
 

  
Abstract—Traditional appearance-based gaze estimation 

methods suffer from insufficient generalization in complex 
natural environments. Addressing the limitations of standard 
convolutional networks, which are unable to selectively adjust 
feature layer parameters and do not fully leverage 
multi-channel input information, this paper proposes a Feature 
Fusion and Adversarial Network (AF-Net), consisting of an 
extraction network and a fusion network. The extraction 
network incorporates an adversarial module that employs 
adversarial optimization to more accurately extract features 
relevant to gaze estimation. The fusion network, on the other 
hand, merges features from multiple channels and adaptively 
assigns weights to each channel through an attention 
mechanism, thereby obtaining a more precise gaze direction. 
Experimental results on three public datasets demonstrate that 
our method outperforms mainstream CNN approaches in terms 
of accuracy in unconstrained natural environment gaze 
estimation. 
 

Index Terms—Gaze estimation, Deep learning, Attention 
mechanisms, Feature fusion 
 

I. INTRODUCTION 
HE definition of gaze estimation tasks is to predict the 

three-dimensional directional vector or two-dimensional 
fixation point position based on image or video information. 
As one of the important branches of computer vision, gaze 
estimation integrates the application of machine learning and 
image processing technologies, which holds significant 
research importance. Gaze information can be used to infer 
various potential psychological or physiological information 
of the subject, such as attention distribution and cognitive 
behavioral processes, thereby enabling practical commercial 
applications like human-computer interaction [1], detecting 
driver fatigue, and assisting in disease diagnosis.  
Based on the implementation principle, gaze estimation can 
be divided into appearance-based methods and model-based 
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methods, among which appearance-based methods directly 
use RGB or depth images to obtain the gaze direction through 
regression functions. In recent years, with the development of 
deep learning and neural networks, appearance-based 
methods have rapidly improved in accuracy and have shown 
potential for use in unconstrained environments with 
significant variations in lighting and head pose, attracting 
increasing attention [2]。 

The advent of deep learning networks, represented by 
Convolutional Neural Networks (CNNs), has made it 
possible to perform gaze estimation solely through input 
images. As the depth of the network layers increases, CNNs 
are capable of extracting more abstract and high-level 
features, which further enhances the accuracy of gaze 
estimation. However, in gaze estimation based on deep 
learning, models trained on large datasets often exhibit poor 
generalization performance, and the phenomenon of 
overfitting is a significant challenge that limits their 
applicability. When faced with new environments that have 
not been trained on, or new individuals not seen before, the 
predictive accuracy of the network tends to decline 
significantly compared to the training environment. 
Currently, researchers typically attempt to improve 
adaptability through methods such as rapid calibration, but 
the results are still not satisfactory. 

Upon analysis, it has been determined that there are two 
primary factors that constrain the generalizability of models. 
The first is the failure to eliminate all irrelevant features 
related to specific environments from the feature set. An ideal 
network should more accurately capture factors within the 
input image that are related to gaze direction. However, 
environment-related features such as lighting conditions and 
background settings, as well as subject-related features such 
as the appearance of the subject, can lead to a decrease in 
accuracy when the model is applied to different scenarios. 
Secondly, most current networks only utilize a single input, 
such as an eye image or a facial image, or they simply 
concatenate the two without properly integrating the 
extracted features. Research has shown that the fusion of 
multiple features can be beneficial for enhancing the 
robustness of the network [3].Therefore, this paper proposes 
a Feature Fusion and Adversarial Network (AF-Net), 
designed to more effectively extract and remove 
environmental factors from the features, and to organically 
integrate multiple features from both the face and eyes. 

The primary contributions of this paper are twofold: 
(1) We propose an extraction network for the precise 

extraction of features. First, an adversarial module is 
introduced to eliminate redundant features. This module is 
not directly involved in feature extraction but is trained in an 
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adversarial manner to optimize the feature extractor, thereby 
enhancing the precision with which gaze estimation-relevant 
features are obtained. Second, to preserve more detailed 
information from the input images, certain convolutional 
operations within the CNN network are replaced with dilated 
convolutions. 

(2) We introduce a fusion network for the integration of 
multi-channel features, incorporating a cross-attention 
module to adaptively reallocate weights for multiple input 
features from the eyes and face. 

The remainder of this paper is organized as follows: The 
second section provides a brief overview of related work. The 
third section presents a detailed explanation of the 
implementation principles of our method. The fourth section 
verifies the actual performance of the network through 
experiments. The fifth section offers a comprehensive 
summary. 

II. RELATED WORKS 

A. Methods Based on Appearance 
In comparison with model-based methods, 

appearance-based methods require no specialized equipment, 
such as infrared cameras, for feature extraction, and their 
applications extend beyond constrained environments with 
limited variations in lighting and head angles. This approach 
initially extracts effective features from the input facial 
image and then regresses the final gaze direction based on 
these features. 

To date, numerous methods utilizing neural networks for 
feature extraction have been proposed and have demonstrated 
promising results. MnistNet [4] was the first to employ a 
neural network for gaze estimation. It achieved an average 
error of 6.3° using a 5-layer network with the LeNet 
architecture. ARE-Net [5] enhances accuracy in more 
complex lighting environments by leveraging the asymmetry 
of the eyes, selecting the more reliable eye for gaze 
estimation. Deep-Pictorial [6] regresses the appearance of the 
input eye to an image representation and uses this 
representation to estimate the gaze direction. iTracker [7] 
constructs a four-stream network that inputs both eyes, the 
face, and a facial mesh, achieving real-time 2D gaze 
estimation on smartphones. Wang et al. [8] addressed the 
overfitting issue in point estimation by integrating Bayesian 
inference and adversarial learning into a single framework, 
proposing a Bayesian Convolutional Neural Network to 
model the posterior distribution of parameters for more 
robust gaze estimation. Spatial weights CNN [9] introduces a 
facial weighting mechanism for the network to understand 
the importance of different regions of the face, achieving an 
average error of 4.8° based on the AlexNet architecture. 
PureGaze [10] designed a self-adversarial framework to 
purify gaze features and eliminate factors unrelated to gaze, 
with experimental results indicating a significant 
improvement in cross-dataset performance. 

In recent years, the introduction of some new network 
architectures has also been proven to be beneficial for the 
task of gaze estimation. GazeOnce [11] proposed a one-stage 
end-to-end method that can process multi-person gaze 

estimation in real time. Dilated-CNN [12] uses dilated 
convolutions for downsampling, which, compared to 
common convolutional and pooling layer structures, can 
preserve more pixel-level fine details while significantly 
increasing the network's receptive field. Its architecture is 
suitable for a variety of other image processing tasks. The 
Transformer [13], initially used in natural language 
processing, has been applied in many fields of computer 
vision and has achieved good results. Data indicates that it 
can capture more long-range dependencies compared to 
CNNs. DVGaze [14] obtains more complete facial 
information by performing dual-view gaze estimation from 
two cameras. 

III. METHOD 

A. AF-Net 
Based on the visual characteristics of the human eye, when 

focusing on an object, the general direction of both eyes is 
similar, providing complementary visual cues. Additionally, 
in most cases, the face determines the basic gaze direction, 
while the eyes fine-tune the angle. To explicitly leverage this 
characteristic, this paper proposes the Feature Fusion and 
Adversarial Network (AF-Net), which integrates features 
from both eyes alongside facial features, thereby capturing 
gaze-related information more comprehensively through 
three channels. Furthermore, while existing feature fusion 
methods predominantly rely on shallow networks, this paper 
enhances the fusion effect by introducing a cross-attention 
module. 

As illustrated in Figure 1(a), the Feature Fusion and 
Adversarial Network comprises two main components: an 
adversarial extraction network designed to extract 
multi-channel features and a fusion network that fuses these 
features. 

In the extraction network, FaceCNN and EyeCNN extract 
preliminary features of the face and eyes, respectively. To 
achieve a larger receptive field, dilated convolution [15] is 
incorporated into the VGG-Net-based backbone network in 
both CNNs. Common methods to increase the receptive field, 
such as increasing the stride or using pooling layers, often 
reduce the resolution of the feature maps, which can 
significantly impair the performance of gaze estimation 
regression tasks [16]. In contrast, dilated convolution 
preserves spatial resolution and maintains the number of 
parameters without significantly increasing computational 
complexity. In this study, to satisfy the accuracy 
requirements of the gaze estimation task, we configure the 
convolutional layers to seven, with the first four layers 
employing dilated convolutions. Both FaceCNN and 
EyeCNN utilize dilated convolutions to enhance the 
multi-channel architecture, with FaceCNN adopting a higher 
dilation rate. The template image sizes for the two networks 
are set to 64×64 and 64×32, respectively. To address the 
differences in feature map sizes across channels, Max 
pooling and a 2×2 convolution module are introduced to 
standardize the image dimensions while preserving spatial 
information. The backbone network is depicted in Figure 
1(b). 
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Fig. 1. Overall architecture of the Feature Fusion and Adversarial Network. (a) Architecture of AF-Net. (b) Backbone networks of FaceCNN and EyeCNN. 

 

 The output features from the dilated convolution, denoted 
by v, can be represented by the following equation: 

 (1) 

where N×M×K is the size of the convolutional kernel, w 
and b represent the weight and bias values, respectively, and 
(r1,r2) denote the dilation rates of the network. 

The preliminary features of the face and both eyes are 
transformed into secondary features by the adversarial 
module, which are then fed into the fusion network. The 
fusion network integrates the three features through a 
cross-attention module to derive the final gaze direction. The 
following sections will elaborate on the adversarial extraction 
network and the cross-attention module. 

B. Adversarial Extraction Network 
The traditional appearance-based deep learning approach 

for gaze estimation involves a series of steps: first, the raw 
image is processed by a feature extraction layer, where 
abstract deep feature maps are generated through multiple 
convolutional layers. Subsequently, the gaze regression layer, 
typically implemented as a multilayer perceptron (MLP) or 
fully connected layers, applies nonlinear functions to predict 
the final gaze direction. Since raw images captured in natural 
environments often contain redundant information unrelated 
to gaze, the excessive presence of irrelevant data can impair 
the feature extraction layer's ability to represent key features, 
thereby reducing estimation accuracy. As illustrated in 
Figure 2, to address this issue without increasing the 

network's depth or width, this paper proposes an adversarial 
feature extraction network built upon the traditional feature 
extraction layer. By introducing an adversarial module, the 
feature extractor is trained to capture deep features while 
effectively eliminating redundant information. 

Generative Adversarial Networks (GAN) [17] is a network 
architecture that implements unsupervised learning based on 
game theory, consisting of two neural networks: a generator 
network that creates data and a discriminator network that 
judges the authenticity of the generated data. Through the 
adversarial optimization between the generator and the 
discriminator, domain adaptation can be achieved with fewer 
labeled examples, and it is widely used in various fields of 
computer vision [18]. 

Based on the aforementioned research, we construct a 
network using the idea of adversarial optimization. Since 
there is no need for a generation operation in the results, this 
paper discards the generator and adds an additional 
discriminator, forming an adversarial module with two 
discriminators. The following sections will detail the 
adversarial module. 

In traditional supervised learning, features x are extracted 
from the input image pdata, and the goal of supervised learning 
is to optimize the features based on a loss function to 
minimize the error. In this paper, we employ two mutually 
antagonistic loss functions to indirectly achieve feature 
optimization. 

 

 
Fig. 2.  Adversarial Module 
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As depicted in Figure 3, the adversarial module is 
composed of a gaze estimator Dg(x ; θg) and an appearance 
estimator Da(x ; θa). Instead of directly using the features x 
for gaze direction estimation, the adversarial module 
optimizes the feature extractor's parameters to obtain more 
robust features x', which are then used for the final gaze 
estimation. Specifically, the gaze estimator and the 
appearance classifier each have their own optimization 
objectives. While controlling their own parameters, they 
must also contend with the adverse effects of parameter 
changes induced by the other. The optimization is implicitly 
realized through the antagonism of the loss functions. 

 

 Fig. 3.  Adversarial Module Architecture 
 
The gaze estimator Dg(·) directly regresses the direction of 

gaze and constructs a loss function based on the deviation 
from the true gaze direction, with the objective of achieving a 
more precise estimation of the gaze direction. The loss 
function is defined as follows: 

 (2) 

where y represents the true values of the azimuth and 
elevation angles in 3D space. f is the learned feature 
representation, Ef is the feature extractor with parameters θf,, 
and Dg is the gaze estimator with parameters θg. 

The appearance classifier Da( · ) produces a probability 
value t between 0 and 1, which characterizes the likelihood 
that the input originates from the training domain. The loss 
function is: 

     (3) 

     (4) 

         (5) 

defined in a binary cross-entropy manner, where Da(x ; θa) 
is the appearance classifier with parameters θa, and the output 

is a scalar probability t, representing the probability that the 
input comes from the source domain. When the classifier's 
output probability is close to 0.5, it indicates that it is 
impossible to distinguish between the feature distribution px 
and the source domain distribution pdata, and the appearance 
classifier reaches a global optimum. 

To enable the extracted features to more accurately 
estimate the gaze direction and to make it difficult to discern 
the type of environment, the loss functions of the two 
components are combined to obtain the joint loss function: 

  (6) 

where λa is a positive balancing factor. 
Since the optimization objectives of Equations (2) and (5) 

differ, they form an adversarial optimization relationship, 
together constituting the adversarial module. With the 
introduction of the adversarial module, for each input image 
frame, the feature layer dynamically adjusts the weights to 
filter and select more effective feature parameters. This 
process enhances the accuracy of gaze estimation, enabling 
more precise results. 

C. Three-channel Cross Attention Module 
In practical applications, facial angles and other factors 

often cause significant differences in the features of both eyes. 
The attention mechanism allows the model to focus on the 
most prominent features of the target and calculate the 
salience of each component based on global information [19]. 
It has been widely applied in many fields [20]. The 
Three-channel Cross Attention (TCA) module functions to 
assign different weights to input features based on their 
reliability. First, the features of both eyes pass through 
separate self-attention sub-layers, then facial features are 
integrated through residual connections, and finally, a 
cross-attention operation is performed between the features 
of both eyes. It has been verified that the TCA module can 
allocate weights to the eye and facial features, selectively 
enhancing or suppressing the input features. The Transformer 
architecture [21] is a novel network architecture suitable for 
computer vision tasks. Researchers have demonstrated that 
integrating pure Transformer models with traditional CNNs 
can achieve advanced performance [22]. The cross-attention 
module presented in this paper is based on the Decoder, 
which has been further improved for the task of gaze 
estimation. Overall, the module consists of two feature fusion 
Decoders, each comprising three sub-layers: a self-attention 
sub-layer, a cross-attention sub-layer, and a fully connected 
sub-layer. In the self-attention sub-layer, facial features are 
incorporated, and in the cross-attention sub-layer, the Query 
values of the two eyes are exchanged. The entire 
cross-attention module is depicted in Figure 4. 
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Fig. 4. Three-channel Cross Attention module architecture 

 

The attention function maps the input Query, Key, and 
Value to the output. The weight of each Value is obtained by 
processing its Query and Key through dot product, division 
by the dimensionality parameter, and the softmax function. 
For the two cross-attention modules, this paper uses the 
corresponding eye features as Key and Value, and the other 
eye feature as Query. The formulas are as follows: 

   (7) 

   (8) 

where Kl and Kr are the Key vectors of the left and right 
eye features, respectively; Vl and Vr are the Value vectors of 
the left and right eye features, respectively; dk is the 
dimensionality of the Key vectors Kl and Kr; and softmax(·) 
denotes processing by the softmax function. 

IV. EXPERIMENTAL RESULT 

A. Dataset 
The datasets utilized in this experiment are as follows: 
MPIIGaze [23]: Comprises over 210,000 images collected 

over a three-month period in everyday environments by 15 
participants. It exhibits significant variations in appearance, 
lighting, and head pose ranges and is one of the commonly 
used datasets for unconstrained environments. The standard 
MPIIGaze dataset includes a standard evaluation subset of 
1500 eye images, but it does not contain complete facial 
images. In this paper, the corresponding facial region images 
for the evaluation subset are obtained from the 
MPIIFaceGaze dataset. 

ETH-XGaze [24] and Gaze360 [25]: ETH-XGaze includes 
over 1 million labeled samples from 110 participants across 
more than 500 gaze directions, while Gaze360 contains 185 

outdoor subjects that are closer to unconstrained natural 
environments. Due to the more varied natural lighting and 
background environments in both datasets, they are used as 
training sets in this paper to enhance the robustness of the 
model. 

RT-Gene [26]: Composed of over 120,000 labeled images 
and over 150,000 unlabeled images, this dataset includes 15 
participants. Compared to other datasets, RT-Gene has a 
larger range of gaze angles. However, due to inconsistent 
shooting distances, some images exhibit lower pixel quality. 
This paper uses this dataset to simulate natural environment 
gaze estimation with larger angle deviations. 

EYEDIAP [27]: Composed of 94 short videos recorded 
with a Kinect sensor and a high-definition camera by 16 
participants. It includes two target classifications: discrete 
locations and continuous trajectories. The dataset covers a 
head angle range of approximately 90°, but there is less 
variation in lighting. In this paper, we sample the original 
videos every 10 frames and construct an evaluation subset. 

B. Compared Methods 
MnistNet: The foundational network of MnistNet is a 

5-layer LeNet architecture, which includes two convolutional 
layers, two max pooling layers, a fully connected layer, and a 
linear regression layer. The input is a single eye image. 

GazeNet: A method based on a deep convolutional neural 
network, with the foundational network being a 16-layer 
VGG architecture, also taking a single eye image as input. 

Spatial-Weight: A method that takes a full facial image as 
input, proposing a spatial weighting mechanism to generate a 
facial weight map. The network consists of 5 convolutional 
layers, 2 fully connected layers, and an additional spatial 
weighting component. 

ARE-Net: The foundational network of ARE-Net consists 
of 6 convolutional layers, 3 max pooling layers, and a fully 
connected layer. The input includes a binocular image and a 
head pose vector. This method integrates binocular features, 
extracts features using AR-Net, and assigns weights through 
the reliability evaluation of the binoculars by E-Net. 

!
""
#A
#%
&'
(

F
*H
,-.
/
MN
"#

!
,,M
2,
-&
2

3M
M"
#3
&'
4
N'
"

!
""
#A
#%
&'
(

!
""
#A
#%
&'
(

F
*H
,-.
/
MN
"#

!
,,M
2,
-&
2

!
""
#A
#%
&'
(

F
*H
,-.
/
MN
"#

!
,,M
2,
-&
2

3M
M"
#3
&'
4
N'
"

!
""
#A
#%
&'
(

!
""
#A
#%
&'
(

F
*H
,-.
/
MN
"#

!
,,M
2,
-&
2

!
""
#A
#%
&'
(

F
*H
,-.
/
MN
"#

!
,,M
2,
-&
2

3M
M"
#3
&'
4
N'
"

!
""
#A
#%
&'
(

!"#

!$#

!%#

!
""
#A
#%
&'
(

F
*H
,-.
/
MN
"#

!
,,M
2,
-&
2

!
""
#A
#%
&'
(

F
*H
,-.
/
MN
"#

!
,,M
2,
-&
2

3M
M"
#3
&'
4
N'
"

!
""
#A
#%
&'
(

!
""
#A
#%
&'
(

F
*H
,-.
/
MN
"#

!
,,M
2,
-&
2555

555

555

&'

&(

!
!" # # $

!
"

" " "

#

$%&'()'( $ % * +,-(K/0 *
1

 
=   

 

! " " #
!

" #
" # # #

$

% &'()*() % & + ,-K)/01 +
O

 
=   

 

IAENG International Journal of Computer Science

Volume 52, Issue 4, April 2025, Pages 1213-1221

 
______________________________________________________________________________________ 



 

FARE-Net: FARE-Net, building upon ARE-Net, retains 
the main network design and replaces the head pose vector 
input with a facial image input. 

C. Implementation Details 
The experiments in this paper were conducted on a device 

equipped with an Intel Xeon E5 CPU and 8 NVIDIA 
GeForce RTX 2080Ti GPUs, with a system environment of 
Ubuntu 18.04 LTS. The Adam optimizer was used, with a 
model learning rate of 0.0001 and a batch size of 256. For the 
adversarial extraction network, the proposed loss function 
was used, while for the fusion network, the L1 loss function 
was employed. 

To better demonstrate the role of the adversarial module in 
cross-dataset testing, training was conducted on the 
ETH-XGaze, Gaze360, and RT-Gene datasets, which exhibit 
significant angle variations. The best-performing model 
trained on Gaze360 was then used for cross-dataset testing. 

D. Result 
1） Within Dataset 
First, the performance of the proposed method was 

evaluated through extensive experiments in terms of average 
angular error. We compared the proposed method against 
seven state-of-the-art appearance-based gaze estimation 
methods on the MPIIGaze, EyeDiap, and RT-Gene datasets. 
The results, summarized in Table 1, include the backbone 
networks, input information, and corresponding average 
angular errors for all tested models. 

The results demonstrate that the proposed AF-Net 
outperforms other methods in terms of angular error 
reduction. Specifically, compared to FARE-Net, which 
utilizes a four-stream network input, AF-Net achieves a 9.7% 
improvement on the MPIIGaze dataset, a 3.5% improvement 
on the EyeDiap dataset, and a 4.8% improvement on the 
RT-Gene dataset. Furthermore, compared to Dilated-Net, 
which employs dilated convolutional networks, AF-Net 
exhibits a 13.3% performance enhancement on the MPIIGaze 
dataset. To further analyze the contribution of each module in 
the proposed model, we conducted ablation studies, as 
detailed in the following sections. 

 

Fig. 5. Angle error of 5 subjects in the MPIIGaze dataset 

To highlight the effectiveness of multi-feature fusion, we 
present the angular errors for the left eye, right eye, and full 
face of five different subjects from the MPIIGaze dataset. As 
illustrated in Figure 5, the attention module in the fusion 
network assigns different weights to multiple channels, 
assigning higher weights to more reliable channels while 
suppressing or correcting less reliable ones. By integrating 
input information from diverse sources, the network can 
correct low-quality input from a single eye based on data 
from the other eye and the full facial image, thereby 
achieving superior overall performance. 

To more intuitively demonstrate the method's 
effectiveness, as shown in Figure 6, a visualization 
experiment was conducted on the dataset. For 5 testers, the 
gaze estimation results of EyeCNN and AF-Net for the left 
and right eyes were visualized. When there is excessive light 
or insufficient light, the gaze estimation error of a single eye 
increases significantly. This method effectively suppresses 
the influence of channels with low attention scores, resulting 
in a lower overall angular error. The results indicate that the 
method presented in this paper has good accuracy in various 
environments. 

 
TABLE I  ANGULAR ERROR OF TESTING WITHIN THE DATASET 

 Backbone Dataset Input Ang.error(deg.) 

iTracker. VGG-16 
AlexNet MPIIGaze Face, Eyes 5.64 

MnistNet LeNet MPIIGaze Eye, Head pose 6.32 

GazeNet. VGG-16 Ut Multiview 
MPIIGaze Eye, Head pose 4.48 

5.56 

Spatial-Weight AlexNet EyeDiap 
MPIIGaze Face 6.04 

4.87 

ARE-Net AlexNet EyeDiap 
MPIIGaze Eyes 6.17 

5.04 

Dilated-Net Dilated-CNN EyeDiap 
MPIIGaze Face, Eyes 5.43 

4.52 

FARE-Net AlexNet 
RT-Gene  
EyeDiap 

MPIIGaze 
Face, Eyes 

8.42 
5.75 
4.39 

Ours Dilated-CNN 
Transformer 

MPIIGaze 
EyeDiap 
RT-Gene 

Face, Eyes 
8.06 
5.50 
3.91 
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Fig. 6. Visualization experiment results of AF-Net 

  
Fig. 7. Cumulative error of the model 

To highlight the overall performance of the model, this 
paper further calculates the cumulative error proportion, 
which represents the proportion of data with different angular 
error values within the entire dataset. The calculation formula 
for the cumulative error proportion is as follows: 

     (9) 

where S represents the set of all angular errors, and SA.e 
represents the specific angular error. As shown in Figure 7, 
data with errors less than 10° account for 82% of all data, 

which represents a significant improvement compared to the 
four other methods. This indicates that the overall error of our 
network is relatively small and that it has better robustness 
for input images of varying quality. 

2） Cross-dataset Evaluation 
Cross-dataset testing reflects the model's adaptability to 

significant environmental differences, posing a considerable 
challenge for all appearance-based gaze estimation methods 
[28]. To simulate common usage scenarios, we train on the 
Gaze360 dataset, which exhibits significant variations in 
head pose and environmental lighting, and test on the 
EyeDiap, MPIIGaze, and RT-Gene datasets, which cover a 
wide range of angle variations. 

 
TABLE 2 CROSS DATASET EXPERIMENTAL RESULTS OF AF-NET 

 MnistNet GazeNet Extract 
Net AF-Net 

MPIIGaze 13.3 15.1 13.7 11.4 

EyeDiap 14.6 16.9 14.4 13.2 

RT-Gene 16.2 19.5 15.4 14.8 

 
The results are shown in Table 2. First, AF-Net 

demonstrates a significant performance improvement 
compared to two classic single-eye-based methods, MnistNet 
and GazeNet. In the EyeDiap and RT-Gene datasets, AF-Net 
reduces the angular error by 32.4% and 31.8% compared to 
GazeNet, respectively. It also shows better performance 
compared to FARE-Net. Furthermore, to verify the role of the 
proposed adversarial network in domain adaptation, the 
performance of the extraction network was tested separately. 
The Extract Net, as shown in the table, retains all components 
of the extraction network and replaces the fusion network 
with two FC networks. The results indicate that Extract Net 
also achieved significant performance improvements, with 
accuracy increases of 10.2% and 17.4% compared to 
GazeNet in the two datasets. This suggests that the 
performance improvement attributed to the extraction 
network is the primary factor in the overall network 
performance improvement, thereby proving the effectiveness 
of the proposed adversarial module in filtering irrelevant 
features. 

 
TABLE 3 EXPERIMENTAL RESULTS OF ABLATION STUDY ON AF-NET 

Extract Network Fusion Network AF-Net 
Ang.error(deg.) - Adversarial 

Module FC Cross 
attention CNN Dilated 

convolution 
Y n Y n Y n 5.83 
Y n Y n n Y 5.29 
n Y Y n Y n 5.27 
n Y Y n n Y 4.42 
Y n n Y Y n 5.58 
Y n n Y n Y 4.65 
n Y n Y Y n 4.46 
n Y n Y n Y 3.92 
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3） Ablation Study 
To demonstrate the individual effectiveness of each 

module, we conducted an ablation study of AF-Net on the 
MPIIGaze dataset. Specifically, we evaluated the 
contributions of three key modules: the adversarial module, 
the cross-attention mechanism, and the dilated network. For 
the adversarial network, the first group served as a control by 
completely removing the adversarial module, while the 
second group retained all components. For the cross-attention 
mechanism, the control group replaced the cross-attention 
network with two fully connected layers positioned after the 
extraction of binocular feature maps, and the facial feature 
map was entirely discarded. For the dilated convolution, the 
total number of convolutional layers remained unchanged, 
but the original dilated convolutions were replaced with 
standard convolutions. 

As shown in Table 3, "Y" indicates the presence of the 
corresponding module in the network, and " n " indicates that 
the corresponding module was replaced with the control 
group. The results of the ablation study show that the network 
incorporating all three modules achieved the lowest angular 
error, with each module independently showing a positive 
impact on improving accuracy. The modules, in order from 
the greatest to the least impact on accuracy, are the 
adversarial module, dilated convolution, and the 
cross-attention module. This confirms that the network can 
effectively increase the receptive field through dilated 
convolution, further filter features using the adversarial 
module, and that the extraction network composed of these 
two modules effectively improves the quality of the obtained 
features. Additionally, the extraction network formed by the 
cross-attention module also actively enhances accuracy. 

V. CONCLUSION 
Addressing the domain generalization issue faced by 

appearance-based gaze estimation under unconstrained 
conditions, this study initially divides it into two aspects: 
feature extraction and feature fusion. Compared to other 
networks, this paper uses dilated convolution instead of 
regular convolutional layers for preliminary feature 
extraction, thereby increasing the network's receptive field. 
Additionally, an adversarial module is introduced to further 
filter the preliminary features, removing redundant features 
that are irrelevant to gaze direction. Moreover, the purified 
features from the parallel inputs of both eyes and the face are 
fused within a cross-attention module to determine the final 
gaze direction. Finally, the regression performance of the 
proposed method is verified through experiments. The 
experimental results indicate that AF-Net outperforms other 
mainstream CNN methods in terms of angular estimation 
accuracy across the three evaluated datasets, demonstrating 
good robustness and feasibility. 
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