
 
 

 

  
Abstract— This paper discusses the global output 

convergence for continuous time recurrent neural networks 
with continuous decreasing as well as increasing activation 
functions in probabilistic metric space. We establish three 
sufficient conditions to guarantee the global output 
convergence of this class of neural networks. The present 
result does not require symmetry in the connection weight 
matrix. The convergence result is useful in the design of 
recurrent neural networks with different converging 
conditions. 

 
 

Index Terms— Global output convergence, neural 
networks, probabilistic metric space.  
 

I. INTRODUCTION 
  Generally speaking, a memory is a system with three 
functions or stages: 1) Recording: storing the information; 
2) Preservation: keeping the information safely; 3) Recall: 
retrieving the information [1]. Research in psychology has 
shown that the human brain recalls by association, that is, 
the brain associates the recalled item with a piece of 
information or with another item [2].  

In this paper, we consider a continuous-time recurrent 
neural networks (RNNs) given by 

( )
( ( )) ( )

1

ndx ti w x t u tij j ijdt
φ= +∑

=
 

(0)
0

x xi i= ,  1, 2, ....i n=  

or, equivalently, in matrix format given by 
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( ( )) ( )
dx

W x t u t
dt

φ= + ,     (0) 0x x=                                    (1) 

where ( ), ,....,1 2
T nx x x x Rn= ∈  is the state vector, 

[ ] n nW w Rij
×= ∈   is a constant connection weight 

matrix, ( ) [ ( ), ( ), ... ( )]1 2
T nu t u t u t u t Rn= ∈  is a 

nonconstant input vector function defined on[0,+∞) which 
is called the time varying threshold, 

( ) [ ( ), ( ), ... ( )]1 1 2 2
Tx x x xn nφ φ φ φ=  is a nonlinear vector 

valued activation function from nR  to nR , and 
( )y xφ=  is called the output of the network(1). When 

( )u t  is a constant vector threshold, the RNN model (1) 
has been applied to content-addressable memory (CAM) 
problems in [3] and [4], and is also a subject of study in [5] 
and [6]. Recently, the RNN model (1) has been widely 
applied in solving various optimization problems such as 
linear programming problem [7], [8], shortest path 
problem [9], sorting problem [10].  

The RNN model (1) is different from the well-known 
Hopfield neural networks which have been used in some 
optimization problems, e.g. [11], and [12]. In some 
applications of neural networks (e.g., CAM), the 
convergence of the network in the state space is a basic 
requirement [13], while in other applications (e.g., some 
optimization problems), only the convergence in the 
output space may be required [14],[15] and [16]. Recently, 
global asymptotic stability and global exponential stability 
of the Hopfield neural networks have received attention, 
e.g., [17], [18], [19], and [20]. Within the the class of 
sigmoidal activation functions, it was proved that negative 
semi definiteness of the symmetric connection weight 
matrix of a neural network model is necessary and 
sufficient for absolute stability of the Hopfield neural 
networks [21]. This paper investigate the global output 
convergence of the RNN model (1) by employing different 
converging conditions for continuous and monotone 
non-decreasing activation functions. Many authors have 
been studied the convergence theorem for obtaining the 
stable points in probabilistic metric space [22], [23], [24].  
We establish three sufficient conditions for the global 
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output convergence by extending the results of these 
papers. As a consequence, the present results expand the 
application domain of the RNN model (1). 

The remainder of this paper is organized as follows. In 
Section II, some preliminaries on recurrent neural network 
probabilistic metric space and Menger probabilistic metric 
space are presented. Convergence results are developed in 
Section III. An illustrative example is given in Section IV. 
Finally we concluded the results in Section V.    

 

II. PRELIMINARIES AND ASSUMPTIOS 

We assume that the function φ (.) in (1) belongs to the class 
of Menger probabilistic metric space and is continuous, 
monotone non decreasing distributive activation function; 

that is , for φ(.) there exist a mapping :f R R+→  and 
inf ( ) 0f x = , and sup ( ) 1f x = . 

Definition2.1: A probabilistic metric space (PM space) is 
an ordered pair ( , )X F  , X  is a nonempty set and 

:F X X L× → , where L is the set of all distribution 
function, is a mapping such that (1) ( , ) 1, 0F p q x= ∀ > , 
iff p = q (2) ( , , 0) 0F p q = , (3) ( , ) ( , )F p q F q P=  (4) 

( , , ) 1F p q x = , ( , , ) 1F q r y = ( , , ( )) 1F p r x y⇒ + = . It 
can be noted that ( , , )F p q x  is value of the function  

( , )F p q L∈  at x R∈ . 

Definition2.2: A mapping : [0,1] [0,1] [0,1]t × →  is called 
t-norm if it is non decreasing, commutative, associative 
and  

( ,1) [0,1]t a a a= ∀ ∈ . 

Definition2.3: A Menger PM space is a triple ( , ; )X F t   
where ( , )X F   is a PM space and t is t-norm such 
that

( , , ( )) [ ( , , ), ( , , )] ( , ) 0F p q x y t F p q x F q r y x y+ ≥ ∀ ≥ . 

Definition2.4: A sequence { }pn  in X  is said to 

converges p X∈  iff 0ε∀ >  and 0λ > , ∃  an integer 

M  such that ( , , ) 1nF p p ε λ> −  , n M∀ ≥ . Again 

{ }pn  is a Cauchy sequence if 0ε∀ >  and 0λ >  ∃  an 

integer M  such that ( , , ) 1n mF p p ε λ> −  .m n M∀ ≥ . 

Lemma2.5: Suppose { }pn  is a sequence in Menger space 

( , ; )X F t  , where t is continuous and ( , )t x x x≥ , 
[0,1]x∀ ∈ . If [0,1]k∃ ∈  such that 0x∀ >  and positive 

integer n such that ( , , ) ( , , )1 1F p p kx F p p xn n n n≥+ − ,x), 

then { }pn  is a Cauchy sequence. 

Remark: The above lemma can also be written as 
“Suppose { }pn is a sequence in Menger space ( , ; )X F t , 

where t is continuous and ( , )t x x x≥ [0,1]x∀ ∈ . If 
1k∃ >  such that 0x∀ >  and positive integer n , 

( , , )1F p p kxnn− 1( , , )n nF p p x−≤ , then { }pn  is a 

Cauchy sequence”. This is possible because if for 1k >  
and ( , , )1F p p kxnn− 1, ( )

n np pF x
−

≤ , then ( , , )1F p p xnn−  

,1( , ( / ))n nF p p x k−≤  = ,1( , '( ))n nF p p k x−  ⇒  

,1( , '( ))n nF p p k x− ( , , )1F p p xnn≥ −  where 

' (1 / ) (0,1)k x= ∈  so by  the above lemma { }pn is a 
Cauchy sequence. 

Definition2.6: Let ( , )X F   be a PM space and 
:f X X→  be a mapping defined on X. Then f  is said 

to converging if [0,1]k∃ ∈  such that ,p q X∀ ∈ , 
( ( ), ( ), )F f p f q kx ≥  ( , , , ), 0F p q x X∀ > .  

Theorem2.7: Every converging mapping has at most one 
stable point if exists.  

Lemma2.8: If ( , )X d   is a metric space, then the metric d  
induces a mapping :F X X X× →  defined by 

( , , , )F p q x  = ( ( , )),H x d p q− ,p q X∈  and x R∈ .  

III. CONVERGENCE ANALYSIS 
In this section, we will establish the global output 
convergence of the RNN model (1). We first prove the 
following theorem that pertains to the existence and 
uniqueness of solution of the RNN model (1).   
Theorem3.1: Let ( , ; )X F t   be a complete Menger space 
and ( , )t x x x≥  for all x in [0,1]. If f be a self mapping on X 

and { }pn  is a Cauchy sequence defined by { }pn  = 

1fpn−  converges to p  in X. then p is a stable point of f. 

Proof:  Since np  converges to p so n → ∞ 

,( , / 2)nF p p x 1= . Due to continuity of f , 

,( , / 2) 1nF fp fp x = ,again, 
          

,( , )F fp p x [ ( , , / 2), ( , , / 2)]nt F fp fp x F fp p xn≥  , 

for n → ∞, ,( , )F fp p x [1,1] 1t≥ =  for all 0x >  . 
Therefore by the property of distribution 
function ( )f p p= . 
Theorem3.2: Let ( , ; )X F t   be a complete Menger space 
and ( , )t x x x≥  for all x in [0,1]. If f  and g  are two self 
mapping on X, such that  
                   (I)  ( , , )F fp fq x  ( , , )F gp gq x≥ , for all p, q 
in   X and x > 0, 
 

(II) f is continuous, 
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(III) g is converging. 
Then f has a unique stable point. 
Proof: Suppose p0 be an arbitrary point in X, construct a 
sequence { }pn defined by 1n np fp −= . Since g  is 
converging so there exist a real number k in (0, 1) such that  
     , 1( , )n nF p p kx−  =  ,1( , )nnF fp fp kx−   

                                   ≥  ,1( , )nnF gp gp kx−  

                                   ≥ ,1( , )nnF p p x−  

By lemma (2.5) { }pn is a Cauchy sequence. Since 

( , ; )X F t be a complete Menger space so pn  → p in X. 
Therefore by theorem (3.1), p is unique common stable 
point of f. Uniqueness follows from theorem (3.1). 
Definition3.3: Let ( , ; )X F t be a  Menger space. A 
mapping f, defined on X is called dual convergence if there 
exist k > 1 such that, ( , , )F fp fqx kx  ≤  ( , , )F p q x  ,  x > 0. 
 Theorem3.4: Let ( , ; )X F t be a complete Menger space 
and ( , )t x x x≥  for all x in [0,1]. If  f  be onto self mapping 
on X and f  is dual convergence. Then f has a unique 
common stable point. 
Proof: If p ≠ q and fp fq=  then1 ( , , )F p q x≤  which is 
not possible because1 ( , , )F p q x< . So f is one to one and 

onto mapping. Let 1f g− = . Then by dual convergence  
( , , )F p q kx ≤   ( , , )F gp gq x ,for all p, q in X and x > 0, 
( , , (1/ ) )F gp gq k x = ( , , ' )F gp gq k x  

                                  ≥ ( , , )F p q x , (1 / ) 'k k=    , 0 < k   

<1. 
Then g is converging and satisfy all the conditions of 
theorem (3.2), so there exist   p0  in  X   such that,                             

1
0 0 0 0( ) . ( )g p p f p p−= = which implies that 

0 0( )f p p= .Therefore, p0  is a unique fixed point of f .  
Theorem3.5: Let (X,F,t) be a complete Menger 
probabilistic metric space where Fp,q  is strictly increasing 
distribution function and f :X → X  is  continuous 
mapping. If there exist a real number k in (0, 1) such that  

( , , )F fp fq kx  ≥ min { ( , , )F p q x  , ( , , )F p fp x , 

( , , )F q fq x , ( , , )F q fp x , 2( , , )F fq f p x }.Then, there 
exist a unique stable point. 
Proof: Let 0 Xp ∈ , Construct a sequence ( )1pn f pn= − , 
n  = 1, 2, 3…………….Then  

1( , , )n nF p p kx− = 1( , , )n nF fp fp kx−   

( ) ( ) ( ) ( )min{ , , , , , , , , , , ,1 1 1 1F p p x F p p x F p p x F p p xn n n n n n n n≥ − − − −

i.e ( ), ,1F p p kxn n− ≥ min { ( ), ,1F p p xn n− , ( ), ,1F p p xn n− } 

( ), ,1F p p kxn n−   ≥  ( ), ,1F p p xn n− ,x > 0. 

Therefore, by lemma 2.5 { }pn is a Cauchy sequence. 

Since ( , ; )X F t is complete so pn   → p ∈ X. Then by 

theorem (3.1), p is a unique stable point of f. For 
uniqueness suppose ( )f p p= , f (q) = q. Then 

( , , )F p q kx = ( , , )F fp gq x ≥ min { ( , , )F p q x , 
( , , )F p p x , ( , , )F q q x , ( , , )F q p x } 

i.e.  ( , , )F p q kx ≥  ( , , )F p q x . 

Which is not possible so p = q. Because ,Fp q is strictly 

increasing function and kx < 0. 
Theorem3.6: Let ( , ; )X F t be a complete Menger 

probabilistic metric space where ,Fp q   is strictly 

increasing distribution function and , :f g X X→ is  
continuous mapping. If there exist a real number k in (0, 
1), such that  

( , , )F fp gq kx ≥ min { ( , , )F p q x , ( , , )F p fp x  , 

( , , )F q gq x } . 
Then, f and g have a unique common stable point. 
Proof: Let 0 Xp ∈ , Construct a sequence  { }pn defined 

by          2 2 1( )n nf p p += ,  2 1 2 1gp pn n=+ + , n  = 1, 2, 
3……If 2 1n r= + . 
then 1 -1( ,   ,  ) min{ (  ,   , ),  n n n nF p p kx F p p x+ =  

1(  ,   , )}n nF p p x+ .

( ) ( ) 2,, , , ,1 1 kx xn rp qF p p kx F p p x fn nn n < =≥+ −

( ) ( ), , , ,1 1F p p kx F p p xn nn n≥+ − . Because ,p qf  is 

strictly increasing function and kx x< . Again if 2n r=  
then - F(pn, pn+1 , kx) =   F(pr, p2r+1 , kx) =    F(gp2r-1, fp2r , 
kx) 
      ≥ min { F(p2r , p2r+1 ,x), F(p2r , p2r+1 ,x), F(p2r-1 , p2r ,x)} 
F(pn, pn+1 ,kx) ≥ min{F(p2r , p2r-1 ,x), F(p2r,  p2r+1 ,x)} 
F(pn, pn+1 ,kx) ≥  F(pn , pn-1 ,x), x > 0.  
Therefore for every +ve integer n  
                F(pn, pn+1 ,kx) ≥  F(pn , pn-1 ,x). 
Therefore, by lemma 2.5, {pn } is a Cauchy sequence.  
Then pn   → p ε X. Since {p2n+1 } ,  {p2n }  is a subsequence 
of {pn } so  
 p2n+1   → p, p2n   → p, then   
F (p) = p and g(p)=p,  that is  p is a common stable point of 
f and g. For uniqueness suppose p and q are two common 
stable point f and g. Then 
F(p, q, kx) = F(fp, gq,  kx)  
                  ≥ min { F(p, q, x) , F(p, p, x) , F(q, q, kx)}.  It 
implies that  
 F(p, q, kx) ≥ F(q, p ,x). 
Which is not possible because fp ,q is strictly increasing 
function  and kx < x. Therefore f and g have a unique 
common fixed point. 
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IV. ILLUSTRATIVE EXAMPLE 
In order to prove the above theorem, we can take X = [0,1], 
a Menger space with usual metrice. Let f,g:X→X is 
defined as  
    f(p) = 2p3 
    g(p) = p3, then  
f(p) ≥ g(p)  ∀ p, i.e. F(fp, fq,x) ≥  F(gp, gq,x), ∀ p,q ∈ X, x 
> 0. Clearly f and g satisfy all the conditions of above 
theorems and f has a unique stable point 0. 
              To verify the Theorem 3.6, let us take the 
example X = [0,∞] is a Menger space with usual metrice. 
Suppose f,g:X→X is defined as – 
    f(p) = p, if p ∈ [0,1] 
           = 1, if p ∈ [1,∞] , and  
     g(x) = p / (1+p) ,  for all p ∈ X. 
Then f and g will satisfy all the conditions of theorem 3.3. 
Further, f and g have unique common stable point 0. Since 
Theorem 3.2 is a particular case of Theorem 3.3, so if we 
take g = I (Identity map) in the above example, then, we 
have stable point of f . 

 

V. CONCLUSION 
In this paper, we have established global output 

convergence for a recurrent neural network with 
continuous and monotone non-decreasing activation 
functions in Menger probabilistic metric space. Three 
sufficient conditions to guarantee the global output 
convergence of this class of neural networks have been 
established. These results extend existing results and are 
very useful in the design of recurrent neural networks 

REFERENCES 
[1] S. Brunak and B. Lautrup, Neural Networks:Computers with 

Intuition. Singapore: World Scientific, 1990. J. Clerk Maxwell, A 
Treatise on Electricity and Magnetism, 3rd ed., vol. 2. Oxford: 
Clarendon, 1892, pp.68–73. 

[2] J. Anderson, An Introduction to Neural Networks. Cambridge, MA: 
MIT Press,1995. 

[3] J.J Hopfield, Neural Networks and physical systems with emergent 
collective computational abilities, Proc. Nat. Acad. Sci. vol. 79, 
pp.2554-2558, 1982. 

[4] J.J. Hopfield, Neurons with graded response have collective 
computational properties like those of two-state neurons. Proc. Nat. 
Acad. Sci, vol. 81,pp.3088-3092.,1984. 

[5] A. Bhaya, E. Kaszkurewicz, and V.S. Kozyakin. Existence and 
stability of a unique equilibrium in continuous-valued discrete-time 
asynchronous Hopfield neural Networks IEEE Trans. Neural 
Network, vol. 7, pp.620-628, 1996. 

[6] M. Takeda and J.W. Goodman, Neural Networks for Computation, 
vol.25, pp3033-3046,1986. 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
[7] J. Wang, Analysis and Design of a recurrent neural network for 

linear programming, IEEE Trans. Circuits Syst., vol.40, 
pp.613-618, 1993. 

[8] J.Wang, A deterministic annealing neural network for convex 
programming, Neural Networks, vol.7, pp.629-641, 1994. 

[9] J. Wang, A recurrent Neural Network for Solving the Shortest Path 
Problem, IEEE Trans. Circuits Syst, vol43, pp.482-486, 1996. 

[10] J. Wang, Analysis and Design of an analog sorting Network, IEEE 
Trans. Neural Networks, vol6,pp. 962-971,1995. 

[11] M.Forti and A.Tesi, New conditions for global stability of Neural 
Networks with applications to linear and quadratic programming 
problems. IEEE Trans. Circuits Syst, vol.42, pp.354-366,1995. 

[12] J.J.Hopfield and D.W. Tank, Neural Computation of Decision in 
Optimization Problem. Boil. Cybern, vol.52,pp.141-152,1985. 

[13] A.N.Michel and D.Liu, Qualitative Analysis and Synthesis of 
Recurrent Neural Networks, New york: Marcel Dekker, 2002.  

[14] J.Wang, Analog Neural Networks for solving the Assignment 
Problem, Electron. Lett., vol28, pp.1047-1050, 1992. 

[15] J.Wang, Analysis and Design of a Recurrent Neural Network for 
Linear Programming, IEEE Trans. Circuits Syst., vol 
40,pp.613-618, 1993. 

[16] J.Wang, Primal and Dual Assignment Networks, IEEE Trans. 
Neural Networks, vol 8,pp. 784-790, 1997. 

[17] X.B. Liang and T.Yamaguchi, Necessary and sufficient Condition 
for absolute exponential stability of Hopfield-type neural networks, 
IEICE Trans. Inform. Syst, vol.E79-D, pp.990-993, 1996. 

[18] X.B. Liang and J. Si, Global exponential stability of neural 
networks with globally lipschitz continuous activations and its 
application to linear variable inequality problem, IEEE Trans. 
Neural Networks, vol 12, pp. 349-359, 2001.  

[19] H.Qiao, J.G. Peng, and Z.B. Xu, Nonlinear Measures: A new 
approach to exponential stability analysis for Hopfield-type neural 
net, 2001. 

[20] Y. Zhang, P.A. Heng, and  A.W.C. Fu, Estimate of exponential 
convergence rate and exponential stability for neural networks, 
IEEE Trans. Neural Networks, vol 10, pp. 1487-1493, 1999.  

[21] M.Forti, S.Manetti, and M.Marini, Necessary and sufficient 
condition for absolute stability of neuralnetworks, IEEE Trans. 
Circuits Syst, vol 41,pp.491-494, 1994. 

[22] B.S. Lee, Fixed point theorem in probabilistic metric space, Math 
Japonica 45,m vol1,pp.89-96,1997. 

[23] B.D. Pant, R.C. Dimri, and V.B. Chandola, Some results on fixed 
points of probabilistic densifying mapping.,Bull. Cal. Math 
Soc,96(3)pp.189-194,2004. 

[24] V.M.Sehgal,and A.T.Bharucha-Reid, Fixed point of contraction 
mapping on probabilistic 
space,Math.System.theory,vol6,pp.97-102, 1972. 

 

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008


