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Abstract—Computing-aware routing is the core technology
of Computing Power Network. Through independently de-
termining the forwarding target in each router, computing-
aware routing aims at scheduling the computing task to an
optimal Computing Service Provider (CSP). However, current
computing-aware routing schemes only depend on the collected
computing and network resource information, do not consider
the experience of CSPs in handling similar tasks, resulting
in excessive invocation time. Facing this problem, this paper
proposes a novel routing mechanism based on transfer learning
experience in named computing power network (NRS-TLE).
NRS-TLE introduces the accuracy of trained classification
models as the experience of CSP, and design a tcce-function
to evaluate the task completion capabilities of different CSPs
at NDN routers. Based on the evaluation results of the tcce-
function, NDN routers further perform a probabilistic routing
scheme. The simulation results show that, comparing with tra-
ditional routing scheme SAC-NSGA-II, the computing service
invocation time under NRS-TLE will decrease by a minimum
of 26.42% and a maximum of 40.22%.

Index Terms—Computing power network, Named data net-
working, Computing-aware routing, transfer learning.

I. INTRODUCTION

W ITH the advent of the intelligent era, the explo-

sive growth of intelligent applications and devices

bring unprecedented traffic pressure of requesting computing

power to current Internet. Facing this trend, since 2019, the

concept of Computing Power Networks (CPN)[1] is emerged,

which aims at improving current network to effectively deal

with the soaring computing invocation traffic. To implement

CPN, Named Data Networking (NDN)[2] is regarded as

a potential solution. For NDN, named addressing is the

core difference from IP architecture. Benefitted from this

special addressing mechanism with semantic information,

NDN router can realize flexible computing service discovery

in network layer, and then match the request of invoking

computing service with the available computing service

provider (CSP) through adopting computing-aware routing

mechanism.

Obviously, to achieve effective computing resource al-

location and scheduling by NDN router, how to optimize

the computing-aware routing is a key problem. For the

existing computing-aware routing schemes, the decision

of optimal forwarding target is mainly depended on the
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awareness of network and computing factors, including link

available bandwidth to each CSP[3][4][5], link congestion

level to each CSP[3][4][5], free computing resource of each

CSP[4][5][6][7][8][9], current computing tasks queue length

of each CSP[5], and the computational overhead of requested

computing service[4], etc. But under some scenarios, espe-

cially for the machine learning task with transfer learning

support, only considering these explicit factors is not enough,

the CSP historical experience of processing the similar task

will also affect who is the optimal executor. As shown

in Fig.1, three CSPs all provide the image classification

model training service, they own the same total computing

resource and the same link quality, but they have different

free computing resource and different historical experience of

training this classification model. Where, we assume that (1)

the occupied computing resource of CSP-A, CSP-B and CSP-

C is 50%, 20%, 75%, respectively. (2) CSP-A, CSP-B are

the freshman to this classification model training task, if they

accept the task, they need to retrain the model; CSP-C has

performed the similar tasks before and owned the transferable

model, if it accepts the task, the model training time is about

90% of retraining using transfer learning. Now, when the

user offloads an image lassification model training task to the

network, if only considering the network status and available

computing resource, the router will prefer to forward the

request to CSP-B. But, in fact, the better selection is to

forward this request to CSP-C. Although CSP-C is busier

than CSP-B, CSP-C can complete this task using less time

than CSP-B due to it owns transferable model. From above

sample, we can find that, for some model training offloading

scenarios, the reasonable computing-aware routing scheme

not only depends on the awareness of network and computing

resource information, but also need to evaluate the historical

experience of processing similar task.

Fig. 1. An example of invocation under the current computing
power routing

Motivated by the development of transfer learning, we fo-

cus on the typical transfer learning scenario of classification

model training and then propose a novel computing-aware

routing scheme over NDN in this paper, which is named as

Named Routing Scheme based on Transfer Learning Experi-

ence (NRS-TLE). In NRS-TLE, the historical trained model
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Fig. 2. A simple example about model based transfer learning

accuracy is regarded as an experience. Through introducing

the average task queue length and historical experience of

CSP, a task completion capability evaluation function (tcce-

function) is designed for NDN router. Once a classification

model training request Interest is received, NDN router will

search the available CSPs according to the semantic informa-

tion carried in the Interest, then evaluate all available CSPs

using tcce-function. The evaluation results will determine the

forwarding probability of each CSP. The simulation results

show that, comparing with traditional routing scheme SAC-

NSGA-II, the computing service invocation time under NRS-

TLE will decrease by a minimum of 26.42% and a maximum

of 40.22%.

The contributions of this paper are as follows:

(1) We introduce the accuracy of trained classification

models as the experience of CSP, and then design a tcce-

function for evaluating the task completion capabilities of

different CSPs at NDN router. For the model with higher

accuracy, it can be better transferred to similar classifica-

tion task, resulting in better task completion capability of

deployed CSP.

(2) Based on the design of tcce-function, we propose

a probabilistic routing scheme. This scheme will forward

the received Interest according to the tcce-function results

of all available CSPs. Higher tcce-function result is, higher

forwarding probability is. Due to that our scheme involves

the historical experience of CSP, it can provide a more

reasonable forwarding decision.

The rest of this paper is organized as follows: Section

2 introduces the model-based transfer learning and named

computing service invocation process. In section 3, we first

present the network model and relevant parameter settings,

then describe the design and running of NRS-TLE in detail.

Section 4 shows the simulation results using ndnSIM. Finally,

Section 5 concludes the work of this paper.

II. BACKGROUND

2.1 Model-based Transfer Learning

The model-based transfer learning[12][13][15] is an im-

portant branch in the field of current transfer learning.

According to the dataset distribution, it can be divided into

two categories: (1) the dataset distribution of source task

and the target task is the same; (2) the dataset distribution of

source task and the target task is different. For the former,

the trained model of source task can be directly transferred

to the target task. For the latter, an adaptation layer needs

to be inserted into the trained model of source task before

transferring, which makes the dataset distribution of the

source task and target task closer. Due to that the methods

and applications of category (1) are relatively mature, we

select the classification task under the scenario of category

(1) as discussed computing service in this paper.

Fig.2. shows two transferable classification tasks and

the transfer processing. Where, the transferable classifica-

tion task is defined as deep classification model with the

same dataset but different labels, the processing method is

finetune[14]. As shown in Fig.2, the source task and the

target task adopt the same dataset for training, but they

are designed for different classification requirements. For

the source task, the Picture 1 and Picture 2 is annotated as

Computer bag and the Picture 3 and Picture 4 is annotated

as Schoolbag. For the target task, both Picture 1, Picture 2,

Picture 3 and Picture 4 are annotated as pack. Now the source

task has been trained, we can use the trained model (Model-

1) to generate the model of target task (Model-2). Using

finetune method, we will freeze the early layers responsible

for general feature extraction in Model-1, only retrain the last

few layers responsible for feature classification, then obtain-

ing Model-2, which is the desired classification model for

the target task. Obviously, transferring the existing model to

a new task can greatly save training time and computational

resource.

Before performing model transfer, the effectiveness of

transferring can be determined by evaluating the accuracy of

trained model. Here, model accuracy refers to the proportion

of correctly identified samples in the total number of samples.

2.2 Named Computing Service Invocation Process

In its early stages, NDN focused on the Internet scenarios

of static content delivery. Recently, with the rapid increasing

demand of invoking computing services from Internet, ex-

tending the NDN router’s capability to support named com-

puting service invocation has been an important trend. Here,

the typical design is NSC (Named service call) proposed by
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[10], which involving three “Interest-Data” transactions to

complete the named computing service invocation process.

To describe this typical process, we denote these transactions

as <I1-D1>, <I2-D2>, and <I3-D3>.

Step 1, The user initiates the computing service in-

vocation: First, the user sends an Interest (I1) with the

requested service name to invoke the computing service.

After receiving I1, the NDN router forwards it according to

the longest prefix matching rule. Due to the Interest carries

the requested service name, the named routing operation is

equivalent to the computing service discovery in the network.

When a CSP running requested computing service receives

I1, it replies a Data packet (D1) to confirm the acceptance

of this task. Within the D1, the estimated complete time

(denoted as time to complete, TTC) and the computational

result name are attached. Where, the TTC is estimated by the

feature of requested task, current free resources, transmission

delay, etc.; the computational result name is equivalent to the

address for fetching the result.

Step 2, The CSP retrieves the input parameters or

computational data: After replying D1, CSP further sends

Interest (I2) to request the input parameters or computational

data of this task. Once the user or any in-network node

owning the data receives I2, it replies Data (D2) with required

parameters or data as response.

Step 3, The user fetches the result: Since receiving D1,

the user starts a local timer according to TTC. Once the

timer expires, the user sends an Interest (I3) to request the

computing result, the name of I3 is derived from the payload

of D1. When CSP receives I3, if the task is completed, it will

reply the result as a Data packet (D3); otherwise, it will reply

an update TTC to user for notifying the new fetching time.

III. DESIGN OF NRS-TLE

3.1 Network model and parameter settings

To explore a more reasonable named routing mechanism

to support the scenario of model-based transfer learning, we

design NRS-TLE in this paper. The network model of NRS-

TLE is as shown in Fig.3, which includes three network

entities, including CSP, user, and NDN router.

(1)CSP: The CSP provides the computing services of

training classification models. For the arrival request of clas-

sification model training task, CSP first determines whether

the requested task is transferable locally or not. If the arrival

task depends on the same dataset as one local trained classi-

fication model but require different labels, CSP performs the

model-based transfer learning to generate new model with

minimized time and resource costs; if there is no similar

classification task performed before, CSP will retrain a model

for the arrival task. After completing each training task, CSP

compares the accuracy of the new model with the previous

stored model, then only keep the model with higher accuracy

and the annotation file used to achieve the highest accuracy

locally.

(2)User: The user randomly generates classification model

training task, then sends an Interest packet with the task

name to invoke the training service. Once a CSP accepts

the request, the user will further provide the training data

and annotation file to CSP, and retrieve the output model

from CSP after task completion.

(3)NDN router: The router implements the named routing

mechanism. In NRS-TLE, when receiving an Interest of

invoking classification model training service, the router will

evaluate the task completion capability of all possible CSPs

for this Interest, determine the forwarding probability based

on the evaluation results, and then execute the probabilistic

forwarding.

To clearly describe our scheme, the followings are some

settings and symbol definitions involved in NRS-TLE.

(1) Suppose there are N CSPs in the network, where the

i-th CSP is defined as Pi, 1 ≤ i ≤ N ;

(2) Each CSP provides M classification model training

services. For the j-th classification model training service,

it is denoted as Task(j), 1 ≤ j ≤ M ;

(3) To simplify the task processing, we assume that each

CSP stores all required datasets for classification model

training. So, they only need to request the annotation file

when they deal with the task;

(4) For Pi, its average task queue length is denoted

as Len(i), its average task complete time is denoted as

Time(i). If we further assume that ACC(i, j) is the his-

torical maximum model accuracy of Task(j) trained by

Pi, Pi will update ACC(i, j) after completing a new train-

ing of Task(j). If Pi never executes the Task(j) before,

ACC(i, j) = 0;

(5) For each NDN router, it owns K interfaces and the

k-th interface is denoted as face(k), 1 ≤ k ≤ K;

(6) To support the running of NRS-TLE, NDN router

maintains a special table, we name it as State Base. As shown

in Fig.3, the State Base records the collected awareness

information of CSPs, including their forwarding interfaces,

their running status and their providing services information;

For Pi, if it is probed by current router, the router will

record the following information in the State Base: name of

Pi, status indicator of Pi, Len(i), Time(i), each providing

service of Pi and the corresponding historical maximum

model accuracy ACC(i, j);
(7) We revise the “face” column of Forwarding Interest

Table (FIB) to “face/CSP” column. As shown in Fig.3, for

the FIB entries of classification model training services,

“face/CSP” column records their available CSPs’ names;

for other entries, “face/CSP” column records their available

faces;

3.2 Description of NRS-TLE

3.2.1 tcce-function: The tcce-function is the core of NRS-

TLE, which is used to evaluate the capability of Pi to

complete Task(j). Now we adopt f(i, j) to denote tcce-

function, it is calculated by formula

f(i, j) =

{

ACC(i, j)× 2
eγ(τ(i)−τexpect)

τ(i) > τexpect

ACC(i, j) τ(i) ≤ τexpect
(1)

τ(i) = T ime(i)× Len(i) + T ime(i) (2)

Where, γ is the discount factor, 0 ≤ γ ≤ 1; ACC(i, j) is

the historical maximum model accuracy of Task(j) trained

by Pi; τexpect is the expected complete time of user; τexpect
is the total of average queueing time and average execution

time at Pi, which is calculated by formula. According to

the above design, tcce-function both considers the historical
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Fig. 3. The network model used in this paper

processing experience of Task(j) at Pi and busy level of

Pi. If τ(i) is less than τexpect, f(i, j) is only determined

by ACC(i, j); if τ(i) is bigger than τexpect, f(i, j) will be

decreased with the increasing of τ(i).

3.2.2 Status awareness of CSP: The status awareness of

CSP is the foundation of implementing NRS-TLE. There are

two conventional modes to obtain the running information

of CSP under NDN architecture. The first mode involves

the ”Interest-Data” interaction, where CSP will insert its

own status into the replied data packet when responding any

Interest packet. But this mode will bring heavy transmission

overhead. The second mode [11] adopts status advertisement

mode, where CSP will periodically broadcast a special

Interest packet to announce its status within the network.

Usually, the announcement Interest only carries a simple

status indicator. For the NDN router, it will actively request

the detailed status of CSP only when the current received

status indicator is different from previous received indicator.

Due to the second mode works with low overhead, we follow

this idea to design a status awareness mechanism for NRS-

TLE. The entire process consists of two stages.

Stage 1. Initialization Stage

In this stage, CSP broadcasts its own status by publishing

an advertisement Interest named “/compute-service-provider-

name/seq=0”, where seq represents the status indicator and

its initial value is set as 0, compute-service-provider-name

is the CSP name. Once NDN router receives this initial

advertisement, it will send an Interest named “/Request-

Status/compute-service-provider-name/seq=0” to retrieve the

status information from advertising CSP. As a response, the

CSP will reply a Data packet with its deployed classification

model training services’ name, the maximum model accuracy

of each deployed model, current average task queue length,

estimated average completion time of deployed services.

When the response Data arrives, the NDN router will create

new entries in the local State Base and store the received

information.

Stage 2. Update Stage

The CSP periodically publishes status advertisement In-

terest packet. If its status has changed, the status indicator

within the advertisement Interest will be increased by 1 on

its previous value. When NDN router receives this Interest,

the router will search the entry of State Base according

to the CSP name, then compare the received status indi-

cator with the local stored status indicator. If they are the

same, it means that the status of CSP has not changed,

the router can discard this Interest; otherwise, the router

should send Interest with name “/Request-Status/compute-

service-provider-name/seq=number1” to retrieve the latest

status from advertising CSP.

The Fig.4 shows an example of status awareness process.

3.2.3 Running of NRS-TLE: Based on the design of tcce-

function and CSP status awareness mechanism, the NRS-

TLE running process can be divided into three steps:

Step 1 User initiates a task invocation: The user sends an

Interest named “/ModelName/DatasetName/Classification-

Training-Service/[Task=j]/Ask” to request a specific clas-

sification model training task, where, ModelName is the

target model name, DatasetName is the required dataset

name, [Task=j] means the invoked task is Task(j). The

payload of this invoking Interest includes two parts, τexpect
and the annotation file name used to train the model, e.g.,
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Fig. 4. An example of status awareness process

“/DatasetName/Label/[Task=j]”.

Step 2 NDN router implements probabilistic forward-

ing: After receiving invoking Interest, the NDN router

searches the matched entry in FIB based on the longest prefix

matching rule and obtains all available forwarding faces or

CSPs. If the matched prefix belongs to the classification

model training task, the router further searches the State

Base according to the obtained CSP name one by one. For

each available CSP, the router should calculate the tcce-

function to evaluate its task completion capability. Then,

the router scores each available face by summing all tcce-

function values from corresponding CSPs. Suppose for the

requested task, there is L CSPs recorded in the FIB entry,

where the L CSPs are connected by K interfaces, L ≤ N . If

the connected CSP set of the k-th interface is Sk, the score

of k-th interface is expressed as formula(3):

Score[face(k)] =
∑

Pi∈Sk

f(i, j) (3)

Then, the forwarding probability is determined by for-

mula(4):

Probability[face(k)] =
Score[face(k)]

K∑
k=1

Score[face(k)]

(4)

Step 3 CSP responses the task: Suppose that the invoking

Interest is forwarded to Pi. Once Pi receives the Interest, Pi

will firstly compare the local stored model with requested

task.

1. If local stored annotation file is the required file used

for this training, that means the local stored model is the

requested training result. Under this situation, Pi can directly

reply the local model to user without repetitive training.

2. If local stored annotation file is not the required

file used for this training, Pi must extract the payload

“/DatasetName/Label/[Task=j]” from the received Interest,

then use the extracted name to build an Interest to retrieve the

annotation file from user. After fetching the annotation file,

Pi will check the transferability of this classification task.

(1) If the classification model of target dataset is trained

before, Pi performs the transfer learning to generate a new

model for this task.

(2) If the classification model of target dataset is not

trained before, Pi will retain a model for the task.

IV. PERFORMANCE EVALUATION OF NRS-TLE

In this section, we will evaluate the performance of NRS-

TLE from the aspects of Average Invocation Time, Average

Training Quality, Average Task Queue Length, Forwarding

Task Number, Occupation Rate of CPU Resource and For-

warding Probability:

1. Average Invocation Time refers to the time from ini-

tiating a task request to receiving the computational result.

It consists of three components, the network transmission

delay, the task queuing time, and the task execution time. In

our simulation, we use ndnSIM tool to simulate the network

transmission delay and task queuing time. However, for task

execution time, it is difficult to derive from ndnSIM. There-

fore, we run the classification model training experiment

separately on a server (16 core Intel Xeon 8163 CPU and

32G memory), then measure the task execution time.

2. Average Training Quality is the statistical of all obtained

accuracy for each model, it is derived from the real training

experiment on the server.

3. Average Task Queue Length is the average tasks number

of waiting for processing in each CSP, which is used to eval-

uate the congestion level of CSPs. To derive this indicator,

we record the task queue length of each CPS every 200

simulation second from simulation begin to the end, then

calculating the average value of all records.

4. Occupation Rate of CPU Resource is the ratio of the

CPU resource consumed by different tasks to the maximum
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CPU resource of the CSPs. This indicator discloses the usage

of computing resource by each type of task under different

schemes, and the number of tasks that can be processed by

the CSPs in parallel.

5. Forwarding Probability will be get from the Forwarding

Task Number. This indicator reveals the probability of a task

being forwarded from different interfaces. We will calculate

the probability according to the different tasks’ numbers

forwarded from different interfaces.

6. Forwarding Task Number is the forwarding number

of different tasks to each CSP during the simulation. This

indicator discloses the forwarding selection of different tasks

at router side and is used to evaluate the rationality of

different routing scheme.

The comparison scheme adopted in our simulation is SAC-

NSGA-II proposed in[4], which is a typical routing scheme

based on computing-network resource awareness. In SAC-

NSGA-II, the router collects the information of transmission

delay (each link) and computational resource utilization

(each CSP), then run genetic algorithm to determine the

optimal forwarding target. For the CSP under SAC-NSGA-

II, it doesn’t support transfer learning and only executes the

task by retraining the model.

The parameter settings of our simulation are as follows.

1. The simulation topology is shown in Fig.5, including 1

user, 4 CSPs (named as S1, S2, S3, S4), and 3 NDN routers

(named as R1, R2, R3). The maximum CPU resource of each

CSP is 2.5×109cycle/s. For each link, its delay is set as 10ms

and its bandwidth is set as 1Gbps.

Fig. 5. The simulation topology

2. The datasets used for classification model training

experiment are RealWorld[12] and Product[12]. The size

of RealWorld dataset is 742MB and the size of Product

dataset is 106M. For both two datasets, we set 25 annotation

methods[12] respectively. In our experiment, the annota-

tion file names of RealWorld are defined as RealWorld1-

RealWorld25; the annotation file names of Product are de-

fined as Product1-Product25.

3. S1 and S2 provide the classification model training

service of “/ResNet50/Product”, which owns 23.5 million

parameters[16]. S3 and S4 provide the classification model

training service of “/VGG16/RealWorld”, which owns 138

million parameters[17].

4. For the CSP, it only stores the model and annotation file

associated with the highest accuracy. That means the local

stored model and annotation file will be replaced if the new

trained model has higher accuracy.

5. The user follows uniform distribution to select service

and annotation file from 50 “service-annotation” combina-

tions, then generates Interest to request the selected classi-

fication training task, the request interval is 50 simulation

second.

Based on the aforementioned settings, we first run training

experiments on the server to obtain the average transfer

learning time and retraining time for two types of ser-

vices, while recording the model accuracy for each “service-

annotation” combination under transfer learning. Next, we

run network simulation program in ndnSIM to obtain the av-

erage transmission delay and the average task queuing time.

The network simulation results are obtained by statistical of

1000 random user requests.

The final results of Average Invocation Time are as shown

in Fig.6. We can clearly see that the average invocation

time under NRS-TLE is obviously lower than that under

SAC-NSGA-II. For “/ResNet50/Product” service, the aver-

age invocation time of two schemes is 5675.8s and 8405.08s

respectively. For “/VGG16/RealWorld” service, the average

invocation time of two schemes is 7258.17s and 12609.7s

respectively. The reason is that NRS-TLE utilizes the transfer

learning method to avoid of retraining the whole model.

Fig. 6. Simulation results for the Average Invocation Time

Fig. 7. Simulation results for the Average Queue Time

Fig.7 and Fig.8 shows the detailed components of Invo-

cation Time. Fig.7 shows the detailed queue time under two

schemes. Fig.8 further shows the detailed task execution time

under two schemes, comparing with “/ResNet50/Product”,

“/VGG16/RealWorld” service under NRS-TLE can save
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more training time, the percentage of time saved is ap-

proximately 48.93%. Due to that the parameters required

retraining are depended the source model accuracy under

transfer learning mode, while NRS-TLE always selects the

CSP with higher model accuracy to forward, it can achieve

more time benefit when the requested model owning more

parameters.

Fig. 8. Simulation results for the detailed task Execution Time

About the Average Training Quality under two schemes,

Fig.9 gives the experiment results. As shown in Fig.9, the

average trained model accuracies of NRS-TLE and SAC-

NSGA-II are similar, but NRS-TLE has a slight and marginal

advantage over SAC-NSGA-II. For “/ResNet50/Product” ser-

vice, the accuracy difference of two schemes is about 1.09%.

For ”/VGG16/RealWorld” service, the accuracy difference of

two schemes is about 2.93%. This further reveals that NRS-

TLE can achieve the similar training results as the SAC-

NSGA-II scheme in a shorter time.

Fig. 9. Simulation results for the Average Training Quality

From the load balance aspect, Fig.10 shows the Average

Task Queue Length of 4 CSPs. Under SAC-NSGA-II, the

average queuing task number of S1, S2, S3, S4 is 6 tasks,

5 tasks, 5 tasks, 5 tasks, respectively, their queuing lengths

are almost same. Under NRS-TLE, the average queuing task

number of 4 CSPs has a little difference, the minimum

queuing length is 3 tasks (S4), the maximum queuing length

is 9 tasks (S2), but the difference is not high. So, we can

deduce that, SAC-NSGA-II can better balance the tasks for

4 CSPs, and NRS-TLE can also maintain the fundamental

load balance.

Fig. 10. Simulation results for Average Queue Length

Fig. 11. Simulation results for Forwarding Task Number(SAC-
NSGA-II)

Another important simulation results are the Forwarding

Task Number for 4 CSPs. Fig.11 gives the forwarding

number of two type tasks to 4 CSPs under SAC-NSGA-II,

while Fig.12 gives the forwarding number of two type tasks

to 4 CSPs under NRS-TLE. From the simulation results,

the forwarding results under two schemes are totally differ-

ent. Under NRS-TLE, the tasks of “/ResNet50/Product”are

mainly forwarded to S2, only few tasks are forwarded to

S1; the tasks of “/VGG16/RealWorld”are mainly forwarded

to S3, only few tasks are forwarded to S4. But under SAC-

NSGA-II, the forwarding proportion of “/ResNet50/Product”

task are almost same for S1 and S2, while the forwarding

proportion of “/VGG16/RealWorld” task are also almost

same for S3 and S4. The results show that, NRS-TLE will

provide more reasonable routing selection. Because NRS-

TLE forwards the training task according to the local model

accuracy stored in different CSPs, it can markedly shorten

the training result retrieving time.

Fig.13 shows the simulation results of Occupation Rate of

CPU Resource. From the simulation results, the occupation

rate of CPU resources in the NRS-TLE is much lower than

that in the SAC-NSGA-II. Because of the lower occupation

rate of a single task in the NRS-TLE, the number of tasks

that can be processed by CSPs parallelly in the NRS-TLE is

higher than that in the SAC-NSGA-II, and the CSPs in the

NRS-TLE can process tasks more efficiently.
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Fig. 12. Simulation results for Forwarding Task Number(NRS-
TLE)

Fig. 13. Simulation results for Occupation Rate of CPU Resource

Fig.14 and Fig.15 shows the simulation results of For-

warding Probability of R1. From the simulation results,

we can get 2 conclusions: (1)In NRS-TLE, most tasks of

”/ResNet50/Product” will be routed to R2 and most tasks of

”/VGG16/RealWorld” will be routed to R3. NRS-TLE can

route according to the experience of different CSPs. (2)In

SAC-NSGA-II, two kinds of tasks will be routed to R2 and

R3 with the same probability. SAC-NSGA-II is unable to

route according to the experience of different CSPs.

Fig. 14. Simulation results for Forwarding Probability of R1(SAC-
NSGA-II)

Fig. 15. Simulation results for Forwarding Probability of R1(NRS-
TLE)

Fig.16 and Fig.17 shows the simulation results of For-

warding Probability of R2. From the results, we can get 2

conclusions:

(1)In NRS-TLE, the routing probability in different inter-

faces is equal beacuse the service in S1 and S2 is the same.

The difference of NRS-TLE performance and SAC-NSGA-II

performance is not significant.

(2)In the worst-case scenario, the performance of NRS-

TLE and SAC-NSGA-II is the same.

Fig. 16. Simulation results for Forwarding Probability of R2(SAC-
NSGA-II)

V. CONCLUSIONS

Different of the existing routing schemes in Computing

Power Networks only considering the computation-network

resource, this paper takes into account the experience of

CSPs in handling similar tasks. Specifically, for the scenario

of classification model training, a novel routing mechanism

based on transfer learning experience in named computing

power network (NRS-TLE) is proposed. NRS-TLE utilizes

the accuracy of CSPs historical trained models to measure

their experience. A tcce-function is designed to evaluate

the task processing capabilities of different CSPs based on

this experience. Subsequently, a probability-based routing

scheme is devised, prioritizing the assignment of user re-

quests for model classification training to the CSP with bet-

ter training experience. Simulation and experimental results
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Fig. 17. Simulation results for Forwarding Probability of R2(NRS-
TLE)

show that, comparing with existing routing scheme that do

not consider CSP experience, NRS-TLE not only achieves

slightly superior model accuracy but also significantly re-

duces the required training time.

With the advancement of transfer learning technology,

various types of intelligent applications in the future will

increasingly utilize the historical experience to enhance

learning efficiency. Consequently, the routing decisions in

network will gradually incorporate the evaluation of CSPs’

internal experience. Although this paper only focuses on

the research of classification model training in a particular

application scenario, the exploratory work presented here

will provide valuable insights for designing next-generation

routing schemes in Computing Power Network.
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