
 

 

 

  

Abstract—The present paper deals with the problem of the 

Stokes flow of a couple stress fluid past a porous spheroidal shell 

consisting of a pair of con focal spheroids S0 and S1 where S0 is 

within S1. The region within S0 is filled with couple stress fluid, the 

annular region between S0 and S1 is assumed to be porous and the 

same couple stress fluid as that within S0 flows with a uniform 

velocity in the free region (i.e) outside S1.  The problem is 

formulated using the V.K. Stokes’ equation describing the flow 

outside the shell as well as the flow inside the shell while an 

analogue of the classical Darcy law in the theory of porous media is 

used within the shell region. Under Stokesian approximation, the 

solution is then, sought analytically and the expressions for the flow 

field variables are obtained in terms of Legendre functions, 

associated Legendre functions, radial prolate spheroidal wave 

functions and angular prolate spheroidal wave functions. The 

stresses acting on the shell are estimated and the drag experienced 

by the body is obtained. Numerical study is undertaken to study the 

effect of the permeability of the medium, couple stress parameter 

and the geometric parameter on the drag and the results are 

presented using graphs. It is found that, for a fixed S0 as the 

eccentricity of the outer spheroid increases, the drag decreases. 

 

Index Terms— Spheroidal shell, Couple stress fluid, 

Drag, Streamlines. 

  

 

I. INTRODUCTION 

Couple stress fluid theory proposed by V.K. Stokes [1] is the 

simplest polar fluid theory that shows all the important features and 

effects of couple stresses in fluids caused due to the mechanical 

interactions that occur inside a deforming continuum. A striking 

feature of this model is that it results in equations that are similar to 

the Navier Stokes equations, there by facilitating a comparison with 

the results for the classical non polar case.  

 Several flows past axisymmetric bodies dealing with couple 

stress fluids have been studied by Lakshmana Rao, Iyengar [2] and 

Iyengar and Srinivasacharya [3]. 

 

 All these problems deal with flows arising in the context of 

impervious bodies like sphere, spheroid and approximate sphere. To 

the extent the authors have surveyed not much literature is found on 

the flow of couple stress fluid past porous bodies except that by 

Ramana Murthy et.al [4], who studied the flow of an incompressible 

couple stress fluid flow past a porous sphere. Spheroid, being a more 

generalized form than a sphere, the present investigation deals with 

an incompressible couple stress fluid past a porous spheroidal shell. 

The studies dealing with porous spheroidal shells are of use in the 

study of plant physiology. This aspect has been well brought out by 

John Considine and Ken Brown who have used the theory of shells 

to study some aspects of the physics of fruit growth [5]. 
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 As the classical Navier Stokes equations, the couple stress fluid 

flow equations also are non linear in nature and even of higher order 

than the Navier Stokes equations. Thus only very few problems can 

have exact solutions subject to specified boundary and regularity 

conditions. When we consider the problem of flow past bodies like 

sphere or spheroid, it is almost impossible to find an exact solution. 

Hence researchers tried to solve a simplified version of the fluid 

flow equations by imposing some assumptions based on intuition. 

One of these assumptions is that given by Stokes: when the flow is 

slow and the fluid is highly viscous, viscous forces predominate the 

inertial forces nearer to the body. This assumption helps in 

neglecting the nonlinear inertial terms in the momentum equation 

and there by making the problems more mathematically tractable.  

In this paper, we study the Stokes flow of an incompressible 

couple stress fluid past a porous spheroidal shell consisting of two 

confocal spheroids where there is couple stress fluid filling the 

region inside the inner spheroid and the region outside the outer 

spheroid. The annular region between the two confocal spheroids is 

assumed to be porous in nature and the flow is governed by Darcy’s 

law there in. The flow variables pertaining to the inner region Ғ0, 

outer region Ғ2 and the porous region Ғ1 are obtained analytically. 

The expressions for stream function and pressure are obtained in 

terms of Legendre functions, associated Legendre functions, radial 

prolate spheroidal wave functions and angular prolate spheroidal 

wave functions.  The stresses acting on the spheroid are evaluated 

and an expression for the drag is obtained. Though the expressions 

for stresses are complicated, the expression for drag takes a 

delightfully simple form. 

 

 Numerical study is undertaken to discuss the variation of drag 

with respect to the material parameter, geometric parameter and the 

permeability parameter. The drag is seen to increase with the 

increase in the permeability parameter and it decreases with the 

increase in the eccentricity of the outer spheroid as well as an 

increase in the couple stress parameter. 

 

Couple stress fluid model given by V.K. Stokes is based 

on the presumption that the fluent medium can sustain couple 

stresses. Hence we have the non symmetric stress tensor tij and the 

couple stress tensor mij given by 
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where q  denotes the fluid velocity vector 
qcurl 
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, 
ji ,ω is the 

spin tensor, 
ijd  is the rate of deformation tensor, p  is the fluid 

pressure and 
kC ρ  is the body couple vector. The quantities λ  and 

µ are the viscosity coefficients and 
1η , 

1η ′ are the couple stress 

viscosity coefficients. These material constants are constrained by 

the inequalities  
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The parameter 

µ

η1
  is a characteristic measure of the polarity of the 

fluid which is zero in the case of non polar fluid.  The couple stress 

fluid equations are given by 

 

 0)( =+
∂

∂
qdiv

t

r
ρ

ρ                (4) 

 ( ) )(
2

1
 

2

1
 )(

divMcurldivccurlf
dt

qd s +++= τρρρ
r

r
    (5) 

 

where ρ  is the density of the fluid,  )(sτ is the symmetric part of 

the force stress diad and M is the couple stress diad and f
r

, c are 

the body force per unit mass and body couple per unit mass 

respectively 

 

II. FORMULATION 

 

Consider two confocal prolate spheroids S0 and S1 with 

foci P and Q where PQ=2c units. Let O be the mid point of PQ. 

Introduce the cylindrical polar coordinate system (r,θ,z) with respect 

to O as origin and OP extended on either side as Z axis. 

 

 Let us consider the slow stationary flow of an incompressible 

couple stress fluid past the spheroid S1 with a uniform flow with 

velocity U in the direction of the z-axis far away from the body. Let 

the region (Ғ1 ) between S0 and S1 be porous. Let the region (Ғ0 ) 

within the spheroid S0 be filled with the same couple stress fluid as 

is outside S1.  

 
 

 We examine the flow generated with the assumption that the flow 

in the porous region is characterized by Darcy’s law. Since the flow 

is slow, we assume that the flow is axi symmetric and is the same in 

any meridian plane and thus the flow variables are independent of 

the azimuth angle φ. 

 

We shall introduce the prolate spheroidal coordinates 

(ξ,η,φ) with ( )φηξ eee ,,  as base vectors and (h1, h2 ,h3 ) as the 

corresponding scale factors through the definition  
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 Let ( ii pq , ) denote the velocity and pressure in the regions  Ғi  (i = 

0,2) and let ( )1()1( , pq ) be the velocity and pressure in the porous 

region Ғ1. 

In view of the slowness of the flow, we take  
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Ignoring the body force and body couple f  and 

l respectively in the field equations, the basic equations governing 

the Stokesian flow can be written in the form 
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where 
( )1

k  is the permeability constant. 

In view of the continuity equations, we introduce the stream 

function ( )iψ  through 
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in which the Stokes stream function operator E2 is given by 
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Using the expressions for )(  curl i
qcurl
r

, )(    iqcurlcurlcurlcurl
r

, the 

basic equations describing the flow in regions Ғ0 and Ғ2 are given by 
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Eliminating  ( )i
p  from (16) and (17), we have  
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Thus the flow variables in the region Ғ0 and Ғ2 are completely 

determinable from the system of partial differential equations (18). 

The fluid pressure )(ip , i=0,2 can be obtained using equations (16) 

and (17). 

 

The flow in the porous region Ғ1 is governed by 
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which implies that the pressure ( )1
p  is a harmonic function given by 

the equation  
( ) 012 =∇ p               (22) 

The determination of the relevant flow field variables ( )iψ and ( )i
p  is 

subjected to the following boundary and regularity conditions. 

(i) Continuity of the normal velocity components on the 

interfaces: 
( )2

u  = ( )1
u  on S1 

( )1u  = ( )0u  on S0          (23) 

(ii) Tangential velocity components vanish on the 

interfaces: 

 ( )2
v  = 0 on S1 
( )0v  = 0 on S0            (24)  

(iii) Continuity of pressure on the interfaces: 
( )2

p  = ( )1p  on S1 

( )1p  = ( )0p  on S0          (25) 
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(v) The velocities are regular on the axis and far away 

from S1, the flow is a uniform stream which means, at 

infinity  
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Other forms of boundary conditions can also be taken. 

However we are using the present boundary conditions only as an 

initial trial for a complicated set of equations with a complicated 

geometry. 

 

Since, we are dealing with a prolate coordinate system, we have 
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where 

ξ cosh=s ; ηcos=t            (31) 

 

III. SOLUTION FOR THE FLOW IN THE REGION Ғ2 

 

The equation governing ( )2ψ   is 
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The solution of equation (32) can be obtained by superposing the 

solutions of the equations 
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Solution of equation (33): 

 

The solution of equation (33) can be written in the form 
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where )(1 tPn+
′ is the derivative of )(1 tPn+

with respect to t. The 

function 
0ψ  in equation (36) represents the stream function due to a 

uniform stream of magnitude U parallel to the axis of symmetry far 

away from the spheroidal shell. We notice that  00
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 Now operating E2 on the equation (37) and equating the result 

with the right hand side of equation (40), we get 
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Following [2], we note that )()2(
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equation 
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The equations (42) and (43) are valid for n=0,1,2,3… and the term 

involving )2(

1−A  is to be deleted in the right hand side of equation 

(45) and )(1 sQ−
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where s=s1 represents the value specifying the outermost spheroid 

past which the flow is being studied. Thus the flow region Ғ2 is 

given by s>s1. As s ∞→ , )2(ψ  must tend to 0. In view of this, we 
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Solution of equation (34): 

To solve the equation (34) (viz.) 0
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where Λ  is a separation constant. [6]. These are spheroidal wave 

differential equations of radial and angular type respectively. To 

ensure regularity of solution at infinity and in the flow region we 

have to choose the solutions of equations (47) and (48) in the form 
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is  the associated Legendre function of the first kind. 

 

 The coefficients ( )λid n

r

1  in the above expansions are constants 

depending on the parameter λi  and the suffix r has the value 

1,3,5… or 0, 2,4,6… depending upon the odd or even values of n+1. 

We have therefore the solution 
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nC  ‘s are constants. 

Hence, the stream function for the region Ғ2 is given by  
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We can see that   
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which are recorded for future use. 

 

IV. Pressure distribution in Ғ2 

 

The equations (16) and (17) for i = 2  and using equation (37) are  
( )

( )
( )( )

( )
( )( )24

2

122

2

2

1212
ψ

η
ψ

µ
E

tsc
E

tscs

p

∂

∂

−
−

∂

∂

−
=

∂

∂  (56) 

and 
( )

( )
( )( )

( )
( )( )24

2

122

2

2

1212
ψ

η
ψ

µ
E

stc
E

stct

p

∂

∂

−
+

∂

∂

−
−=

∂

∂  (57) 

Using the expressions in equations (54) and (55) in (56) and (57), on 

integration we get 
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Thus ( ) ( )ts,2ψ  and ( )( )tsp ,2  given in equations (53) and (58) 

respectively are the stream function and pressure distribution for the 

region Ғ2. These involve the three sets of constants 
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nB ,{ })2(

nC  as can be seen from equations (53),(44) and (58). 

 

V. SOLUTION FOR THE FLOW IN THE REGION Ғ0 

 

The equation for ( )0ψ is given by equations  
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c
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Solution of equation (59) can be obtained by superimposing the 

solutions of 04 =ψE  and 
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. The procedure to obtain 

the solution can be carried out exactly on similar lines as in the case 

of Ғ2 with the difference that here s is bounded (1<s<s0) and origin 

and a part of the axis of symmetry are in the flow field. Carrying out 

the procedure exactly as in the case of Ғ2, we get the stream function 

suitable for Ғ0 as 
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Here again (62) is valid for n=0,1,2… with the understanding that 

the term 
)0(

1−A  is to be deleted when we take n=0 and )(1 tP−
′  is to be 

interpreted as 0. 

 A comment at this stage is in order. Comparing the expression for 

)(
)0(

1 sg n+
that we get here and the expression for )()2(

1 sg n+
of equation 

(43) we obtained in the case of Ғ2, we notice that here we have 

)(3 sPn+
′ and )(1 sPn−

′  respectively in place of  )(3 sQn+
′ and 

)(1 sQn−
′ there in equation (43). This selection of the appropriate 

Legendre functions is guided by the bounded nature of the flow 

regime Ғ0 and the unbounded nature of the flow regime Ғ2. 

 

 Further, the function ( ) ( )siR n ,4

1 λ   given in equation (60) is a 

radial spheroidal wave function given by 
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Evaluating ( )02ψE , )0(4ψE  and using their expressions in 

equation (60), we note that pressure distribution in Ғ0 is given by 
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Thus and stream function ( ) ( )ts,0ψ  and pressure distribution 

( ) ( )tsp ,0  for the flow regime Ғ0 are given by equations (60) and (64) 

respectively. These involve three sets of 

constants { })0(

nA , { })0(

nB , { })0(

nD  as can be seen from equations 

(60),(61) and (64). 

 

VI. SOLUTION FOR THE FLOW IN THE REGION Ғ1 

 

We have seen earlier that the flow in the porous region Ғ1 is 

governed by the equations (20) and (21) which lead to the equation 

(22). The equation (22) implies that the pressure distribution 
( ) ( )tsp ,1 in Ғ1 is harmonic and hence it is given by 
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where { }nα  and { }nβ  constitute another set of arbitrary constants to 

be determined. The velocity components ),()1(
tsu  and 

),()1( tsv can be determined from equations (21) and (65). 

 Thus, in all, we have eight sets of unknown 

constants { })2(

nA , { })2(

nB , { })2(

nC , { })0(

nA , { })0(

nB , { })0(

nD , { }nα  , { }nβ  and 



 

 

 

these can be determined by using the eight boundary conditions 

given by the equations (23),(24),(25) and (26). 

 

 

VII. VELOCITY COMPONENTS IN THE REGIONS Ғ0, Ғ1, Ғ2  

 

The velocity components can be obtained by using the expressions 

for )0(ψ  and )2(ψ  given in equations (53), (60) and )1(
p  given in 

equation (65). Thus the expressions for the velocity 

components )2(
u , )2(v  ; )0(

u  , )0(
v  ; )1(u  , )1(

v   can  be written explicitly. 

Using these expressions and those of )0(p  and )2(
p  in  the  boundary 

conditions given by equations  (23), (24), (25) and (26), we can 

write the equations that lead to  the determination ofthe arbitrary 

constants. 

 

VIII.  DETERMINATION OF ARBITRARY CONSTANTS 

 

 In view of the equations (23)-(27) and the orthogonality property 

of Legendre functions and the associated Legendre functions, we 

have 
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 Determination of the arbitrary constants in the problem, as it 

stands, is quite complicated, but of course, is not unsurmountable. 

Eliminating the constants we see that { })2(

mC and { })0(

mD  have to 

simultaneously satisfy a system of infinite non homogeneous system 

of linear equations. 

 

 It is heartening to note that as the coefficients )(1 λid m

n
 are zero 

for odd values of m+1+n, we can segregate the above system of 

equations in  { })2(

mC and { })0(

mD  into two sub systems containing  

{ })2(

12 +mC , { })0(

12 +mD  and  { })2(
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2mD . The sub system involving 
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2mD  is seen to be homogeneous and in view of this 
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2 == mm DC for all positive integral values of m. Finally we end 

up with the following non homogeneous system. After a straight 

forward but lengthy algebra  
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As an analytical determination of )2(

12 +mC , )0(

12 +mD  is not possible, we 

have to necessarily resort to a numerical determination of the 

constants. For this, we truncate the two systems (74) and (75) so as 

to give a 10 by 10 system with )2(

1C , )2(

3C … )2(

9C  and 

)0(

1D , )0(

3D … )0(

9D  After determining these, it is possible to 

evaluate numerically the other constants. The details of the 

manipulations are omitted in view of the lengthiness of the 

expressions and the final system only is reported here. 

 

 IX.   DETERMINATION OF DRAG 

 

The drag D can be written in the form 
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and this simplifies to  
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Using the relations from Hobson[7], given by 
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the drag simplifies to 
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After further simplification we see that the drag due to the surface 

stress is given by D = )2(

13/1 A            (85) 

where

)(1

)(),(
)(2

11

2

1

1

1

01

)3(

1

)2(/

2)2(

1

sQs

idsiRC

k

k
A m

m

mm

′−

+
−=

∑
∞

=

λλ

λ
µ     (86) 

We refer to )2(

13/1 A  as the non dimensional drag and this depends 

upon the eccentricity of the spheroid, the micro polarity parameter, 

an additional material constant λ and the permeability parameter k(1). 

 

X.  NUMERICAL DISCUSSION 

 

The drag on the spheroidal shell is numerically evaluated for several 

parameter values and the variation of the drag is displayed through 

figures (1) to (3). 

 

 For each value of the permeability parameter kp, the drag is 

increasing as λ increases. An increase in λ implies a decrease in the 

couple stress viscosity η. Hence, we notice that as resistance to 

rotation decreases, the body experiences a greater drag. For a fixed 

λ, for an increase in kp, the drag is seen to be slightly increasing (see 

fig(1)) and the increase is not significant. 

 

 An increase in s1 indicates an increase in the size of the outer 

spheroid. The fig (2) shows that as the size of the outer spheroid 

increases, for a fixed λ, when the size of the inner spheroid is fixed, 

the drag is increasing. Further as the parameter λ increases for a 

fixed s1, the drag increases. 

 

 In fig (3), we plotted the variation of drag for fixed values of kp 

and s0, with respect to varying s1 and diverse values of λ. Here also 

we note that as the size of the outer spheroid increases, the drag 

increases. Also as the couple stress parameter λ increases, the drag is 

significantly influenced. 

 

 We tried to plot the streamline pattern for different values of λ, kp 

with s0= 1.5 and s1 = 2.0.  Here also the streamline pattern is similar 

to the one obtained by the authors in the case of flow of a micropolar 

fluid past a porous spheroidal shell [8].  The streamline pattern for 

the outer region as well as the porous region is slightly disturbed 

where as for the fluid core region there is a considerable disturbance 

and the patterns are similar to the ones obtained by Happel and 

Brenner (see page 129 of [9]). 
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Fig(1): Variation of drag with respect to λ for different kp when s0=1.2 

and s1=2.0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig(2): Variation of drag with respect to λ for different s1 when s0=1.2 , 

kp=0.01 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig(3):Variation of drag with respect to s1for different λ when s0=1.2 

,kp=0.01 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig(4): Streamline pattern for λ =1.2 and kp-0.0005 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig(5): Streamline pattern for λ =1.5 and kp-0.0005 




