the maximum Q value as the target
value for training the DQN might lead to a bias towards
maximizing learning, resulting in overestimation over time.
The problem may be resolved using a Double Deep Q-
Network (Double DQN) algorithm. We selected Hasselt’s
version [11], which uses two networks that share weights at
regular intervals. The Q-network is used for action selection,
whereas the Q-target is used for action evaluation. Algorithm
2 presents the pseudocode of the model.

8. Model 3: Dueling DQN
The third model, Dueling DQN, modifies the standard

DQN to calculate the Q-value. The Q-value may be decom-
posed as the combination of V (s), which represents the value

Fig. 5. Model 1: DQN

of being in a certain state, and A(s, a), which represents
the advantage of executing a specific action at that state
compared to all other possible actions. The system utilizes
two distinct estimators for these two components, merging
them via a specific aggregation layer to generate an estimate
of Q(s, a). Algorithm 6 shows the pseudocode of the Dueling
DQN.

IAENG International Journal of Computer Science

Volume 52, Issue 4, April 2025, Pages 1196-1212

__

Algorithm 2. Double DQN

Input: Input size, output size, learning rate,
discount factor, number of episodes, number of steps,
epsilon start, epsilon end, epsilon decay.

Output: Q-values.

1. Initialize Q-network weights θ

2. Initialize Q-target network with weights θ− = θ

3. Initialize replay memory size
4. For each episode from 1 to number of episodes:
5. Select a random problem case (state)
6. For each step from 1 to number of steps:
7. Select action based on the state using a greedy strategy
8. Get current state and predicted action
9. Calculate the actual action using the maturity function
10. if predicted action = actual action:
11. reward = 1
12. else:
13. reward = -1
14. Select a random problem case (get the next state)
15. Store the transition in replay memory
16. Sample a batch of transitions from replay memory
17. Calculate the target Q-values using the target Q-network

Y = r + γQ(s′, argmaxa′ Q(s′, a′; θ); θ−)

18. Compute loss (Q-target values – Q-network values)
Loss = (target Q-value −Q(s, a))2

19. Update Q-network
20. Update target Q-network
21. End for (steps)
22. End for (episodes)

Algorithm 3. Dueling DQN

Input: input size, output size, learning rate,
discount factor, number of episodes, number of steps,
epsilon start, epsilon end, epsilon decay.

Output: predicted Q-values.

1. Initialize Q-network weights θ.
2. Initialize Q-target network with weights θ− = θ

3. Initialize replay memory size
4. For episode from 1 to episodes do:
5. Select a random problem case (state)
6. For step from 1 to steps do:
7. Select action based on the state using a greedy strategy
8. Get current state and predicted action
9. Calculate the actual action using the maturity function
10. if predicted action = actual action:
11. reward = 1
12. else:
13. reward = -1
14. Select a random problem case (get the next state)
15. Store the transition in replay memory
16. Sample a batch of transitions from replay memory
17. Calculate the predicted Q-values using the Q-network:

18. Q(s, a) = V (s) +
(
A(s, a)− 1

|A|
∑

a′ A(s, a′)
)

.

19. Calculate the target Q-value:
20. target Q-value = r + γmaxa′∈A Q(s′, a′; θ−)

21. Compute loss:
22. Loss = (target Q-value −Q(s, a; θ))2

23. Copy Q-network weights to Q-target network weights
every C steps

24. End for (steps)
25. End for (episodes)

9. Model 4: Combination of GA and DQN

Under this model, we try to measure the effect of the
classifier system based on a genetic algorithm on a deep
Q-network by first training the classifier system to generate
an initial population of classifiers that represent our rules of
conditions and actions, where the conditions are the student
performance values for each of the six problems, and the
action is the tactic that should be adopted. According to
Alshaikh and Hewahi [43], a classifier system could improve
very well the performance of Q-learning, and the main
question here is whether DQN needs the help of a classifier
system or not to get high-accuracy results. Algorithm 4
provides the pseudocode, while Figure 6 depicts the fourth
proposed model procedure.

Algorithm 4. GA with DQN
Input: population size, max num gen, mutation rate,
crossover rate, max num iteration, max num problem case,
input size,output size,learning rate,
discount factor, number of episodes, number of steps,
epsilon start, epsilon end, epsilon decay.
Output: Q-values.
1. Set GA and DQN parameters.
2. Represent the classifier.
3. Generate initial population.
4. num problem = 0
5. While num problem ¡ max num problem case do:
6. Select a random problem case
7. Apply bucket brigade algorithm
8. num gen = 1.
9. While num gen ¡ max num gen do:
10. Select parents from population
11. Produce offspring (crossover) from chosen parents
12. Mutate the resulting offspring.
13. Add new offspring to the temp list.
14. num gen++
15. End while
16. Update population based on temp list.
17. Make temp list empty.
18. num problem++.
19. End while
20. Return trained classifier from GA
21. Input the trained classifier from GA to DQN
22. Initialize Q-network weights θ

23. Initialize Q-target network with weights θ− = θ

24. Initialize replay memory size
25. For episode from 1 to episodes do:
26. Select a random problem case (state)
27. For step from 1 to steps do:
28. Select action based on the state using a greedy strategy
29. Get current state and predicted action
30. Calculate the actual action using the maturity function
31. if predicted action == actual action:
32. reward = 1
33. else:
34. reward = -1
35. Select a random problem case (get the next state)
36. Store the transition in replay memory
37. Sample a batch of transitions from replay memory
38. Calculate the target Q-value: y = r + γmaxa′ Q(s′, a′; θ−)

39. Compute loss: Loss = (target Q-value −Q(s, a; θ))2

40. Copy Q-network weights to Q-target weights every C steps
41. End for
42. End for

IAENG International Journal of Computer Science

Volume 52, Issue 4, April 2025, Pages 1196-1212

__

GA trained Classifiers

Classifier
Representation

Start

Initial Population

Bucket Brigade
Algorithm

Select a problem case
randomly

If reached maximum
number of problem

cases

Yes

No

Genetic Algorithm
Genetic Algorithm

Deep
Q-network

Genetic Algorithm
Genetic Algorithm

If reached
population size

No

Selection

Crossover

Mutation

Add new offspring
to the temp list

Start
GA

Genetic
Algorithm

Update population
based on temp list

End GA

Make temp list
empty

If reached
maximum number

of generation

Yes

No

Initialize no. of episodes
Initialize no. of steps

If reached maximum
number of episodes

No

yes

Select action

Select a problem
case randomly

Get the next state

If predicted action
== actual action

Yes No

Reward = 1 Reward =-1

End

Save Q-network
model

Evaluation

episode < episodes

step < steps

Store transition in
replay memory

Sample a batch of
transition

Calculate the target
Q-value

If reached maximum
number of steps

No

Yes

Calculate the loss

Update Q-network

no. of steps +1

no. of episodes +1

Yes

Fig. 6. Model 4: GA with DQN .

V. MODELS EVALUATION

This paper uses the following major evaluation metrics to
evaluate the performance of the deep reinforcement learning
models:

• Accuracy: It estimates the proportion of all correct
predictions or decisions that the acting agent makes. It is cal-

culated as the ratio between the number of actions taken cor-
rectly and the total number of actions taken in the episodes
of evaluation. This metric provides a straightforward and
intuitive way to compare the overall performances of the
different deep RL algorithms across the various training
configurations.

IAENG International Journal of Computer Science

Volume 52, Issue 4, April 2025, Pages 1196-1212

__

• Precision: It measures the proportion of true positive
predictions against all positive predictions made by the
model. It gives insights into how well the model works
without making false positive predictions.

• Recall: It can also be referred to as sensitivity or the true
positive rate. It is the proportion of true positive predictions
the model will make from all actual positive instances.

• F1-Score: It is the harmonic mean of precision and
recall, making it a balanced metric to consider, all at once,
a model’s precision and its ability to detect all positive
instances.

The values for each evaluation metric used in this study
can be calculated as the following equations:

Accuracy =
TP + TN

TP + FP + TN + FN
(9)

Precision =
TP

TP + FP
(10)

Recall =
TP

TP + FN
(11)

F1 Score =
2× Precision × Recall

Precision + Recall
(12)

where TP is true positive, TN is true negative, FP is false
positive, and FN is false negative.

These additional performance metrics add more dimen-
sions to the evaluation of deep reinforcement learning models
and provide nuanced, informative comparisons. Precision,
recall and F1-score convey the degree of accuracy of a model
in identifying and classifying the correct actions relevant
to real-world applications. Such metrics, put together with
accuracy, will help build an idea of all models’ strengths,
weaknesses, and general characteristics.

VI. EXPERIMENTATION AND RESULTS

This section presents the experimental approaches and
outcomes of the four proposed models. In each experiment,
we used a different number of episodes and steps. Overall,
five main scenarios break down the steps to get the final
results. Initially, we obtained the results from the standard
DQN model. Subsequently, we determined the outcomes
from the double DQN model. Following this, we observed
the results of the dueling model. Next, we obtained the results
from GA based on our previous work [43] and applied them
to the DQN model. Finally, we compared the results of these
approaches with our prior research [43].

For each experiment, we test the correct prediction of
the problems in two different situations. The first situation
uses the same collection of problem cases, while the second
situation consistently uses new problem cases in each test.
Furthermore, we compute the true positive, false positive,
recall, precision, F1 score, and accuracy. Nevertheless, the
recall outcome for all experiments is 1 due to the absence
of negative data.

TABLE I
PARAMETERS OF DQN

Parameter Value
Number of Episodes 100 to 1000
Number of Steps 1, 5, 10, 30
Epsilon Start 1.0
Epsilon End 0.01
Epsilon Decay 0.99

A. Set the hyper parameters of the models

In this experiment, we used different numbers of episodes
ranging from 100 to 1000. In addition, we used different
numbers of steps ranging from 1 step to 30 steps, as shown
in Table I. At the beginning of the training, the initial epsilon
value is typically set to a high value (1.0) so the agent
can explore more by selecting a random action. Throughout
training, the value of epsilon gradually decreased to a lower
value (0.01) by selecting the action with the highest predicted
Q-value. The decay rate (0.99) determines how quickly the
epsilon value is reduced over the training process. A lower
decay rate allows the agent to explore more, while a higher
decay rate leads to more exploitation.

B. Results of Model 1 DQN

Table II and Table III provide the results obtained from
Model 1 using the same set of problem cases and different set
of problem cases, respectively. Initially, we set the parameters
of the DQN model, as shown in Table I. The data in Table II
shows that when there are 100 episodes and 5 steps, the
number of correct predictions equals 18 out of 40, with
an accuracy of 45%, using the same set of problem cases.
However, this accuracy drops to only 35% when using a new
set of problem cases, as shown in Table III. However, when
the number of iterations exceeds 300 and the number of steps
exceeds 30, the number of true positives is 32, in contrast
to the number of false positives, which is only 6 out of the
total 40 problem cases. The precision, F1 score, and accuracy
are 0.80, 0.89, and 80%, respectively, when testing the same
set of problem cases. Table II indicates a consistent growth
in the performance metrics as the number of episodes and
steps improves. In contrast, Table II presents some variations
in the performance across different test cases. According to
the results, as the number of iterations increases, the model’s
performance increases with higher precision, F1 score, and
accuracy for both tables (Table II and Table III). In addition,
the best performance is achieved at 500 episodes with 30
steps and 1000 episodes with 10 steps.

C. Results of Model 2 Double DQN

Tables IV and V present the results obtained from the
double DQN model. The testing began with 100 episodes
and one step, then progressed until it reached 1000 episodes
and 10 steps. We used the same set of problem cases as
depicted in Table IV and a different set of problem cases
as presented in Table V. The total number of problem cases
tested is 40. As shown in Tables IV and V, there is a clear
trend toward improving the performance of the Double DQN
as the number of episodes and steps increases.

IAENG International Journal of Computer Science

Volume 52, Issue 4, April 2025, Pages 1196-1212

__

TABLE II
DQN - THE RESULT OBTAINED USING THE SAME SET OF TEST CASES

No Episodes Steps TP FP Precision F1 Score Accuracy

1 100 1 6 34 0.15 0.26 0.15

2 100 5 18 22 0.45 0.62 0.45

3 100 10 20 20 0.50 0.67 0.50

4 200 10 34 6 0.85 0.92 0.85

5 300 10 32 8 0.80 0.89 0.80

6 500 10 38 2 0.95 0.97 0.95

7 500 30 40 0 1.00 1.00 1.00

8 1000 10 40 0 1.00 1.00 1.00

TABLE III
DQN - THE RESULT OBTAINED USING DIFFERENT TEST CASES

No Episodes Steps TP FP Precision F1 Score Accuracy

1 100 1 8 32 0.20 0.33 0.20

2 100 5 14 26 0.35 0.52 0.35

3 100 10 22 18 0.55 0.71 0.55

4 200 10 32 8 0.80 0.89 0.80

5 300 10 38 2 0.95 0.97 0.95

6 500 10 37 3 0.93 0.96 0.93

7 500 30 40 0 1.00 1.00 1.00

8 1000 10 39 1 0.98 0.99 0.98

For example, as illustrated in Table IV, with 100 episodes
and 5 steps, the model achieves a precision of 0.45, an F1
score of 0.62, and a test accuracy of 45%. The number of
correct predictions is 18 out of 40. Despite this, after running
200 episodes and 10 steps, the model attains a precision of
0.75, an F1 score of 0.86, and an accuracy of 75%.

TABLE IV
DOUBLE DQN - THE RESULT OBTAINED USING THE SAME SET OF TEST

CASES

No Episodes Steps TP FP Precision F1 Score Accuracy

1 100 1 8 32 0.20 0.33 0.20

2 100 5 18 22 0.45 0.62 0.45

3 100 10 28 12 0.70 0.82 0.70

4 200 10 30 10 0.75 0.86 0.75

5 300 10 28 12 0.70 0.82 0.70

6 500 10 38 2 0.95 0.97 0.95

7 500 30 39 1 0.98 0.99 0.98

8 1000 10 40 0 1.00 1.00 1.00

TABLE V
DOUBLE DQN - THE RESULT OBTAINED USING DIFFERENT TEST CASES

No Episodes Steps TP FP Precision F1 Score Accuracy

1 100 1 7 33 0.16 0.30 0.16

2 100 5 19 21 0.48 0.64 0.48

3 100 10 21 19 0.53 0.69 0.53

4 200 10 28 12 0.70 0.82 0.70

5 300 10 31 9 0.78 0.87 0.78

6 500 10 39 1 0.98 0.99 0.98

7 500 30 39 1 0.98 0.99 0.98

8 1000 10 40 0 1.00 1.00 1.00

D. Results of Model 3 Dueling DQN

For model 3, we follow the same procedure as the previous
models. Tables VI and VII present the results. For the first
case with 100 episodes and 1 step, the dueling DQN model
correctly identified 8 correct predictions out of a total of 40
(8 is TP, and 32 is FP) with a precision of 0.2, an F1 score
of 0.33, and an accuracy of 20%, as shown in Table VI.
However, in the second case, when we increase the number
of steps to 5, the model’s performance improves gradually,
resulting in a precision of 0.4, an accuracy of 40%, and
an F1 score of 0.57. Furthermore, Table VI indicates that
precision, F1 score, and accuracy increase as the number
of episodes increases. The model achieves an accuracy of
63%, a precision of 0.63, and an F1 score of 0.77 at 200
episodes and 10 steps. However, when the model episodes
increase to 500, the model reaches a precision of 0.98,
an accuracy of 98%, and an F1 score of 0.97, indicating
excellent performance.

TABLE VI
DUELING DQN - THE RESULT OBTAINED USING THE SAME SET OF TEST

CASES

No Episodes Steps TP FP Precision F1 Score Accuracy

1 100 1 8 32 0.20 0.33 0.20

2 100 5 16 24 0.40 0.57 0.40

3 100 10 21 19 0.53 0.69 0.53

4 200 10 25 15 0.63 0.77 0.63

5 300 10 32 8 0.80 0.89 0.80

6 500 10 39 1 0.98 0.99 0.98

7 500 30 38 2 0.95 0.97 0.95

8 1000 10 40 0 1.00 1.00 1.00

TABLE VII
DUELING DQN - THE RESULT OBTAINED USING DIFFERENT TEST CASES

No Episodes Steps TP FP Precision F1 Score Accuracy

1 100 1 9 31 0.23 0.37 0.23

2 100 5 16 24 0.40 0.57 0.40

3 100 10 22 18 0.55 0.71 0.55

4 200 10 24 16 0.60 0.75 0.60

5 300 10 33 7 0.83 0.90 0.83

6 500 10 37 3 0.93 0.96 0.93

7 500 30 38 2 0.95 0.97 0.95

8 1000 10 40 0 1.00 1.00 1.00

In addition to the results obtained from the Dueling DQN
using the same set of problem cases, we employed different
set of problem cases for each test, as presented in Table VII.
Despite the minor variations in the individual metrics, the
overall trend remains consistent as the number of episodes
and steps increases, the dueling DQN model’s performance
improves across all the metrics, including precision, F1 score,
and test accuracy.

E. Results of Model 4 (GA - DQN)

The results obtained from Model 4, based on the com-
bination of GA and DQN, are shown in Tables VIII and
IX, using the same set of problem cases and different sets of
problem cases, respectively. The proposed model was trained

IAENG International Journal of Computer Science

Volume 52, Issue 4, April 2025, Pages 1196-1212

__

with various episodes, ranging from 100 to 1000 episodes,
and steps, ranging from 1 to 30. However, the number of test
problem cases with correct predictions ranges from 4 to 9
out of the total 40 test cases. This means the model cannot
correctly predict the outcomes of test cases. Furthermore, the
precision values range from 0.13 to 0.30, as shown in Table
VIII, showing that the model has a low ratio of true positives
to the total of true positives and false positives. The F1 scores
vary between 0.22 and 0.46. In addition, the accuracy values
range from 13% to 30%. The low precision, F1 score, and
accuracy levels indicate that the GA-DQN model performs
poorly and is ineffective in predicting outcomes.

TABLE VIII
DQN+GA - THE RESULT OBTAINED USING THE SAME SET OF TEST

CASES

No Episodes Steps TP FP Precision F1 Score Accuracy

1 100 1 9 31 0.23 0.37 0.23

2 100 5 8 32 0.20 0.33 0.20

3 100 10 9 31 0.23 0.37 0.23

4 200 10 8 32 0.20 0.33 0.20

5 300 10 4 36 0.10 0.18 0.10

6 500 10 7 33 0.18 0.30 0.18

7 500 20 6 34 0.15 0.26 0.15

8 1000 10 8 32 0.20 0.33 0.20

TABLE IX
DQN + GA - THE RESULT OBTAINED USING DIFFERENT TEST CASES

No Episodes Steps TP FP Precision F1 Score Accuracy

1 100 1 12 28 0.30 0.46 0.30

2 100 5 12 28 0.30 0.46 0.30

3 100 10 12 28 0.30 0.46 0.30

4 200 10 8 32 0.20 0.33 0.20

5 300 10 7 33 0.18 0.30 0.18

6 500 10 7 33 0.18 0.30 0.18

7 500 30 5 35 0.13 0.22 0.13

8 1000 10 10 30 0.25 0.40 0.25

Table X presents the difference in the accuracy results
across the four proposed models. The comparison is based
on a different set of problem cases with varying numbers
of training episodes and steps. The DQN, Double DQN, and
Dueling DQN models generally show an improvement in ac-
curacy values as the number of episodes and steps increases,
indicating their ability to learn and enhance performance
with more training. Nevertheless, the fourth model (GA with
DQN) has a low level of accuracy, fluctuating between 18%
and 30%, suggesting that adding genetic algorithm compo-
nents does not significantly increase the performance of the
DQN model to predict the correct tactics. The DQN model
reaches a near-perfect performance (100%) of accuracy at
500 episodes and 30 steps. While the Dueling DQN and
Double DQN models reach 100% accuracy at 1000 episodes
and 10 steps, In contrast, Model 4 reaches only 30% accuracy
at 100 episodes.

Furthermore, Figures 7 and 8 show the behavior of the
proposed models using the same set of problem cases and
different sets of problem cases, respectively. The x-axis
represents the form (episodes-steps), and the y-axis repre-

sents the accuracy. We can observe from Figure 7 that the
accuracy of DQN and its extensions (DDQN and Dueling
DQN) increases steadily as the number of episodes and steps
increases, but at specific points, it goes up and down. For
instance, in the Double DQN, when the number of episodes is
200, and the number of steps is 10, it reaches an accuracy of
0.85 but drops to 0.7 when the number of episodes increases
to 300. On the other hand, as illustrated in Figure 8, when we
tested the models using different sets of problem cases, the
accuracy of DQN and its extensions (DDQN and Dueling
DQN) increased steadily as the number of episodes and
steps increases. This indicates a consistent growth in the
performance of the models. In model 4, the line decreases,
indicating a decline in accuracy as we change the number of
episodes and steps.

In terms of precision and F1 score, Table XI compares the
results between all models using different sets of problem
cases. At 100 episodes and 1 step, the best model is Model
4, with 0.3 precision and 0.46 F1 score. However, when we
increase the number of steps to 5, the Double DQN shows
the highest precision and F1 scores, which are 0.48 and 0.64,
respectively. As we increase the number of iterations and
steps, the DQN, Dueling DQN, and Double DQN models
show a higher performance level than the fourth model. In
addition, the Double DQN generally outperforms the other
models, especially in higher training complexity settings with
500 episodes and above. At 500 episodes and 10 steps,
Double DQN has a 5% higher precision and a 3% higher
F1-score compared to the standard DQN Model 1. However,
when we increased the steps to 30, the DQN model achieved
the highest precision with an F1 score of 1.0, outperforming
the Dueling DQN and Double DQN. At the highest training
level of 1000 episodes and 10 steps, the Dueling DQN
and Double DQN models achieved perfect precision with
an F1-score of 1.0, outperforming the standard DQN. This
demonstrates the ability of the more advanced architectures
to fully leverage the additional training data and steps to
achieve optimal performance.

Table XII presents the evaluation metrics for several
proposed machine learning models using different sets of
problem cases. Learning Classifier System (LCS), Reinforce-
ment Learning (RL), and PMCR (LCS with RL) models
were proposed previously by Alshaikh and Hewahi [43].
It is apparent from Table XII that the deep reinforcement
learning algorithms, including DQN, Dueling DQN, and
Double DQN models, reach the highest level of performance
with perfect accuracy, precision, and an F1 score of 1.0
compared to other models. The PMCR model [43], which
is based on the combination of the learning classifier system
and reinforcement learning using the Q-learning algorithm,
performs well, with an accuracy of 82%, a precision of 0.82,
and an F1 score of 0.90. The learning classifier system [43]
has a moderate level of performance, with an accuracy of
68%, a precision of 0.68, and an F1 score of 0.81. On the
contrary, reinforcement learning has the lowest performance
among the proposed models, with an accuracy of 33%, a
precision of 0.33, and an F1 score of 0.49. On the other hand,
the integration of genetic algorithms with DQN performs
worst, with 30% accuracy, 0.30 precision, and a 0.46 F1
score. Figure 9 shows clearly the different evolution metrics
used between various proposed machine learning models.

IAENG International Journal of Computer Science

Volume 52, Issue 4, April 2025, Pages 1196-1212

__

TABLE X
COMPARISON OF THE ACCURACY OF THE FOUR PROPOSED MODELS USING DIFFERENT SETS

No Episodes Steps Model 1 DQN Model 2 Double DQN Model 3 Dueling DQN Model 4 GA + DQN

1 100 1 0.20 0.16 0.23 0.30

2 100 5 0.35 0.48 0.40 0.30

3 100 10 0.55 0.53 0.55 0.30

4 200 10 0.80 0.70 0.60 0.20

5 300 10 0.95 0.78 0.83 0.18

6 500 10 0.925 0.98 0.93 0.18

7 500 30 1.00 0.98 0.95 0.13

8 1000 10 0.975 1.00 1.00 0.25

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

100,1 100,5 100,10 200,10 300,10 500,10 500,30 1000,10

A
cc
ur
ac
y

Episodes/Steps

Model 1 DQN
Model 2 Double DQN
Model 3 Dueling DQN
Model 4 GA + DQN

Model 4

Model 3

Model 1

Model 2

Fig. 7. Comparison of the accuracy of the proposed models using the same test set

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

100,1 100,5 100,10 200,10 300,10 500,10 500,30 1000,10

A
cc
ur
ac
y

Episodes/Steps

Model 1 DQN
Model 2 Double DQN
Model 3 Dueling DQN
Model 4 GA + DQN

Model 4

Model 3

Model 1

Model 2

Fig. 8. Comparison of the accuracy of the proposed models using different test set

VII. DISCUSSION

The core significance of this research is to examine the
effectiveness of deep reinforcement learning techniques in
predicting the appropriate feedback from teachers to students
in intelligent tutoring systems. The results of the study
demonstrate four different proposed models. Each of them
had their own strengths and trade-offs, depending on the
specific training configuration. In general, the DQN, Double

DQN, and Dueling DQN, as the number of episodes and
steps goes up, they show a trend toward improvement in
accuracy, precision, and F1 score. The optimal configuration
for DQN is 500 episodes with 30 steps, achieving 100%
accuracy, while the Double and Dueling DQN reach the high-
est performance at 1000 episodes with 10 steps. Although
the Double DQN model consistently outperforms the DQN
and Dueling DQN models at higher training complexities.

IAENG International Journal of Computer Science

Volume 52, Issue 4, April 2025, Pages 1196-1212

__

TABLE XI
COMPARISON OF THE PRECISION AND F1 SCORE FOR THE FOUR PROPOSED MODELS USING DIFFERENT TEST SET

No Episodes Steps DQN Double DQN Dueling DQN GA + DQN

Precision F1 Score Precision F1 Score Precision F1 Score Precision F1 Score

1 100 1 0.20 0.33 0.16 0.30 0.23 0.37 0.30 0.46

2 100 5 0.35 0.52 0.48 0.64 0.40 0.57 0.30 0.46

3 100 10 0.55 0.71 0.53 0.69 0.55 0.71 0.30 0.46

4 200 10 0.80 0.89 0.70 0.82 0.60 0.75 0.20 0.33

5 300 10 0.95 0.97 0.78 0.87 0.83 0.90 0.18 0.30

6 500 10 0.93 0.96 0.98 0.99 0.93 0.96 0.18 0.30

7 500 30 1.00 1.00 0.98 0.99 0.95 0.97 0.13 0.22

8 1000 10 0.975 0.987 1.00 1.00 1.00 1.00 0.25 0.40

Fig. 9. Comparing the evaluation metrics for several machine learning models using different test set

TABLE XII
COMPARISON OF THE EVALUATION METRICS FOR SEVERAL PROPOSED

MACHINE LEARNING MODELS USING DIFFERENT TEST SET

Models Accuracy % Precision F1 Score

Learning classifier system (LCS) 68% 0.68 0.81

Reinforcement learning (RL) 33% 0.33 0.49

PMCR (LCS with RL) 82% 0.82 0.90

Deep Q-Networks (DQN) 100% 1.00 1.00

Dueling DQN 100% 1.00 1.00

Double DQN 100% 1.00 1.00

Genetic algorithm (GA) with DQN 30% 0.30 0.46

This suggests that the second proposed model (Double DQN)
architecture is better suited to leverage the additional training
data and complexity to continue improving its performance
at higher training levels. The key advantage of Double DQN
seems to be its ability to more effectively minimize the
overestimation bias inherent in standard DQN, allowing it to
maintain high accuracy even as the training becomes more
extensive.

On the contrary, the fourth model, which is based on the
integration of genetic algorithms and DQN, shows a different
pattern of results compared to other algorithms. The results
were not encouraging, the accuracy is generally low, with
a maximum of 30% even with more episodes and steps.

However, the GA-DQN model has lower precision and F1
score values, and they do not improve significantly with
training complexity. Moreover, the proposed deep reinforce-
ment learning models have higher performance outcomes
compared with standard reinforcement learning. This sug-
gests that utilizing deep learning through the neural networks
empowers the model to optimize the most effective strategy
from teachers to learners.

The findings from these experiments highlight the su-
perior performance of DQN, Dueling DQN, and Double
DQN models compared to the GA-DQN model. The poor
performance and the lack of convergence of the GA-DQN
model indicate that the genetic algorithm approach is not
an effective modification approach for improving the DQN
model’s efficiency. The findings from these experiments
highlight the superior performance of DQN, Dueling DQN,
and Double DQN models compared to the GA-DQN model.
The poor performance and the lack of convergence of the
GA-DQN model indicate that the genetic algorithm approach
is not an effective modification approach for improving the
DQN model’s efficiency. However, the integration of Q-
learning with a genetic algorithm had a promising result, as
proven by Alshaikh and Hewahi [43]. Due to the complexity
of the neural network structure compared to the simplicity
of Q-learning, the GA can easily leverage QL to explore
the search space more effectively and find optimal solutions.

IAENG International Journal of Computer Science

Volume 52, Issue 4, April 2025, Pages 1196-1212

__

In contrast, the non-linear optimization landscape of DQN
could cause difficulties for the GA in navigating successfully,
leading to lower performance.

From all these, we can conclude that deep reinforcement
learning techniques are successful in building a pedagogical
model of an intelligent tutoring system and helping teachers
give their students the appropriate feedback according to their
answers to problems.

VIII. CONCLUSIONS AND FUTURE WORK

In this work, we conducted a comparative analysis of the
performance of four different deep reinforcement learning
architectures, including DQN, Double DQN, Dueling DQN,
and GA-DQN, with different levels of training complexity.
The main goal of building these models is to help ITS
selects the appropriate feedback for the students. In the
early stages of training, with 100 episodes, the Dueling
DQN model outperforms the other models. However, when
the training progressed to a moderate level at 200 to 300
episodes, the standard DQN model learned robust repre-
sentations and policies, reaching high accuracy. After 500-
1000 episodes, Double DQN and Dueling DQN achieved
100% data efficiency, whereas DQN performed well but
was outperformed by advanced approaches. In contrast,
combining GA with DQN, the hybrid approach consistently
underperformed the other three standalone models across all
training configurations. These results are consistent with the
literature on the comparative advantages of these deep RL
algorithms. Previous studies indicated the enhanced capaci-
ties of Dueling DQN in exploration and generalization [12],
and the improved efficiency and stability of Double DQN
have also been documented [11]. Future research should
investigate the performance of these techniques in more
varied environments and task domains, despite this work
providing valuable insights into the comparative advantages
of various DRL architectures. Moreover, it would be very
important to explore the combination of the dueling DQN
and Double DQN architectures to leverage the strengths of
both approaches.

REFERENCES

[1] B. P. Woolf, Building Intelligent Interactive Tutors: Student-Centered
Strategies for Revolutionizing E-Learning. Morgan Kaufmann, 2010.

[2] C. LiChun and ZhiMin, “An overview of deep reinforcement learning,”
in ACM International Conference Proceeding Series. Association for
Computing Machinery, Jul. 2019.

[3] A. Alkhatlan and J. Kalita, “Intelligent tutoring systems: A compre-
hensive historical survey with recent developments,” arXiv preprint
arXiv:1812.09628, 2018.

[4] F. Alshaikh and N. Hewahi, “AI and Machine Learning Techniques
in the Development of Intelligent Tutoring System: A Review,” in
2021 International Conference on Innovation and Intelligence for
Informatics, Computing, and Technologies (3ICT). IEEE, 2021, pp.
403–410.

[5] M. J. Mosa, I. Albatish, and S. S. Abu-Naser, “Asp. net-tutor:
Intelligent tutoring system for leaning asp. net,” International Journal
of Academic Pedagogical Research, vol. 2, pp. 1–8, 2018. [Online].
Available: www.ijeais.org/ijapr

[6] H. A. S. Alrakhawi, H. A. Alrakhawi, N. Jamiat, and S. S. Abu-Naser,
“Intelligent tutoring systems in education: A systematic review of
usage, tools, effects and evaluation,” Article in Journal of Theoretical
and Applied Information Technology, vol. 28, 2023. [Online].
Available: https://www.researchgate.net/publication/369019319

[7] K. VanLehn, “The relative effectiveness of human tutoring, intelligent
tutoring systems, and other tutoring systems,” Educational Psycholo-
gist, vol. 46, no. 4, pp. 197–221, 2011.

[8] Y. K. C. Liao, “Effects of computer-assisted instruction on students’
achievement in taiwan: A meta-analysis,” Computers and Education,
vol. 48, pp. 216–233, Feb. 2007.

[9] B. Memarian and T. Doleck, “A scoping review of reinforcement
learning in education,” Computers and Education Open, vol. 6, p.
100175, Jun. 2024.

[10] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran,
D. Wierstra, S. Legg, and D. Hassabis, “Human-level control through
deep reinforcement learning,” Nature, vol. 518, pp. 529–533, Feb.
2015.

[11] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning
with double q-learning,” in Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 30, no. 1, 2016.

[12] Z. Wang, T. Schaul, M. Hessel, H. Hasselt, M. Lanctot, and N. Freitas,
“Dueling network architectures for deep reinforcement learning,” in
International Conference on Machine Learning. PMLR, 2016, pp.
1995–2003.

[13] B. Fahad Mon, A. Wasfi, M. Hayajneh, A. Slim, and N. Abu Ali, “Re-
inforcement learning in education: A literature review,” in Informatics,
vol. 10, no. 3. MDPI, 2023, p. 74.

[14] V. Mnih, “Playing atari with deep reinforcement learning,” arXiv
preprint arXiv:1312.5602, 2013.

[15] M. S. Ausin, A Transfer Learning Framework for Human-Centric Deep
Reinforcement Learning With Reward Engineering. North Carolina
State University, 2021.

[16] H. KAMAL IDRISSI and A. KARTIT, “Network intrusion detection
using combined deep learning models: Literature survey and future re-
search directions.” IAENG International Journal of Computer Science,
vol. 51, no. 8, pp. 998–1010, 2024.

[17] H. Mao, M. Alizadeh, I. Menache, and S. Kandula, “Resource
management with deep reinforcement learning,” in HotNets 2016 -
Proceedings of the 15th ACM Workshop on Hot Topics in Networks.
Association for Computing Machinery, Inc, Nov. 2016, pp. 50–56.

[18] A. Ezzaim, A. Dahbi, A. Haidine, and A. Aqqal, “Development,
implementation, and evaluation of a machine learning-based multi-
factor adaptive e-learning system.” IAENG International Journal of
Computer Science, vol. 51, no. 9, pp. 1250–1271, 2024.

[19] G. Montavon, W. Samek, and K.-R. Müller, “Methods for interpreting
and understanding deep neural networks,” Digital Signal Processing,
vol. 73, pp. 1–15, 2018.

[20] B. C. Phan, Y. C. Lai, and C. E. Lin, “A deep reinforcement learning-
based mppt control for pv systems under partial shading condition,”
Sensors (Switzerland), vol. 20, Jun. 2020.

[21] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” arXiv preprint arXiv:1409.1556,
2014.

[22] M. Hausknecht and P. Stone, “Deep recurrent q-learning for partially
observable mdps,” in 2015 AAAI Fall Symposium Series, 2015.

[23] S. Kumar, “Balancing a cartpole system with reinforcement learning–a
tutorial,” arXiv preprint arXiv:2006.04938, 2020.

[24] J. Koroveshi and A. Ktona, “A comparison of exploration strategies
used in reinforcement learning for building an intelligent tutoring
system.” in RTA-CSIT, 2021, pp. 11–17.

[25] J. Kim, D. Kwon, S. Y. Woo, W. M. Kang, S. Lee, S. Oh, C. H. Kim,
J. H. Bae, B. G. Park, and J. H. Lee, “On-chip trainable hardware-
based deep q-networks approximating a backpropagation algorithm,”
Neural Computing and Applications, vol. 33, pp. 9391–9402, Aug.
2021.

[26] L.-J. Lin, “Self-improving reactive agents based on reinforcement
learning, planning and teaching,” Machine Learning, vol. 8, pp. 293–
321, 1992.

[27] A. Ly, R. Dazeley, P. Vamplew, F. Cruz, and S. Aryal, “Elastic step
dqn: A novel multi-step algorithm to alleviate overestimation in deep
q-networks,” Neurocomputing, vol. 576, Apr. 2024.

[28] H. Hasselt, “Double q-learning,” Advances in Neural Information
Processing Systems, vol. 23, 2010.

[29] M. Abdelshiheed, J. W. Hostetter, T. Barnes, and M. Chi, “Leveraging
deep reinforcement learning for metacognitive interventions across
intelligent tutoring systems,” in International Conference on Artificial
Intelligence in Education. Springer, 2023, pp. 291–303.

[30] S. S. Mousavi, M. Schukat, and E. Howley, “Deep reinforcement
learning: An overview,” in Proceedings of SAI Intelligent Systems
Conference (IntelliSys) 2016: Volume 2. Springer, 2018, pp. 426–
440.

[31] X. Wang, S. Wang, X. Liang, D. Zhao, J. Huang, X. Xu, B. Dai, and
Q. Miao, “Deep reinforcement learning: A survey,” IEEE Transactions
on Neural Networks and Learning Systems, vol. 35, no. 4, pp. 5064–
5078, 2022.

IAENG International Journal of Computer Science

Volume 52, Issue 4, April 2025, Pages 1196-1212

__

[32] Y. Fenjiro and H. Benbrahim, “Deep reinforcement learning overview
of the state of the art,” Journal of Automation, Mobile Robotics and
Intelligent Systems, vol. 12, pp. 20–39, 2018.

[33] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A.
Bharath, “A brief survey of deep reinforcement learning,”
arXiv preprint arXiv:1708.05866, Aug. 2017. [Online]. Available:
http://arxiv.org/abs/1708.05866

[34] S. Reddy, S. Levine, and A. Dragan, “Accelerating human learning
with deep reinforcement learning,” in NIPS Workshop: Teaching
Machines, Robots, and Humans, 2017.

[35] X. Li, H. Xu, J. Zhang, and H.-H. Chang, “Deep reinforcement
learning for adaptive learning systems,” Journal of Educational and
Behavioral Statistics, vol. 48, no. 2, pp. 220–243, 2023.

[36] S. Ruan, A. Nie, W. Steenbergen, J. He, J. Q. Zhang, M. Guo, Y. Liu,
K. D. Nguyen, C. Y. Wang, R. Ying, J. A. Landay, and E. Brunskill,
“Reinforcement learning tutor better supported lower performers in a
math task,” Machine Learning, vol. 113, pp. 3023–3048, May. 2024.

[37] M. S. Ausin, “Leveraging deep reinforcement learning for pedagogical
policy induction in an intelligent tutoring system,” in Proceedings of
the 12th International Conference on Educational Data Mining (EDM
2019), 2019.

[38] J. Subramanian and J. Mostow, “Deep reinforcement learning to simu-
late, train, and evaluate instructional sequencing policies,” in Spotlight
Presentation at Reinforcement Learning for Education Workshop at
Educational Data Mining Conference, 2021.

[39] C. Paduraru, M. Paduraru, and S. Iordache, “Using deep reinforcement
learning to build intelligent tutoring systems.” in ICSOFT, 2022, pp.
288–298.

[40] F. Zeng, C. Wang, and S. S. Ge, “Tutor-guided interior navigation
with deep reinforcement learning,” IEEE Transactions on Cognitive
and Developmental Systems, vol. 13, pp. 934–944, Dec. 2021.

[41] A. Sehgal, H. La, S. Louis, and H. Nguyen, “Deep reinforcement
learning using genetic algorithm for parameter optimization,” in 2019
Third IEEE International Conference on Robotic Computing (IRC).
IEEE, 2019, pp. 596–601.

[42] Y. Kryvenchuk, D. Petrenko, D. Cichon, Y. Malynovskyy, and
T. Helzhynska, “Selection of deep reinforcement learning using a
genetic algorithm.” in COLINS, 2022, pp. 1129–1138.

[43] F. Alshaikh and N. Hewahi, “Adaptive Pedagogical Model Based
on Classifier System and Reinforcement Learning,” The Computer
Journal (Accepted with Revision), 2024.

Fatema Alshaikh is a Ph.D. candidate in the Computing and Information
Science program at the University of Bahrain. In 2012, she completed her
Master’s degree in computer science from the Open University Malaysia,
Bahrain, and in 2005, she graduated with a B.Sc. in Computer Science from
the University of Bahrain. Her research interests mainly focus on artificial
intelligence, machine learning, and intelligent systems.

Nabil M. Hewahi is a professor of computer science since 2006. He
is currently working at the University of Bahrain. He obtained his B.Sc
degree from Al-Fateh University, Libya, in 1986, M.Tech degree from the
Indian Institute of Technology (IIT), Bombay, India, in 1991, and Ph.D.
degree from Jawaharlal Nehru University, New Delhi, India, in 1994. All in
Computer Science. The main research focus and interest is in the fields of
AI and ML. Prof. Hewahi has published around 100 papers in international
journals and conferences.

IAENG International Journal of Computer Science

Volume 52, Issue 4, April 2025, Pages 1196-1212

__

