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Stokes Flow of an Incompressible Couple Stress
Fluid past a Porous Spheroidal Shell

T. Sai Lakshmi Radhika, T.K.V Iyengar

Abstract—The present paper deals with the problem of the
Stokes flow of a couple stress fluid past a porous spheroidal shell
consisting of a pair of con focal spheroids S, and S; where S is
within S;. The region within S is filled with couple stress fluid, the
annular region between S and S; is assumed to be porous and the
same couple stress fluid as that within Sy flows with a uniform
velocity in the free region (i.e) outside S;. The problem is
formulated using the V.K. Stokes’ equation describing the flow
outside the shell as well as the flow inside the shell while an
analogue of the classical Darcy law in the theory of porous media is
used within the shell region. Under Stokesian approximation, the
solution is then, sought analytically and the expressions for the flow
field variables are obtained in terms of Legendre functions,
associated Legendre functions, radial prolate spheroidal wave
functions and angular prolate spheroidal wave functions. The
stresses acting on the shell are estimated and the drag experienced
by the body is obtained. Numerical study is undertaken to study the
effect of the permeability of the medium, couple stress parameter
and the geometric parameter on the drag and the results are
presented using graphs. It is found that, for a fixed S, as the
eccentricity of the outer spheroid increases, the drag decreases.

Index Terms— Spheroidal shell, Couple stress fluid,
Drag, Streamlines.

I. INTRODUCTION

Couple stress fluid theory proposed by V.K. Stokes [1] is the
simplest polar fluid theory that shows all the important features and
effects of couple stresses in fluids caused due to the mechanical
interactions that occur inside a deforming continuum. A striking
feature of this model is that it results in equations that are similar to
the Navier Stokes equations, there by facilitating a comparison with
the results for the classical non polar case.

Several flows past axisymmetric bodies dealing with couple
stress fluids have been studied by Lakshmana Rao, Iyengar [2] and
Iyengar and Srinivasacharya [3].

All these problems deal with flows arising in the context of
impervious bodies like sphere, spheroid and approximate sphere. To
the extent the authors have surveyed not much literature is found on
the flow of couple stress fluid past porous bodies except that by
Ramana Murthy et.al [4], who studied the flow of an incompressible
couple stress fluid flow past a porous sphere. Spheroid, being a more
generalized form than a sphere, the present investigation deals with
an incompressible couple stress fluid past a porous spheroidal shell.
The studies dealing with porous spheroidal shells are of use in the
study of plant physiology. This aspect has been well brought out by
John Considine and Ken Brown who have used the theory of shells
to study some aspects of the physics of fruit growth [5].
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As the classical Navier Stokes equations, the couple stress fluid
flow equations also are non linear in nature and even of higher order
than the Navier Stokes equations. Thus only very few problems can
have exact solutions subject to specified boundary and regularity
conditions. When we consider the problem of flow past bodies like
sphere or spheroid, it is almost impossible to find an exact solution.
Hence researchers tried to solve a simplified version of the fluid
flow equations by imposing some assumptions based on intuition.
One of these assumptions is that given by Stokes: when the flow is
slow and the fluid is highly viscous, viscous forces predominate the
inertial forces nearer to the body. This assumption helps in
neglecting the nonlinear inertial terms in the momentum equation
and there by making the problems more mathematically tractable.

In this paper, we study the Stokes flow of an incompressible
couple stress fluid past a porous spheroidal shell consisting of two
confocal spheroids where there is couple stress fluid filling the
region inside the inner spheroid and the region outside the outer
spheroid. The annular region between the two confocal spheroids is
assumed to be porous in nature and the flow is governed by Darcy’s
law there in. The flow variables pertaining to the inner region ¥,
outer region ', and the porous region F; are obtained analytically.
The expressions for stream function and pressure are obtained in
terms of Legendre functions, associated Legendre functions, radial
prolate spheroidal wave functions and angular prolate spheroidal
wave functions. The stresses acting on the spheroid are evaluated
and an expression for the drag is obtained. Though the expressions
for stresses are complicated, the expression for drag takes a
delightfully simple form.

Numerical study is undertaken to discuss the variation of drag
with respect to the material parameter, geometric parameter and the
permeability parameter. The drag is seen to increase with the
increase in the permeability parameter and it decreases with the
increase in the eccentricity of the outer spheroid as well as an
increase in the couple stress parameter.

Couple stress fluid model given by V.K. Stokes is based
on the presumption that the fluent medium can sustain couple
stresses. Hence we have the non symmetric stress tensor t; and the
couple stress tensor my; given by

L 1
t; ==po; + Adivg S, +2ud; _Eg”k {mk +4n0,,, +pC,} @

m; :%mdj +an0,, + 400, @

where 7 denotes the fluid velocity vector _ _ 1 _
9q o= Ecurl q

, @ 18 the
L)
spin tensor, 4 is the rate of deformation tensor, p is the fluid
ij
pressure and p C, is the body couple vector. The quantities A and
M are the viscosity coefficients and 5, , 5/ are the couple stress

viscosity coefficients. These material constants are constrained by
the inequalities

#=0,31+2u>20,m 20,

<, ®
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The parameter \/,TI is a characteristic measure of the polarity of the
U

fluid which is zero in the case of non polar fluid. The couple stress
fluid equations are given by

%’;wdiv(é) =0 “)
dg 2.1 _ w1 . %)
p?—pf+5curl(pc)+dtvr +Ecurl(dtvM)

where O is the density of the fluid, 7“is the symmetric part of

the force stress diad and M is the couple stress diad and f , C are

the body force per unit mass and body couple per unit mass
respectively

II. FORMULATION

Consider two confocal prolate spheroids Sy and S; with
foci P and Q where PQ=2c units. Let O be the mid point of PQ.
Introduce the cylindrical polar coordinate system (r,0,z) with respect
to O as origin and OP extended on either side as Z axis.

Let us consider the slow stationary flow of an incompressible
couple stress fluid past the spheroid S; with a uniform flow with
velocity U in the direction of the z-axis far away from the body. Let
the region (F,) between S, and S, be porous. Let the region (F,)
within the spheroid Sy be filled with the same couple stress fluid as
is outside S;.

We examine the flow generated with the assumption that the flow
in the porous region is characterized by Darcy’s law. Since the flow
is slow, we assume that the flow is axi symmetric and is the same in
any meridian plane and thus the flow variables are independent of
the azimuth angle ¢.

We shall introduce the prolate spheroidal coordinates
(&En,p) with (gé,g”’ga) as base vectors and (h;, h, ,h; ) as the

corresponding scale factors through the definition

z+ir=ccosh(é+in) (6)
Let (g, p') denote the velocity and pressure in the regions ¥ (i=
0,2) and let (g™, p) be the velocity and pressure in the porous

region .
In view of the slowness of the flow, we take

(i=0,1,2) ©)
i=0,1,2) (8)

7" =u"(&mle; +vO (&,
P =p"(.m)

Ignoring the body force and body couple 7 and

[ respectively in the field equations, the basic equations governing
the Stokesian flow can be written in the form
div(c}“)) =0 fori=0,1,2 )

grad p® + wcurl curl g +1,curl curl curl curl g =0
fori=0,2 (10)
and
LA (11
]
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where k W is the permeability constant.
In view of the continuity equations, we introduce the stream
function y/(i) through

@ ay/") for i=0,2

; i (12)
B =
: oF

o =¥
2°%3 aﬂ

Using (7) and (12)

curlg®” = {hl

3

Ep® }Eo for i=0,2 (13)

s ek hgley |

14

curlcurlcurlcurlg 0=

b
hlh2h3

in which the Stokes stream function operator E? is given by

pro s J]Ofh 9 9 M 9 @5
Ihy |9E\ Ihy 0 ) on\ hyhy on

Using the expressions for curl curl ", curl curl curl curl ", the
basic equations describing the flow in regions ¥, and F;, are given by

op” _ 9 (12, ) 9 (e 0).i=0.2  (16)
= —u—\Eyv" )+, —\Ew" )y T
TRy llan( y") "'an( y")
op" h, 9 (2 () 9 (s )\,i=0,2 17
=2 ul (B2 ), 2 (B4 )10
5 h1h3{”a§( y") ”lag( y")
Eliminating p(’) from (16) and (17), we have
E o) i i=0,2 18
(E"—CZE‘]V/”:O - 1=0, (18)
where
A _u (19)

Y

Thus the flow variables in the region F, and ¥, are completely
determinable from the system of partial differential equations (18).
The fluid pressure p, i=0,2 can be obtained using equations (16)

and (17).

The flow in the porous region F; is governed by

div(G®)=0 (20)
7" :_ﬂgmd[,m an
U

which implies that the pressure p“) is a harmonic function given by
the equation

vipl =0 (22)
The determination of the relevant flow field variables 1//(‘) and p® is
subjected to the following boundary and regularity conditions.

) Continuity of the normal velocity components on the
interfaces:

u® = 4" ons,

u =49 onS, (23)
(ii) Tangential velocity components vanish on the
interfaces:
v(z) =0on Sl
v® =0o0nS, (24)
(iii) Continuity of pressure on the interfaces:
P = p“) on S,
pl = p®onS, (25)
@iv) icurlﬁ(z) _oon S,
2
lcurlﬁ“” —gon So (26)
2
) The velocities are regular on the axis and far away
from S, the flow is a uniform stream which means, at
infinity

IMECS 2010



Yo % o 27)

Other forms of boundary conditions can also be taken.
However we are using the present boundary conditions only as an
initial trial for a complicated set of equations with a complicated
geometry.

Since, we are dealing with a prolate coordinate system, we have

hy=h, =c(s* =1* ), hy = cy(s* =D(A—12) (28)
2 1 d

g =7[( ) j 29)
( %) ot

v’ :%[(sz —1)a—+(1—t2) a, +2s3—2t3J (30)

c’(s*=1%) 9s? o’ Os ot
where
s=cosh&; t =cosm (3D

III. SOLUTION FOR THE FLOW IN THE REGION F,
The equation governing ) is
E [Ez l_ }//(2) =0
c?
The solution of equation (32) can be obtained by superposing the

solutions of the equations
E'w=0

2
ot

in view of the linear commutative operators F *and [ £ ﬂ: ]

(32)

(33)
and
(34)

2
C

Solution of equation (33):

The solution of equation (33) can be written in the form

V=y,+y, (35)
where
v, :—%Ucz(sz ~1(1-1%) (36)
and
(37

y,=c’ (s’ =Dt )ZGn+1(S) o (1)
where P/ (t)is the derivative of P, (t) with respect to t. The
function y in equation (36) represents the stream function due to a

uniform stream of magnitude U parallel to the axis of symmetry far
away from the spheroidal shell. We notice that g2y =0 and

hence E“l//0 = (. In view of this, y, must satisfy

E'y, =0 (38)
It can be verified that the expression
f= " =DA=-)Y AL (P 1) G

n=0
where ' (s)is the derivative of Legendre function of second kind
Q,..(s) with respect to s, satisfies E£? f=0.In view of this, we shall
impose the restriction on the functions G,(I?l () through

By, = (57 = D(1-D3 A0 oFL, ) 40
n=0

so that E“(//l =0

Now operating E” on the equation (37) and equating the result
with the right hand side of equation (40), we get
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S 0656 -0 b+ 2636 e )=
TA%E ()L (5 0)

n=0

(41)

Following [2], we note that Gﬁ; (s) is governed by the differential

equation

(=1 (6)) +45(6206)) ~nln+3)G2 ()= 52)(5)

where

(2) _2 (n + 1)(}1 + 2) A(z) _ (n + 3)(}‘! + 4) A(z)
)= e 2 e e ) aeJor )
_c (I’l *1)(1’!) A(g) _ (n + 1)(}1 + 2) A(z) Q, (S‘)
@n-1)2n+1)""" @n+1)2n+3) " [

The equations (42) and (43) are valid for n=0,1,2,3...

involving Af) is to be deleted in the right hand side of equation

(45) and Qil(s) is to be interpreted as s
57 -1

Using the method of variation of parameters, we note that

42)

and the term

to obtain gl(z)(x) .

2101 = @217+ D200 () o E s e b o
+ 0..() j(.vz—l)P' () (s)s TTM=0.12.. (44)
(n+1)(n+2) : il e

where s=s; represents the value specifying the outermost spheroid
past which the flow is being studied. Thus the flow region F, is
given by s>8;. As s —> 0, w'® must tend to 0. In view of this, we

have to take aflii = 0. Hence the appropriate expression for G ()

is given by
P
B(Z) _ n+ —1 (2)
n+1( ) n+l n+1( ) (n+1)(n :':( )Qn+l gn+l
v 00t m for n=0,1,2.... (45)
X W) —1)p d .1,
(n+l)(n+2)'[(s ) n+l( )g,m( ) s
As g(z) (s) involves one set {A( of arbitrary constants, the

(2)

n+l

and {Bﬁ} } Using this in equation (45), we get y, .

functions G, 7 () involve two sets of arbitrary constants {A:la

Solution of equation (34):

To solve the equation (34) (viz.) (Ez _ r j‘//:(), we use the
2
c

method of separation of variables, and take the solution in the form

W =cy(s> =D(A—1*)R(s)S(z) (46)
Substituting this in the equation (34), we notice that R(s) and S(t)
respectively satisfy the differential equations

(sz—1)R”(s)+2sR'(s)—(A+/12s2+ 21 1jR(s):O (47

and

1
(1=12)8"(c)—2¢ S”(t) + (A+/‘Lzz2 _?js(l)zo (48)
where A is a separation constant. [6]. These are spheroidal wave
differential equations of radial and angular type respectively. To
ensure regularity of solution at infinity and in the flow region we
have to choose the solutions of equations (47) and (48) in the form

RO(iA.s {"*szm -+ 27 )} l(fl;ljm (49)
(2] S o2k (2
and
sWGiA0)= Y. " (AR 0) (50)
where -
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(1) / d
Pr+l r+l

is the associated Legendre functlon of the first kind.

62V

The coefficients :" (i ,l) in the above expansions are constants

depending on the parameter {4 and the suffix r has the value

1,3,5...0r0,2,4,6... depending upon the odd or even values of n+1.
We have therefore the solution
v, =6 - Y PR ar sy O
n=1
where - ‘s are constants.
Hence, the stream function for the region ¥ is given by
©) _ Lo o
v == U ==+ 53)
e*(s* =111 )Z G2 ()P, (1)
n=0
+ey (5P =D(1 -1 Zc C)(i2,5)5 (i, 1)
We can see that
B =7 ==Y AL (B, 0 4
+i21/(s2 -1 )ic,‘,”R,‘,‘f)(iﬂ,s)S,',',)(i/l,t)
c n=l
and
E'y® = J(s “D- ZC O30, s)s (i, 1) 65)

which are recorded for future use.
IV. Pressure distribution in F,

The equations (16) and (17) for i =2 and using equation (37) are

ap By @) 9 (p4, ) (56)
s EY s )

and

ap 9 (ghy) 67

( (2))+ Ui —
cil iav 20‘1—[ ias

Usmg the expressions in equations (54) and (55) in (56) and (57), on
integration we get

PO (s5,0) =S A% (n+ 1) +2)0,., ()P, (1)

n=0
Thus 1//(2)(& t) and p®(s,¢
respectively are the stream function and pressure distribution for the
region F,. These involve the three sets of constants
)} {B;ﬂ } {Cff)} as can be seen from equations (53),(44) and (58).

(58)

) given in equations (53) and (58)

V. SOLUTION FOR THE FLOW IN THE REGION F,

The equation for ;//(O)is given by equations

/12
E*(E? _72),/,((» — (59)
c
Solution of equation (59) can be obtained by superimposing the
solutions of E41// =0 and (Ez ~ i: ]1//:0. The procedure to obtain
pe

the solution can be carried out exactly on similar lines as in the case
of F, with the difference that here s is bounded (1<s<sy) and origin
and a part of the axis of symmetry are in the flow field. Carrying out
the procedure exactly as in the case of I, we get the stream function
suitable for ¥ as
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p® =c (s =D+ )ZGM(S) P () +

n=0

ey(s* =D(A-1? ZD

n=1

]/x 1/1 Slq]/x (’/1 t)

(60)
where

GO\ (s) =B P, (s)-

S0

bl -l e ks

s

2T e e s

(n+1)(n+2 !

(61)

with
= o)

2 +3)2n+5) "

g ("*1)(") () _
{( .

2n—-1)2n+1) "

(n+3)n+4)
(2n+5)2n+7) A/(M} PLa(s) (62)

(n + 1)(n + 2) A© :|P;_, (c)

@n+1)2n+3) "

Here again (62) is valid for n=0,1,2...
the term Af(l)) is to be deleted when we take n=0 and P’ (¢) is to be
interpreted as 0.

A comment at this stage is in order. Comparing the expression for

(2)
n+l

with the understanding that

(0) ©, () that we get here and the expression for g (is) of equation

(43) we obtained in the case of F,, we notice that here we have

Q’..(s) and
Q.,(s) there in equation (43). This selection of the appropriate

P/,(s) and P/ (s) respectively in place of

Legendre functions is guided by the bounded nature of the flow
regime ¥ and the unbounded nature of the flow regime F».

Further, the function Rl(;‘)(iﬂ, s) given in equation (60) is a

radial spheroidal wave function given by

R, ‘)‘[’" 'S )+ 20 (m)T(s;—l)”z

r=0,1

[ B jl/z i LD+ 1)+ 2 GA)K s, (= As)

2} r=0,1
(63)
Evaluating Ezy/((’) E4y/(0) and using their expressions in

equation (60) we note that pressure distribution in F is given by

=Y. A+ 1)+ 2)P,., ()P, (1) 69

n+l
n=0

Thus and stream function V/(“) (s,1) and pressure distribution
p(s,t) for the flow regime F, are given by equations (60) and (64)

respectively. These involve three sets of
constants {4}, {B}, {Djl‘”} as can be seen from equations

(60),(61) and (64).
VI. SOLUTION FOR THE FLOW IN THE REGION T

We have seen earlier that the flow in the porous region F1 is
governed by the equations (20) and (21) which lead to the equation
(22). The equation (22) implies that the pressure distribution

p(l) (s, t)in F, is harmonic and hence it is given by

PV(s.0)= X (@, B, s)+ £,0,(5)P,0)

n=1

where {a"} and {p } constitute another set of arbitrary constants to
u®(s,f) and
v (s, 1) can be determined from equations (21) and (65).

(65)

be determined. The velocity components

Thus, in all, we have eight sets of unknown

consiants {3} {5 . {7} a2} {520 o) o} (3, and
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these can be determined by using the eight boundary conditions
given by the equations (23),(24),(25) and (26).

VII. VELOCITY COMPONENTS IN THE REGIONS Fy, F, I,

The velocity components can be obtained by using the expressions
for l//(o) and ‘//(2) given in equations (53), (60) and p® given in
equation (65). Thus the
components ', y@ ; 4@ @ sy VY can be written explicitly.
Using these expressions and those of ,© and p® in the boundary

expressions for the
O

velocity

conditions given by equations (23), (24), (25) and (26), we can
write the equations that lead to the determination ofthe arbitrary
constants.

VIII. DETERMINATION OF ARBITRARY CONSTANTS

In view of the equations (23)-(27) and the orthogonality property
of Legendre functions and the associated Legendre functions, we
have
Ué(s2 =18, —c2(s.> ~1JB2.QL, (5, )+ D a+2) -

c(n+1)(n+2)2d2 Vs> 1R (id s, )™ (i4) =

m=1

-k O ,(sz - 1)(“.,+1P'n+1 (51 )+ :Bn+1Q;:+1 (sl )) (66)
s, =B (s )+ D(n+2) +
S DO, T IR (i, 5, (A)n-+1)n +2) =
m=1
k(l ( 1 anHP n+l (SO )+ n+1Q:z+l (SO )) (67)
—UCs,8,, + B (n+1)(n+2)Q,.,(s,) + (68)
Xt LR .9, i 62)=0
m=1 A) !
B,‘.ﬁi<n+1><n+2>13.+1<s0)+c§D,E?’i[ s —1R.‘:’(M,s)l,,z.\.:.\.,,d‘/"( 4)=0 0
(5,2 =DAZQ (s, o LS cORO (d,5)d " (i) =0 (70

1 m=1
(5,2 —~DAD P’ (s))+ 7‘7‘ ZD“)R;;’ (id,sp)d" Ay =0 TV

(5 )+ BinQon (51 ))
1( )+ B Qi (‘o ))

(712)
(73)

- ueA0,., (s Jn+1)n+2)=(a,, P,
ﬂ‘AnH ntl (‘o )(n + 1)(” + 2) = ( (A

Determination of the arbitrary constants in the problem, as it
stands, is quite complicated, but of course, is not unsurmountable.
Eliminating the constants we see that {C’(Ilz’}and D,(nc”} have to

simultaneously satisfy a system of infinite non homogeneous system
of linear equations.

It is heartening to note that as the coefficients d;m (iA) are zero
for odd values of m+1+n, we can segregate the above system of
equations in {Cjnz’}and {Df,?)} into two sub systems containing

{C(2> } {D(”) }and {Cgﬂ)} {Dz(?n)} The sub system involving

2m+1 2m+l
{C;f: }and {ng} is seen to be homogeneous and in view of this
o

c® = po

2m 2m
up with the following non homogeneous system. After a straight
forward but lengthy algebra

S /(4,,C +B,,D®)=-Ucs,

nm ™~ m nm™~m

= ( for all positive integral values of m. Finally we end

(74)
m=1

and

(75)

m

i (A;,c® +B;,D*)=0
m=1

where
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57— R”’(zl 5)+ R (id,5,) 4(s,” =10, (s))
1 d \/i 1 1 1

—2(n+1)2n+ 15, =10,,.,(s)RD (id,s,)
. (n+1)2n+1) 2B 0y
P, (5)Q5,01 (59) = Poyiy (56)Q5, (57) 1,

Qorn (1) Dy (5 )Rm(zl,sl )* {Pz'm (51,1 (80) = Py (56) @51 (54 )}

| Q) 5 "

A, =dy(2)

(76)
(n+D)@2n+1) g (s 1)
5 ——ama) R O P 5)Cun 57 8
um — oy (1
anﬂ () Py (SO)R(4)( /LS())*{ 1505 (5)— B, (51)Q(.n+1 (s) }

Im
B,.1(5)) VS —

(77)
(n+1)(2n+1) ,u
IGA P11 (8)05,41 (50) = Py (56)D5,1 (5) 77,

A =3 (2) D1 (80) P (5) 1 ® _ ‘
R 25 (P11 (56)Ds01 (50) = Py (59)D5,1 (5}

Q) 571"

2% (s’ =)

(78)
(2604 D@+ s, 1P, ()R iAos) ] (79)
d (4)
\/7 R Y(id,5,)+ R 50 (5" =DP; 0 (5)
B =d"(i}) \/T
i = o (1 (n+1)@2n+1) ‘MZk“)(s -1
0

Py ()05, (50) = Pry (500D (5) 71
P11 (o) B ()
P80 Sy *-1

R 25 0] 1 (50) P ()= Do (5B (59}

is not possible, we

As an analytlcal determination of Céf,fﬂ , DESZ .

have to necessarily resort to a numerical determination of the
constants. For this, we truncate the two systems (74) and (75) so as
to give a 10 by 10 system with c® , ¢ ... c® and
D", D”...D After determining these, it is possible to

evaluate numerically the other constants. The details of the
manipulations are omitted in view of the lengthiness of the
expressions and the final system only is reported here.

IX. DETERMINATION OF DRAG

The drag D can be written in the form

1
D=2m* s —IJ.(Z\/SZ Tty —sV1-17 1, ) a B0
-1
and this simplifies to
jr 57 =1 p@(s,,0dr+
Mi( """" PL()+ 3,00, (s, ))I%dt_
27meTys, —1 . (1 e )P (r)
—m 1k Za,w B+ Bl 0| =5 i -
s, TZC?‘R“,’,“ (iAss, )J'w/(l ~ )8V (i, )dr
3y}
Using the relations from Hobson[7], given by
1 2 ’
1-t7)P (¢ 2 ,
A=A ® d ) ';( )dt:——(slz—l)Qn(sl) (82)
(Sl -1 ) S
and
1
tP (t |
S0 =17) Sy
the drag simplifies to
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After further simplification we see that the drag due to the surface

(84)

stress is given by D = 1/34® (85)
N / (Z)R(3) il s dlm il
where . _ 2(u+ k)ﬂzm; CPRY (ids)di" (i2) (86)
@ =
k

2 ’
VS~ 1Ql (s 1 )
We refer to 1/3 Al(z) as the non dimensional drag and this depends

upon the eccentricity of the spheroid, the micro polarity parameter,
an additional material constant A and the permeability parameter k.

X. NUMERICAL DISCUSSION

The drag on the spheroidal shell is numerically evaluated for several
parameter values and the variation of the drag is displayed through
figures (1) to (3).

For each value of the permeability parameter kp, the drag is
increasing as A increases. An increase in A implies a decrease in the
couple stress viscosity 1. Hence, we notice that as resistance to
rotation decreases, the body experiences a greater drag. For a fixed
A, for an increase in kp, the drag is seen to be slightly increasing (see
fig(1)) and the increase is not significant.

An increase in s; indicates an increase in the size of the outer
spheroid. The fig (2) shows that as the size of the outer spheroid
increases, for a fixed A, when the size of the inner spheroid is fixed,
the drag is increasing. Further as the parameter A increases for a
fixed s;, the drag increases.

In fig (3), we plotted the variation of drag for fixed values of kp
and s, with respect to varying s; and diverse values of A. Here also
we note that as the size of the outer spheroid increases, the drag
increases. Also as the couple stress parameter A increases, the drag is
significantly influenced.

We tried to plot the streamline pattern for different values of A, kp
with sg= 1.5 and s; = 2.0. Here also the streamline pattern is similar
to the one obtained by the authors in the case of flow of a micropolar
fluid past a porous spheroidal shell [8]. The streamline pattern for
the outer region as well as the porous region is slightly disturbed
where as for the fluid core region there is a considerable disturbance
and the patterns are similar to the ones obtained by Happel and
Brenner (see page 129 of [9]).
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Fig(1): Variation of drag with respect to A for different kp when so=1.2

and s,=2.0
25
H
15
- =18
£ o —EY-]
' . =20
o

s [xk:] 1 1.z
h

Fig(2): Variation of drag with respect to A for different s; when sp=1.2 ,

kp=0.01
2.5
z 1 e
1.5 e
= T Lo 05
E T
= - et m0E
L et =T = e h= 10
- R A
o t 1
15 12 z

&l

Fig(3):Variation of drag with respect to slfor different L when sop=1.2

kp=0.01

Fig(5): Streamline pattern for A =1.5 and kp-0.0005
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