
 
 

 

 
Abstract—An algorithm by combining sensor scheduling 

with energy efficient for tracking the maneuvering targets with 
mobile sensor deployed in WSNs (wireless sensor networks) is 
proposed and investigated in the article. In order to minimize 
the estimated error, the sensor sequence and the optimal sensor 
movement are scheduled previously and determined first. 
Moreover, due to the targets is varying with time the EKF 
(extended Kalman filtering) technique is applied to predict 
MSE (mean square error) of the predicted targets. Finally, 
simulation by using of the scenario with two maneuvering 
targets tracking held to validate the accuracy of the proposed 
algorithm. 
 
Index Terms—wireless sensor networks; extended 
Kalman filtering; mean square error; maneuvering 
targets.  
 

I. INTRODUCTION 
Recently based on several advantages, such as the low cost, 

the easily establishment, the capacity of self-organizing, and 
widely deployment, sensor networks become an important 
role for development or application in the real world. 
Especially, WSNs (wireless sensor networks) are able to the 
widely adopted in many directions, such as healthcare, 
control, military command, communications, and 
surveillance. Thus, to study issues of each layer about WSNs 
protocol in becoming gradually a kind of necessity, and those 
are including power consumption networking topology, 
signal processing, environment deployment, transmission 
Media, etc. It is known that in sensor networks the larger 
number of sensor nodes can provide with the more precise 
results to the BS (base station). However, in order to reduce 
the number of parameters for systems performance, to 
decrease sensor nodes in a good method. Moreover, the 
mobility of the sensor is also an important point can be 
applied to solve the problem of coverage hole exists in WSNs 
[1]. 
The impact factor of the sensing accuracy, it is with the 

number of cooperating local sensor nodes for a randomly 
deployed WSN is investigated in [2]. In [3], authors 
demonstrate an algorithm, called adaptive multi-sensor 
scheduling, to improve the tracking reliability and power 
efficient for collaborative target tracking in WSNs.  
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With linear Gaussian dynamics in [4] the EKF (extended 

Kalman filtering) approach is applied to predict the estimated 
MSE (mean square error) of the target state by a default 
defined step ahead. 
The particle swarm optimization in [5] is adopted to 

determine a sub-optimal sensor schedule with three noisy 
sensors, in order to minimize the measurement error and 
sensor usage coot. In paper [6] on the basis of a specified 
detection probability, authors propose a multi-sensor 
scheduling scheme for collaborative target tracking in WSNs. 
An IMM (interactive multiple model) filter based on 
collaborative maneuvering target tracking framework is 
presented in [7]. The scenario is incorporating a novel 
energy-efficient sensor scheduling scheme in a distributed 
WSN using low cost range wireless sensor nodes. 

 

II. PROBLEM FORMULATION 

2.1 system models 
The scenario of tracking maneuvering targets with mobile 
sensors in a 2-dimension Cartesian coordinate system is 
deployed in this subsection. The position and velocity states 
of the tracked target are included when the trajectory of 
targets is assumed going along with a maneuvering path. 
Additional, in order to manage all of the sensors, the states 
about the scheduled mobile sensor should be involved in the 
state space. For the purpose of estimating and predicting the 
state of both the sensor location and the target, the EKF 
technical is adopted to estimate the predict MSE (mean 
square error) of the estimated target states. 
The maneuvering target is considered or nearly both constant 
velocity and constant angular rate within a sensor sampling 
duration. Then the system model can be established as 
follows, considering the system states arrangement of 
combing target state for the i-th sensor, [ ]i kΧ , with sensor 
states i-th, [ ]iS k . Thus, the whole system state space model 
can be expressed as   

( ) ( )1
[ ] [ ]tan [ ] / [ ]g X k Y kA X k S Y k S− ⎡ ⎤= − −⎣ ⎦      

[ 1] [ ] [ ] [ ]i i i i ik k G k F kωΧ + = + + Χ  (1) 
where [ ]i kω  is a zero mean Gaussian white noise with 

variance [ ]iQ k , where 
0

[ ]
0i

I

Q
Q k

M
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, with the error 

covariance matrix iM , movement matrix 

Estimate the Trajectory of Maneuvering Targets 
by Sensor Scheduling and Energy Efficient in 

Dynamic Sensor Networks 
*Joy Iong-Zong Chen, Hsuan-Yu Huang, and Chien-Wen Lai 

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-2-0 IMECS 2009



 
 

 

[ ][ ] 0 0 0 0i iG k D k⎡ ⎤= ⎣ ⎦ , transition matrix 
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0 0 0 0 0 1
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= ⎢ ⎥
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⎢ ⎥
⎢ ⎥
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, and { }[ ] [ ] [ ] T
i ik S k kΧ = ⋅Χ , 

where  
[ ] [ ] [ 1]k W k F kΧ = + ⋅Χ −  (2) 

, and 
[ ] [ ] [ ] [ 1]i i i iS k M k A k S k= + + −  (3) 

A target evolve with linear Gaussian dynamic equation is 
denoted in (1), and alternates after each time step TΔ , [ ]W k  
is considered to be the white Gaussian process noise with 
covariance matrix Q, that is, [ ] ~ (0, )W k N Q . The well 
known system state kinematics are characterized by the 

system matrix and written as 

1 0 0
0 1 0 0
0 0 1
0 0 0 1

T

F
T

Δ⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥Δ
⎢ ⎥
⎣ ⎦

. 

In (3), where [ ]iM k  indicates the uncertainty of the mobility 
for a scheduled sensor, it is assumed that [ ]iM k  is modeled 
as Gaussian distribution with zero mean and iM  variance, 
that is, [ ] ~ (0, )i iM k N M ; [ ]A k  expresses the movement 
(upward downward, right, and left directions) controlled by 
commands from central the base station, and 

[ 1] [ ] [ ]x y
i i iS k S k S k⎡ ⎤− = ⎣ ⎦  denotes the position of the i-th 

sensor at the instant step 1k − . In order to build up the 
estimation scheme with sensor scheduling, the sensor 
observation model for the scheduled i-th sensor at the k-th 
time step can be obtained as  

[ ] [ ] ( [ ])i i iZ k v k h Z k= +  (4) 

where [ ]iv k  is the measurement noise for the i-th sensor and 

it is adopted as independent of the other sensors, [ ]iv k  is 
assumed modeled as Gaussian process with zero mean and 

iR variance, and ( )[ ] [   ]T
i s l gh k P V AΧ = , where 

( ) ( )2 2

[ ] [ ][ ] [ ]S X k Y kP X k S Y k S⎡ ⎤= − + −⎢ ⎥⎣ ⎦
, 

( ){ }[ ] [ ][ ] [ ] [ ] ( [ ] ) /l X k Y k SV X k X k S Y k Y k S P= ⋅ − + ⋅ − , and 

( ) ( )1
[ ] [ ]tan [ ] / [ ]g X K Y kA X k S Y k S− ⎡ ⎤= − −⎣ ⎦ . 

 

2.2 Tracking with EKF 
  On the basis of system state space model shown in (1), the 
signal target tracking problem select one sensor for detection 
and bringing up measurements at each time step is completed 
by the EKF algorithm. Firstly, assume that the location of 
manageable sensors is known a prior and all of them are 

stationary. The predicted state [ 1 | ]k k
∧

Χ +  of the target at 

time 1,....,k T= Δ  can be determined as  

[ 1 | ] [ ] [ | ]ik k F k k k
∧ ∧

Χ + = ⋅Χ  (5) 
where [ ]iF k  is shown in (2), and it is given that the estimate 

[ 1 | 1] [ 1 | ] [ 1] [ 1] [ 1]TP k k P k k K k S k K k+ + = + − + ⋅ + +  of 
[ ]kΧ at the k-th time step with covariance [ | ]P k k . Certainly, 

the initial state of the system and initial error covariance are 
given and with [0]iX  and [0]P , respectively. Next, the 
covariance of predicted state becomes as  

[ 1 | ] [ ] [ | ] [ ] [ ]

[ 1] [ | ]

[ 1] [ | ] | [ 1 | ]

T
i i

i i

T

i i

P k k F k P k k F k Q k

k k k k
E

k k k k Z k k

∧

∧

+ = ⋅ ⋅ +

⎧ ⎫⎛ ⎞Χ + − Χ +⎜ ⎟⎪ ⎪⎝ ⎠⎪ ⎪= ⎨ ⎬
⎛ ⎞⎪ ⎪Χ + − Χ + +⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 (6) 

, and the predicted measurement of selected sensor is 
calculated as 

[ 1 | ] ( [ 1 | ])Z k k H k k
∧

+ = Χ +  (7) 
Hence, the innovation now is given as 

[ 1] [ 1] [ 1| ]r k Z k Z k k
∧

+ = + − +  (8) 
, and with the predicted error covariance of the measurement 
is denoted as        

[ 1] [ 1] [ 1| ] [ 1]TS k H k P k k H k+ = + + +  (9) 
where the Jacobian matrix of the measurement function H at 
time step [ 1]t k +  corresponds to the predicted state is 
represented as  

( )[ 1] [ 1 | ]
[ ]

H k h k k
k

∂
+ = Χ +

∂Χ
 (10) 

The EKF Kalman gain is updated with the equation given as 
1[ 1] [ 1| ] [ 1] [ 1]TK k P k k H k S k−+ = + ⋅ + ⋅ +  (11) 

Now, by using of the EKF gain obtained in previous equation 
and the innovation in (8), the state estimation of the target 
shown in (5) is updated as  

[ 1 | 1] [ 1 | ] [ 1] [ 1]k k k k k k r k
∧ ∧

Χ + + = Χ + + + ⋅ +  (12) 
Therefore the covariance matrix or MSE in (6) can be 
modified as   

[ 1 | 1]
[ 1 | ] [ 1] [ 1] [ 1]T

P k k
P k k K k S k K k

+ + =

+ − + ⋅ + +
 (13) 

For the purpose of discussing the coverage hole problems, 
which means that the measurement of the target can not be 
reported from the selected sensor due to the target locates at 
the ambiguous area. In the case, the MSE of the estimated 
state is increasing accumulative. 

 

III. MANAGEMENT OF MOBILE SENSORS SELECTION 
It should be an important event to address the problem of 

the expression in Eq. (1) of mobile sensor selection while. 
Large number of sensor with the mobility to generate high 
quality outcome is required. An algorithm for the 
management of mobile sensor selection is proposed in this 
section. It is assumed that each sensor deployed in this 
algorithm can make the decided results range and detect the 
target. The location of the selected sensor is also given 
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determined previously, and the algorithm is able to simply 
select the sensor modes closest to the predicted target 
location. Generally, the management of mobile sensor 
selection includes determination of sensing accuracy, sensor 
scheduling and sensor movement sequence one of the 
drawback of the closest sensor node of the sensor scheduling 
algorithm is that it is only simply to select the scheduled 
sensor node, however, the contribution of the tracking 
accuracy is also will be one of the most important quantity 
candidate for the selected sensor node. An adaptive algorithm 
of mobile sensor management is proposed under the EFK by 
externally selecting the next scheduling sensor and 
determining best accuracy at the same time for mobile sensor 
tracking system. 

Now, according to the state estimation, there are several 
measurements can be applied to represent the tracking 
accuracy by mobile sensors, such as the fisher information, 
the trace and the determinant of the covariance matrix, 
eigenvalues calculated from the covariance matrix of the 
state between the desired and the predicted value. On the 
basis of the Cartesian coordinate system, at time step k the 
tracking accuracy, [ ]A k , can be defined as the difference 
between the actual states, [ ]X k , and the estimate states, 

ˆ [ ]X k , that is, ˆ[ ] [ ] [ ]A k X k X k= −  where [ ]X k  and ˆ [ ]X k  

are defined in (1) and (5), respectively. The tracking accuracy 
is considered to cope with the prediction values at the k-th 
step while [ ] [ ]THA k A k≤ , where [ ]THA k  is a pre-defined 
threshold value of the tracking. Sensor scheduling is an 
others issue for mobile sensor management. Now, assume 
that 

1 1

2 2

[ 1] [ ]
[ 1] [ ]

[ ]

[ 1] [ ]N N

I k I k T
I k I k T

I k T

I k I k T

⎧ + + ⎫⎡ ⎤ ⎡ ⎤
⎪ ⎪⎢ ⎥ ⎢ ⎥+ +⎪ ⎪⎢ ⎥ ⎢ ⎥+ = ⎨ ⎬⎢ ⎥ ⎢ ⎥⎪ ⎪⎢ ⎥ ⎢ ⎥⎪ ⎪+ +⎣ ⎦ ⎣ ⎦⎩ ⎭

 (14) 

, and  

1 1

2 2

[ 1] [ ]
[ 1] [ ]

[ ]

[ 1] [ ]N N

L k L k T
L k L k T

L k T

L k L k T

⎧ + + ⎫⎡ ⎤ ⎡ ⎤
⎪ ⎪⎢ ⎥ ⎢ ⎥+ +⎪ ⎪⎢ ⎥ ⎢ ⎥+ = ⎨ ⎬⎢ ⎥ ⎢ ⎥⎪ ⎪⎢ ⎥ ⎢ ⎥⎪ ⎪+ +⎣ ⎦ ⎣ ⎦⎩ ⎭

 (15) 

indicates the sensor scheduling sequence and sensor 
movement sequence at any given time step k by T steps ahead, 
respectively. The [ ]I k t+  and [ ]L k t+  in (14) and (15) 
denote the selected sensor and the optimal movement at the 
( )k t+ -th time instant, respectively, [ ]iL k  is the sensor 
movement belongs to [ ]iF k , and [ ]iI k  in (14) is assigned as 
the probability value with the expression shown as  

 
Probability 0,  if sensor  is not scheduled at time step 

[ ]
Probability 1,  if sensor  is scheduled at time step i

I k
I k

I k
⎧

= ⎨
⎩

 
Once, the arrangement of sensor scheduling and sensor 

movement is accomplished. The calculation of the cost 
function is followed up and it is determined by the energy 
consumption. The total energy consumed by current selected 
sensor u  with selecting sensor v  as the scheduled for the 

next tracking tack is able to be obtained as  

, ,
1

[ , ] ( / )
T

T t t r t uv t
t

E u v e e r bα

=
= + ⋅∑  (16) 

where tb  is the number of bits for transmission, α  
denotes the time-invariant channel model of the transmission, 

uvr  indicates the distance between the u-th and the v-th 

sensor, and ,t te  and ,r te  denote the required energy specified 
by the transmitter and the receiver of the scheduled sensor, 
respectively. Hence, the energy consumed in sensing and/or 
processing data with tb  bits by sensor u  is 

, ,  ( )sen t sen tE u b e= ⋅ , and the energy consumed in the receiving 

data is , ,  ( )r t r tE u b e= ⋅ . Thus, the total energy consumed 
during T time steps is constrained as  

, , ,
1

[ , ] [ ( ) ( )]
T

T T r t sen t M T
t

E E u v E u E E u
=

= + + +∑  (17)  

where , ( )M TE u  expresses the consumed energy for the 
sensor movement in each K T+  time step. The total amount 
of energy available for T time step is assumed by a threshold 
value ThE . 

 

IV. SIMULATION RESULTS 
Developing simulation programs (using Matlab @ ) by 

virtue of the proposed algorithm is implemented in this 
subsection. The developed algorithm associating with sensor 
scheduling combining with energy efficient is first validated 
in an environment wherein two maneuvering targets are 
tracked in WSN deployments, which is shown in Fig. 1. The 
initial conditions for simulating the tracking of two targets 
are listed in Table I, mentioned here mainly for 
demonstrating the accuracy and efficiency of the proposed 
algorithms.  

The transition matrix ( )F k  has been considered in 
subsection 2.1, and the noise gain matrix , which is defined as 

2

2

2 0
0

( )
0 2
0

T
T

G k
T

T

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

, corresponds to the target is assumed 

in the simulation to be two seconds. The initial value of the 
state error covariance is assumed to default as 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

10010000
1001000000

01001000
0010010000

)0|0(P .  

After the assignment of initial conditions is completed, the 
procedure of the simulation is following steps illustrated 
below:. 

1. Initial conditions assignment, ( )F k , ( )G k , (0 | 0)P  and 
step numbers. 

2. Make true target system and measurement model. 
3. CHNN calculation for each target according to the 

process shown in section III. 
4. Estimation procedures (with the EKF and sensor 
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scheduling algorithm). 
5. The average error determination, i.e.. the difference 

between the estimation and the measurement. 
6. End of the procedure. 

The result from tracking two targets with the proposed 
algorithm is illustrated in Fig. 2. In these simulations fifty 
steps Monte Carlo are implemented; moreover, with the 
different symbol estimated tracking (measurements) with 
energy efficient calculation are sampled for reciprocal 
comparison for accuracy. It is easy to see that the many more 
matching situations occur in Fig. 2. I.e., all of the tracking 
paths tightly parallel the true path marked with circle symbols. 
It should be emphasized that a little difference does exist the 
paths of the true targets and the results presented in Fig. 2, 
since the tracking is generated with a random function of the 
software program. Usage of random-number generators for 
the measurement of noise and clutter points is illustrated in 
the simulation. Furthermore, a EKF is utilized to recursively 
estimate the state vector )(ˆ kkX . On the basis of each 

hypothesis formulated from the measurement data received, 
the corresponding correlations can be promptly calculated. 
Hence, the accumulate position errors caused by the use of 
this proposed algorithm are plotted in Fig. 3. It is reasonable 
to state that the larger position error occurs in the case of 
tracking for target_ B, it is because of the much more variety 
induced by the setting of that target. On the other hand, the 
accumulate speed error is presented in Fig. 4. Since the speed 
initial value of the X-axis and Y-Ax setting for target_B is 
much faster than that for target_A, it is significantly to see the 
accumulated speed error of target_B is much more than that 
of target_A after about eighteenth step. 

 

V. CONCLUSION 
In this paper an algorithm of combining the sensor 

scheduling with energy efficient for the mobile sensor to 
track maneuvering targets is proposed. By taking the Monte 
Carlo simulation to verify the accuracy of the proposed 
algorithm, there are two maneuvering targets considered 
tracked by adopting the method proposed in this paper. The 
mobile sensors are randomly distributed in the scenario of the 
simulation. Thus, the EKF can be applied to estimate the 
predicted MSE of the estimated target state. On the other 
hand, the decision of optimal sensor path and the 
determination of the schedule of sensor sequence could 
minimize the predicted estimation error caused by tracking 
the maneuvering targets. 

 
Fig. 1 Deployment with two targets and two mobile sensor 

nodes with sensing areas covered in circles 
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 Fig. 2 Results with two mobile sensors for tracking two 
maneuvering targets 
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