
 

 

 

  

Abstract—This article presents a global optimization 

algorithm of the interval type that requires only a limited 

amount of memory and treats standard constraints.  It is shown 

to be able to find one globally optimal solution under certain 

conditions. It has been tested with many examples with various 

degrees of complexity and a large variety of dimensions ranging 

from 1 to 100 in a basic personal computer.  The numerical 

experiments have indicated that the algorithm would have a 

better chance to successfully find a good approximation of a 

globally optimal solution than a recently proposed memoryless 

version. Yet, it still finds such a solution much more quickly and 

using much less memory space than a conventional interval 

method. The effects of the memory size on reliability and overall 

efficiency are investigated.  A good compromised algorithm 

would require only a very limited memory size. 

 
Index Terms—Constraints, Global optimization, Interval 

algorithm, Limited memory.  

 

I. INTRODUCTION 

  Many important operations research problems aim at 

solving this problem  

            minimize f(x),                         

            subject to h(x) = 0, g(x)≤ 0, x∈X.                      (P) 

There are two commonly used global optimization 

approaches: stochastic or deterministic. Stochastic algorithms 

search the whole domain only in a probabilistic fashion so that 

at most they can yield a good estimate of a globally optimal 

solution in a probabilistic sense. Stochastic search methods 

(such as the simulated annealing method and genetic 

algorithms) have been more popular choices than 

deterministic methods because of their simplicity of 

implementation, relative quickness for reaching an 

approximate solution, less memory demands, and a wider 

range of applicable problems.  Deterministic algorithms offer 

attractive alternatives for solving problem (P).  They are 

generally based on the idea of branch and bound [11]. Among 

them, interval methods offer both sound theoretical 

foundation and reliable numerical solutions [14].  Despite 

attractive features of the interval method, most published 

reports on their applications seem to be generally limited to 

optimization problems in low dimensions (say, much less than 

100 according to our recent survey of literature).  Obviously, 

there are three major concerns in solving large dimensional 
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problems: large amount of memory space, slow speed of 

convergence, and requirement of acceptable bounds of the 

objective function over any interval subdomains.  A 

memoryless interval algorithm has been recently proposed, 

aiming at easing the first two concerns [17].  Indeed, the 

reported results have indicated that the memoryless interval 

algorithm significantly improved memory requirement and 

convergence speed, while retaining a good degree of 

reliability.  This article reports one new version of the interval 

algorithm that shows improvement in reliability while 

sacrificing little both in memory space usage and in overall 

speed of convergence.   

II. INTERVAL METHODS 

   The standard branch and bound method was originally 

introduceed in [5] and [10], and more recently presented in 

[11].  Its main idea is the recursive refinement of partition of 

the search domain and underestimation of f(x) over the 

partitioned subdomains.  Interval methods (see [14] for 

earlier work) are in the general framework of branch and 

bound along with interval arithmetic.  The interval arithmetic 

provides an effective means of underestimation of 

programmable functions, and offers an additional benefit of 

including roundoff errors.  Following the initial works in late 

1950s and early 1960s, research on interval methods became 

a more heated topic from late 1970s to early 1990s (cf. [1], 

[16], [8]) among many researchers in several fields.  A solid 

foundation had been laid by the end of 1980s.  Subsequent 

improvements were done since 1990s (e.g., [4], [3], [18], 

[15], [20]).   

     Let f* be the global minimum value of the objective 

function f(x), and x* a global minimizer in X.  As in the 

interval analysis literature, we use boxes and intervals 

interchangeably. A typical interval method uses 2 major 

objects, a list L that holds all the subintervals of partitions that 

remain to be processed, and an inclusion function F(Y) = 

[Lb(F(Y)), Ub(F(Y))] that offers a lower bound and an upper 

bound of f(x) over any box Y to be processed. The general 

procedure would consist of these major steps. 

 

Algorithm 1. (Standard interval algorithm for global 

optimization) 

   1). Initialization. Set the list L = φ. Set the working box 

Y=X. 

   2). Subdivision of Y.  The algorithm splits up Y into 

subboxes.  Add the resulting subboxes to L. 

   3). Deletion conditions:  To increase efficiency of the 

method, unwanted boxes V (where no global minimizer can 

be located) need to be identified and then deleted.  
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  4). Selection of a new working box Y from L. 

  5). Termination criterion.  Obviously, any interval algorithm 

stops if there are no more boxes to be processed.  But 

practically, it may stop earlier according to some other 

termination criteria. 

     Two well known early versions of interval methods 

(Ichida-Fujii [12] and Hansen [8]) fall into this framework. 

Ichida-Fujii’s algorithm selects a new working box based on 

the smallest lower bound of inclusion function, while 

Hansen’s algorithm selects a new working box based on the 

oldest age or on the largest size.  By now, there are a large 

variety of implemented versions of the interval method (e.g., 

[3], [18]).  There are also several accelerating devices 

reported in the literature.  Interval methods have been used for 

solving many different kinds of mathematical problems 

arising from various fields of applications. But a quick survey 

of a large number of published reports on their applications 

seems to indicate that they are generally limited to problems 

in fairly low dimensions (say, much less than 100 in most 

cases).  Obviously, there are indeed two major concerns in 

solving large dimensional problems: large amount of memory 

space required to hold boxes for further processing, and slow 

speed of convergence due to a large number of boxes to be 

processed.   

     Maintaining a memory structure is seen as a very common 

strategy in many global optimization methods. Genetic 

algorithms and its variations explicitly maintain a population 

of candidate solutions.  Tabu search [7] maintains a tabu list 

that represents information about recently visited solutions.  

A standard interval algorithm keeps track of a list of all the 

subboxes that might contain some global solutions. In case 

unisolated global solutions exist, this list can grow very 

quickly without a finite bound.  There is even a 

memory-based version of simulated annealing [2]. Even some 

local search methods also employ a memory structure. One 

typical example is the BFGS quasi-Newton method where an 

approximate inverse Hessian matrix has to be memorized 

between two consecutive iterations of update.  

     Memory structures are used in various algorithms for 

different purposes. In the case of standard interval algorithm, 

a list of boxes with unlimited length is used to ensure that no 

global solutions will be lost. But whether all the global 

solutions will be identified to any desired degree of accuracy 

depends on specific implementation of the algorithm.  For 

example, only one global solution is guaranteed to be 

estimated accurately by the standard Ichida-Fujii algorithm.  

But the standard Hansen’s algorithm is capable of identifying 

all the global solutions (possibly under expanses of a lot more 

CPU times).  It is commonly believed that any optimization 

method that is capable of identifying one global solution or a 

good estimate of one global solution within a reasonable time 

frame would be of a good practical value.  One memoryless 

interval algorithm was recently designed, which only targets 

one global solution in a way similar to Ichida-Fujii interval 

algorithm.  But for the other global solutions, it no longer 

commits any computer memory and CPU time since they may 

not be extracted accurately anyway. It trades the loss of other 

global solutions with much improved memory requirement 

and convergence speed. It completely abandons the list, 

breaking away from the standard memory philosophy of the 

interval method and the branch-and-bound method in general.  

 

Algorithm 2. (Memoryless interval algorithm for 

unconstrained global optimization) 

  1). Initialization. Set the working box Y=X. 

  2). Subdivision of Y.  The algorithm splits up Y into 

subboxes.  

  3). Deletion conditions:  Unwanted subboxes are 

identified and deleted.  

  4). Reset Y to the subbox V with the lowest Lb(F(V)). 

  5). Check termination criterion.   

     The 3 major steps can be implemented without using a list. 

Theoretically, the memoryless algorithm is guaranteed to 

capture one global solution under certain conditions. 

Numerically, it has a good chance to capture one global 

solution.  It is an interval algorithm with the least amount of 

memory requirement. Thus it is likely the fastest interval 

algorithm.  But several important issues remain to be 

investigated. One of them is the improvement of reliability. 

We address this issue by reintroducing the list.  But unlike the 

standard interval method, the list is no longer unlimited.  We 

add a small hard limit M on the length of list. 

 

Algorithm 3. (Limited memory interval algorithm for 

unconstrained global optimization) 

Given f(x), X, M, and F(.).  

Step 1. Initialization: 

  Step 1a. Set a working interval Y=X.  Set the list L = φ. 

  Step 1b. Get F(Y). 

                Save fbest = f(c), where c = Mid(Y).  

  Step 1c. Set y = Lb(F(Y)). 

Step 2. Update:  

  Step 2a. Take any k in {i: Wid(Y) = Wid(Yi)}, where Y = 

Y1x Y2… xYd. 

  Step 2b. Bisect Y normal to the coordinate direction k, 

obtaining intervals V1 and V2. 

  Step 2c. Get F(V1) and F(V2). 

  Step 2d. Set y1 = Lb(F(V1)), y2 = Lb(F(V2)). 

  Step 2e. Deletion.  Check deletion condition(s) to see if V1 

and V2 can be deleted. For example, 

                 fbest < yi � Delete Vi, for i=1, 2. 

  Step 2f. Place surviving box(es) into list L. If the total 

number of boxes in L exceeds M, only the M boxes with the 

best y-values are kept. 

  Step 2g. Selection. Select a box from L that has the smallest 

y-value as Y, and the corresponding y-value becomes y.  

  Step 2h. Update fbest = min{fbest, f(c)}, where c = Mid(Y).  

Step 3. If one of the prescribed termination criteria holds, then 

stop with output: 

             f*≅ y, f* ∈ F(Y), x*≅ Mid(Y). 

Step 4. Go to Step 2. 

Theoretically, the new algorithm is guaranteed to capture 

one global solution under the same conditions used for the 

convergence of the memoryless algorithm. Numerically, it has 

a better chance to capture one global solution. A large amount 

of supporting numerical evidence will be presented in the next 

section.  Some of our test examples contain additional 

constraints. When constraints are present in (P), the algorithm 
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can be adjusted to handle them (see [17] or [18]).  

 

III. NUMERICAL RESULTS 

   In our implementation of interval algorithms 1-3, several 

other acceleration devices are incorporated whenever 

appropriate.  

     Lp = a primary list of boxes that represents the remaining 

region to be searched. This is used only in algorithm 1. 

     Ls = a saved list of boxes that are not deleted but do not 

need to be further processed (i.e. inactive) according to some 

prescribed tolerances (εbox, εf) listed below. This is used 

mainly in algorithm 1. 

     εbox = a small box size threshold.  Any active box V with 

size Wid(V) less than εbox will be moved from Lp to Ls.  

     εf = a small threshold of deviation of the objective function 

values.  Any active box with the fluctuation of the objective 

function value less than εf will be stored into Ls as well. 

     nfmax = the maximum number of function (f(.) or F(.)) calls 

allowed. It is checked only once for every certain number of 

iterations. This limit is relaxed when an algorithm continues 

to improve its best solution. 

     cpumax = the maximum CPU time allowed. It is also 

checked once for every certain number of iterations. 

     A bad initial solution is supplied to each algorithm for 

every test example.  It is used to initialize fbest.  However, 

when constraints are present, an infeasible initial solution is 

intentionally selected which increases degree of difficult and 

reduces success rate under the specified stopping conditions.  

     To test performance of the new algorithm, we have used a 

large number of examples with or without constraints.  Most 

of these examples have been widely used by other people for 

testing their new optimization algorithms (e.g., [6], [9], [13], 

[18] , [19]).  Among those are: Rastrigin function, Goldstein- 

Price function, piecewise function, Levy functions, Branin 

function, Shubert function, our linear complementarity 

problem, our discrete Halmilton-Jacobi-Bellman equation 

problem,  De Jong function, Colville function, Griewank 

function, Rosenbrock function, Zakharov function, sphere 

function, Schwefel functions, step function, and Ackley 

function. Modified versions of some of those functions have 

been included as well. Among those examples, 16 of them are 

formulated with flexible dimensions. We vary those 

dimensions as 4, 10, 40, and 100. Different dimensions 

resulted in different test examples.  The total number of 

examples we have tested is over 100.  Their dimensions vary 

from 1 to 100. Many of those examples are often regarded as 

difficult benchmark examples by other people. Obviously it is 

not a good idea to explicitly state all those examples.  Since 

all the test examples are taken from published papers, the 

currently best known objective function value of each 

example is generally available.  If it is not available, our own 

best solution is adapted. Thus we have shifted each objective 

function so that the currently best known objective function 

value of any optimization problem becomes zero.  

Constrained and unconstrained problems are separately 

grouped so that we may get a better idea of effect of 

constraints on the performance of the algorithms. Similarly, 

problems are further divided into 4 groups in terms of the size 

of dimension (1-6 for small dimensions, 9-13 for medium 

dimensions, 40-100 for high dimensions). Limits on the 

number of function calls and CPU time consumption are set to 

different values for the different ranges of dimensions.  The 

same examples are also included in [17]. But test results are 

not identical for the first 2 algorithms since different sets of 

algorithm parameters have been used so that new numerical 

results are generated instead of duplication of existing results.  

 We have used two ranking scores (originally introduced in 

[17]) to quantitatively measure the performance of each 

algorithm. One of them is a composite ranking score to 

quantitatively compare various results.  A composite ranking 

score Rq reflects the quality of the final solution in terms of the 

objective function value as well as the maximum amount of 

constraint violation.  More precisely, we first calculate a 

ranking score rf based on the final best objective function 

value (called fbest).  

 

Then  we calculate a ranking score rc based on the maximum 

amount of constraint violation of the final best solution Vc = 

max{|hi(xbest)|, max{0, gj(xbest)}: i=1,…, m,  j=1,…, p}. 

The composite ranking score for solution quality is then 

defined as 

                               Rq = max{rf, rc}.  

The other score is the total number of objective function (f(.) 

or F(.)) calls (nf or nF). Those two scores would reflect the 

effectiveness of global optimization algorithm. For 

constrained optimization problems, each algorithm would 

require a certain number of calls of the constraint functions. 

Those calls have been omitted when the number of function 

calls is calculated. We observe that the original objective 

function and its inclusion function would require significantly 

different computational efforts.  So they are separately 

counted. Then additional numerical tests are performed to 

estimate how many f-calls (say, NFf) would be equivalent to a 

single F-call.  This factor is used to determine a combined 

number of objective function calls.  

                           Rnf = nf +  NFf*nF.                                                            

The total number is a major effectiveness indicator. But CPU 

time would also include various CPU time overheads required 

by each algorithm. But due to page limitations, CPU results 

are omitted.    

     Numerical results of 6 different sets of examples are 

presented below.  A separate table is displayed for each set of 

examples. We have implemented all the three interval 

algorithms. Their main difference is the limit on the length of 

list L. The limit is 1 for the memoryless interval algorithm 

(MLIA). The standard interval algorithm (SIA) uses a fairly 

large limit (say, 50,000) and it stops when that limit is 

reached. The new limited memory interval algorithm 

(LMIA(M)) is tested with limit values M=2, 3, 4, 5, 6, 7, 8, 9, 

Objective Function Value: Ranking Score rf (f* = 0) 

fbest <0.001 <0.01 <1.0 < 10 ≥ 10 

rf 1 (best) 2 3 4 5 

Constraint Violation Amount: Ranking Score rc (V*c = 0) 

Vc   <0.01 <0.1 <1.0 < 10 ≥ 10 

rc 1 (best) 2 3 4 5 
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10, 20, 30, 40, and 50.  These values are shown in the first row 

of each table given later.  

     The main body of each table contains two sets of data 

separated by /: quality ranking scores Rq and percentage of Rnf 

relative to the maximum value in each row.  Several 

percentage figures show 00, indicating the fact that those Rnf 

values are of at least 2 orders of magnitudes smaller than their 

respective maximum values. The first column shows the 

example id.  The second column contains |L|, the actual size of 

list L under SIA.  Each of the remaining columns contains Rq 

over Rnf-percentage. The bottom two rows are averaged 

values of Rq and Rnf-percentage. All of the test results have 

been generated by an AMD Turion 64 X2 mobile technology 

TL-58 /1.9GHz laptop computer with 2GB of RAM under 32 

bit Windows Vista environment.   

   Example set 1. This set contains 41 examples of small 

dimensions ranging from 1 to 6 that do not contain any 

constraints other than the bound constraints. Summary of the 

test results is shown in Table 1. Clearly, MLIA is consistently 

the fastest. Although LMIA(M) with small M values may take 

a little bit more time to converge, they usually improve the 

quality of final solution. SIA is most reliable. But it requires 

more computational efforts most of times. 

  Example set 2.  This set contains 20 examples of small 

dimensions between 1 and 6 with additional equality and\or 

inequality constraints.  Now the overall ranking Rq would 

reflect the quality of final solution in terms of its objective 

function value as well as the amount of constraint violation. 

Summary of its test results is in Table 2. Generally speaking, 

the performance of each algorithm is down a little compared 

with its performance on unconstrained problems. This is 

partially due to the fact that we used the worst case scenario in 

the initialization step as pointed out in Section II. 

  Example set 3.  This set contains 15 unconstrained 

examples of medium dimension 10.  Summary of the test 

results is in Table 3. The new algorithm is about 2 orders of 

magnitudes faster than its standard version in terms of the 

number of objective function calls, while it maintains a 

compatible degree of quality. For these 15 examples, 

performance of MLIA and LMIA(M) somehow exceed our 

normal expectations.  

  Example set 4. This set contains 5 constrained problems 

with dimensions ranging from 9 to 13. Summary of its test 

results is in Table 4. Again, the constraints very much 

affected every algorithm’s performance.  Constraints made 

MLIA and LMIA(M) to exit more quickly. The tough 

constraints made SIA worse than MLIA and LMIA(M) in 

quality ranks. In fact, the data show that SIA did not 

encounter any feasible solutions at all after processing so 

many boxes. This issue is to be examined further elsewhere. 

  Example set 5. This set contains 15 unconstrained problems 

with dimensions all equal to 40. Summary of its test results is 

in Table 5.  Now MLIA becomes the best in all aspects of 

rankings. We did not test enough constrained problems of 

dimensions 40 or higher. So no results on constrained  

problems of higher dimensions will be reported below.     

   Example set 6.  This set again contains 15 unconstrained 

problems with dimensions all equal to 100. Summary of its 

test results is in Table 6. In any event, MLIA is still a lone top 

performer in terms of the number of function calls.   

In conclusion, LMIA(M) for relatively small values of M 

possess all the major observed advantages of the newly 

developed MLIA over SIA. They improved the reliability of 

MLIA with a little sacrifice of additional computational time 

(the memory increase is pretty much negligible). It is a good 

idea to use MLIA to quickly get trial solutions. In they are not 

satisfactory, LMIA(M) with a very limited M value (say 4) 

would be adopted to get improved results. In most cases, this 

strategy would yield compatible final solutions with less CPU 

time than SIA.  
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                               Table 1. Quality ranking scores Rq / percentage of Rnf: example set 1 
ex |L| 50k 50 40 30 20 10 9 8 7 6 5 4 3 2 1 

1 58 1/98 1/98 1/98 1/98 1/99 1/100 1/100 1/98 1/89 1/79 1/70 2/16 2/15 2/11 2/09 

2 62 1/97 1/97 1/97 1/98 1/98 1/100 1/100 1/100 1/91 1/76 1/67 1/57 1/47 1/35 3/07 

3 51 1/99 1/99 1/99 1/99 1/99 1/100 1/100 1/100 1/98 1/73 1/65 3/28 3/25 3/23 3/20 

4 65 1/98 1/98 1/98 1/98 1/99 1/100 1/100 1/100 1/94 1/84 1/71 1/61 1/49 1/36 1/21 

5 5 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 

6 1 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 

7 37 1/97 1/97 1/97 1/97 1/97 1/99 1/99 1/99 1/100 1/98 1/84 1/65 4/53 4/39 4/22 

8 7 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/67 1/67 

9 230 1/100 1/68 1/69 1/52 1/52 3/19 3/17 4/12 4/11 4/10 4/09 4/08 4/20 4/14 4/07 

10 3110 5/100 5/11 5/09 5/07 5/05 5/03 5/03 5/02 5/02 5/02 5/01 5/01 5/01 5/01 5/00 

11 7 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/67 1/67 

12 6 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/67 1/67 

13 5 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/93 1/87 1/61 

14 967 1/100 1/88 1/73 1/57 1/27 1/13 1/12 1/11 1/09 1/09 1/08 1/11 4/04 4/03 5/01 

15 937 1/100 1/36 1/36 1/29 3/20 3/12 3/17 3/07 3/06 3/15 3/13 3/09 3/03 3/06 3/03 

16 1892 5/100 5/14 5/12 5/09 5/07 5/04 5/04 5/03 5/03 5/02 5/02 5/02 5/01 5/01 /01 

17 7 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/78 1/78 

18 7 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 3/83 5/78 

19 18 1/97 1/97 1/97 1/97 1/97 1/97 1/97 1/97 1/97 1/97 1/98 1/98 1/100 1/81 1/44 

20 24 1/99 1/99 1/99 1/99 1/99 1/99 1/99 1/98 1/98 1/98 1/99 1/99 1/100 1/72 1/32 

21 85 1/08 2/100 2/62 2/61 2/60 2/11 3/28 3/13 3/02 3/01 3/01 3/01 3/01 3/01 3/00 

22 3856 1/100 1/18 1/14 1/11 1/07 2/04 2/03 1/04 1/04 5/02 5/01 5/03 5/02 5/01 5/01 

23 293 1/100 1/86 1/72 1/72 1/44 4/11 4/10 4/09 4/09 4/06 4/06 4/05 3/17 3/11 3/06 

24 17 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 3/94 3/56 

25 49 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 3/99 3/85 3/81 3/59 4/48 4/32 5/04 

26 13 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/36 1/36 

27 51 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/67 1/67 1/62 4/34 

28 12 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/97 1/86 1/62 

29 9 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/72 1/66 

30 11 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/99 1/99 

31 113 1/92 1/92 1/92 1/92 1/77 1/100 1/91 1/76 3/53 3/59 4/51 4/44 4/35 4/23 4/13 

32 8 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/96 1/96 

33 22k 2/100 3/11 2/10 3/07 4/07 4/04 4/03 5/03 5/03 5/02 5/02 5/02 5/01 5/01 5/00 

34 73 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/99 1/97 1/96 

35 20 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/96 1/69 1/66 

36 16 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/99 1/99 1/91 

37 20 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 

38 29 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/84 1/82 

39 20 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/99 1/96 

40 33 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/83 

41 25k 2/100 2/11 2/09 2/07 2/05 2/02 2/02 2/02 2/02 2/02 2/01 2/01 2/01 2/01 2/00 

av-q  1.24 1.29 1.27 1.29 1.37 1.51 1.54 1.56 1.66 1.76 1.78 1.85 2.00 2.10 2.32 

av-n 1438 /100 /20 /16 /14 /11 /06 /07 /06 /05 /05 /04 /04 /03 /03 /02 

 

                                     Table 2. Quality ranking scores Rq / percentage of Rnf: example set 2 
ex |L| 50k 50 40 30 20 10 9 8 7 6 5 4 3 2 1 

42 31 1/100 1/100 1/100 1/100 1/100 1/59 1/58 1/57 1/49 1/49 1/48 1/45 1/42 1/38 1/19 

43 31 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/95 1/52 5/39 

44 7 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/87 1/39 

45 29 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/95 1/87 1/79 3/54 5/09 

46 16 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/98 1/98 1/98 1/56 

47 44 1/100 1/100 1/100 1/100 1/91 1/65 1/60 1/56 1/51 1/44 3/52 3/44 1/22 1/17 4/12 

48 8892 1/100 1/09 1/08 1/06 1/04 1/03 1/02 1/02 1/02 1/02 1/02 1/01 1/01 1/01 1/00 

49 7 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/88 1/58 1/44 1/38 1/37 1/36 

50 752 1/100 1/43 1/33 1/28 1/21 1/12 1/11 2/11 2/10 2/08 3/06 3/05 5/05 5/04 3/02 

51 58 1/100 1/100 1/100 1/98 1/93 1/42 1/41 1/40 1/38 1/37 1/32 1/27 1/22 1/17 1/11 

52 21 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/98 2/77 2/70 

53 22k 2/100 3/08 3/07 3/05 3/03 3/02 3/02 3/02 3/01 3/01 3/01 3/01 3/01 3/00 3/00 

54 48 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/77 5/57 

55 12k 3/100 3/08 2/06 3/05 3/03 5/01 4/02 5/01 5/01 5/00 5/01 5/01 5/01 5/00 5/00 

56 261 1/100 1/100 1/100 1/83 1/68 3/75 3/69 3/64 3/57 3/51 3/49 3/39 4/27 4/21 4/07 

57 642 1/48 4/100 4/77 4/57 5/38 5/14 5/14 5/12 5/14 5/13 5/04 5/02 5/01 5/01 5/00 

58 4141 5/100 1/12 1/11 1/09 1/07 3/04 3/04 3/03 1/03 1/03 1/02 1/02 1/02 1/01 1/01 

59 9544 1/100 1/24 1/20 1/17 1/12 1/05 1/04 1/06 3/06 3/05 3/04 3/04 3/02 3/01 3/01 

60 13k 4/100 1/07 1/06 1/05 1/03 1/02 1/02 1/02 1/01 1/01 1/01 1/01 1/01 1/00 1/00 

av-q  1.53 1.37 1.32 1.37 1.42 1.74 1.68 1.79 1.79 1.79 1.95 1.95 2.00 2.16 2.74 

av-n 3776 /100 /16 /13 /11 /08 /04 /04 /04 /04 /03 /03 /02 /02 /01 /01 
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                                 Table 3. Quality ranking scores Rq / percentage of Rnf: example set 3 
ex |L| 50k 50 40 30 20 10 9 8 7 6 5 4 3 2 1 

61 187 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/86 1/86 1/86 1/86 1/71 1/57 4/36 

62 37 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/85 

63 27 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/90 1/87 

64 44 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 

65 24k 5/100 5/26 5/28 5/20 5/14 5/07 5/06 5/05 5/05 5/04 5/03 5/03 5/02 5/02 5/01 

66 20 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 

67 25k 5/100 5/48 5/39 5/30 5/20 5/10 5/09 5/08 5/07 5/06 5/05 5/04 5/03 5/02 5/01 

68 31 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 

69 51 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/85 1/84 

70 51 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/99 1/98 1/98 1/97 1/96 

71 49 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/90 1/90 

72 83 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/94 1/88 

73 48 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/90 1/87 

74 111 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 

75 23k 3/100 3/24 3/19 3/24 3/16 2/08 3/07 2/07 2/06 2/05 2/04 3/03 3/03 3/02 3/01 

av-q  1.67 1.67 1.60 1.67 1.67 1.60 1.67 1.60 1.60 1.60 1.60 1.67 1.67 1.67 1.87 

av-n 4874 /100 /31 /26 /26 /18 /10 /10 /09 /08 /07 /06 /05 /05 /04 /03 

 

                                   Table 4. Quality ranking scores Rq / percentage of Rnf: example set 4 
ex |L| 50k 50 40 30 20 10 9 8 7 6 5 4 3 2 1 

76 12k 5/100 5/19 5/16 5/11 5/07 5/01 5/01 5/02 5/01 5/01 5/01 5/00 5/00 5/00 5/00 

77 15k 4/100 1/22 1/17 1/14 1/09 1/05 1/04 1/04 1/04 1/03 1/03 1/02 1/02 1/01 1/01 

78 13k 4/100 4/26 5/23 5/16 5/14 4/03 4/03 4/02 4/01 4/02 4/01 4/01 4/00 4/00 4/00 

79 7942 5/100 1/29 1/22 1/18 1/12 5/01 4/09 5/00 5/00 5/00 5/00 5/00 5/00 5/00 5/00 

80 12k 4/100 3/37 3/30 3/23 3/15 3/08 3/07 3/06 3/05 3/05 3/04 3/03 3/02 3/02 4/00 

av-q  4.40 2.80 3.00 3.00 3.00 2.15 3.40 3.60 3.60 3.60 3.60 3.60 3.60 3.60 3.80 

av-n 12k /100 /79 /57 /49 /40 /36 /44 /29 /27 /24 /21 /16 /12 /09 /04 

 

                                   Table 5. Quality ranking scores Rq / percentage of Rnf: example set 5 

ex |L| 50k 50 40 30 20 10 9 8 7 6 5 4 3 2 1 

81 857 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/96 1/93 1/93 1/89 1/82 1/75 1/53 4/36 

82 186 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 

83 146 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 

84 221 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/99 1/93 

85 63k 5/100 5/67 5/51 5/37 5/13 5/12 5/12 5/11 5/10 5/08 5/06 5/05 5/04 5/03 5/01 

86 80 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 

87 61k 5/100 1/85 1/68 1/51 1/34 1/17 1/15 1/14 1/12 1/10 1/09 1/07 1/05 1/03 1/02 

88 137 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 

89 277 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 

90 120 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 

91 212 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 

92 63k 5/100 5/86 5/69 5/52 5/34 5/17 5/15 5/14 5/12 5/10 5/09 5/07 5/05 5/03 5/02 

93 209 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 

94 540 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 

95 45k 4/100 3/92 3/69 3/56 3/37 3/18 3/18 3/15 3/15 3/12 3/10 3/08 3/06 3/04 3/02 

av-q    2.00 1.93 1.93 1.93 1.93 1.93 1.93 1.93 1.93 1.93 1.93 1.93 1.93 1.93 2.13 

av-n 16k /100 /87 /67 /53 /35 /20 /19 /17 /16 /14 /12 /10 /08 /06 /04 

 

                                 Table 6. Quality ranking scores Rq / percentage of Rnf: example set 6 
ex |L| 50k 50 40 30 20 10 9 8 7 6 5 4 3 2 1 

96 2237 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/99 1/96 1/93 1/90 1/84 1/76 1/53 4/36 

97 464 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 

98 388 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 

99 742 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 

100 55k 5/50 5/100 5/78 5/59 5/38 5/18 5/16 5/15 5/13 5/11 5/09 5/07 5/05 5/04 5/02 

101 200 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 

102 52k 5/41 5/100 5/80 5/61 5/41 5/20 5/18 5/16 5/14 5/12 5/10 5/08 5/06 5/04 5/02 

103 377 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 

104 709 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 

105 386 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 

106 654 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 

108 54k 5/40 5/100 5/80 5/60 5/40 5/20 5/18 5/16 5/14 5/12 5/10 5/08 5/06 5/04 5/02 

109 579 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 

110 1585 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 

111 101 5/100 5/100 5/100 5/100 5/100 5/100 5/100 5/100 5/100 5/100 5/100 5/100 5/100 5/100 5/100 

av-q  2.07 2.07 2.07 2.07 2.07 2.07 2.07 2.07 2.07 2.07 2.07 2.07 2.07 2.07 2.27 

av-n 11k /48 /100 /80 /62 /43 /24 /22 /20 /18 /16 /15 /13 /11 /9 /7 
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