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Abstract—In the development of embedded systems,
Instruction-Set Simulators (ISS) plays an important role. When
using an ISS, simulation speed is a significant issue. In this
paper, we present a dynamic translation technique that uses
the LLVM open-source compiler infrastructure to increase the
simulation speed. Our dynamic translation technique translates
hot basic blocks of the target instruction set into LLVM bitcode,
and compiles LLVM bitcode into host binary code using the
LLVM Just-In-Time (JIT) compiler. We have simulated the same
programs using LLVM-based dynamic translation and using
traditional dynamic translation to compare their performance.
The experiments show that the dynamic translation based on
LLVM increases simulation speed.

Index Terms—Instruction Set Simulation, binary dynamic
translation, computer architecture, compilation, LLVM.

I. INTRODUCTION

Instruction-Set Simulators (ISS) are widely used tools for
studying new architectures or developing software closely
related to hardware such as operating systems or embedded
systems applications.

An ISS is used to emulate the behavior of a target processor
on a simulation host machine. The main task of an ISS is to
carry out the computations that correspond to each instruction
and maintain correct state of the simulated target processor.

There are several alternatives to achieve such simulation.
In interpretive simulation, such as in popular Simplescalar [1]
simulator, each instruction of the target program is fetched
from memory, decoded, and finally executed.

Given that decoding is time-consuming and that instructions
are generally executed many times, simulation can be sped up
by translating and caching the result of the decoding phase.
This is called dynamic translation [2]. The decoder output, i.e.
the translated code, can be more or less optimized. Obviously,
stronger optimization implies longer translation time.

In this paper, we present an ISS with two dynamic transla-
tion modes, which are complementary. The first mode trans-
lates the code quickly into an intermediate representation,
allowing pretty fast simulations. This representation is ex-
ecutable in the sense that it uses objects with an execute
method, but it does not consist of native code for the host
machine.

In order to simulate even faster the time-critical parts, we
added a second translation mode that uses the LLVM [3]
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library to optimize and compile the intermediate representation
to native code.

This ISS is integrated in a SystemC module [4], and uses
Transaction Level Modeling based on the OSCI TLM-2.0.1
standard [5] for communications with other simulation models,
making it compatible with third-party components developed
using the same standards.

This ISS is now part of the SimSoC open-source simula-
tor [6] from INRIA, since version 0.7.

This paper is structured as follows. Section II details some
close related work. Next, the new translation mode based on
LLVM is described in Section III. We have carried out ex-
periments, whose results are presented in Section IV. Finally,
Section V concludes the paper.

II. RELATED WORK

There has been many papers on Instruction-Set Simulators,
After the early days of interpretive simulation, several systems
have successfully attempted to improve performance with
dynamic translation starting with the Shade [2] and Embra
simulators [7].

The JIT-CCS simulator [8] introduced the technique that
we use in our so-called DT2 mode (for historical reasons)
detailed in the next section. The code for simulating individual
simulation operations is coded in C or C++, manually coded
or generated (in our case generated C++ for ARM V6, and
manually for PowerPC). The dynamic translator generates and
caches a data structure with references to these operations
to re-execute them. This is a fast method relatively easy
to implement and provides a basis to compare performance
enhancements.

The heart technology of SimIt [9] is a simulation engine
capable of mixed interpretive and compiled simulation. To
increase simulation speed, it enables to distribute the tasks
involved in binary translation to other processors. While the
simulator interprets target instructions it generates profiling
statistics for selecting frequently executed pages to compile.
When the execution count for a page exceeds a predefined
threshold, it is compiled by GCC into a shared library which
is loaded at runtime. This is indeed native host translation but
as it is generating C and invoking GCC, it creates a latency
that is only worthwhile for long simulations.

The Edinburgh High Speed (EHS) simulator [10] has two
simulation modes: one is an interpretive mode and the other is
a dynamic binary translation (DBT) mode. In EHS simulator,
the translation units are Large Translation Units(LTU). LTU
is a group of basic blocks connected by control flow arcs,



which may have several entry and exit points. Each translation-
unit is translated into a C code function that simulates the
target instructions. The functions are compiled by GCC into
a shared library which is loaded by the dynamic linker. EHS
simulator profiles the target program’s execution in order to
discover frequently taken paths (hot paths) rather than to
identify frequently executed blocks.

Rapido [11] uses dynamic compilation with LLVM. Hot
basic blocks are grouped into regions when specified thresh-
old has been reached. A region is compiled into a LLVM
function which contains only a single entry and without other
restrictions. A region is the translation-unit of this simulator.
It means that a region may contain loops, and then interrupts
may not be checked for accurately. At compilation various
optimization passes are invoked by simulator that decides
which optimization pass to apply. Compared simulation speeds
of the interpreter and the translator for MIPS and CHILI shows
that the translator is up to 500 times faster for the longer
running benchmarks.

QEMU [12] is a fast machine simulator which uses an
original portable dynamic translator. Each target instruction is
split into fewer simpler instructions called micro operations.
The micro operations have been pre-compiled offline into an
object file. The compile time tool called dyngen uses the
object file as input to dynamically generate code with sort of a
“copy and paste” of the micro-instructions. This dynamic code
generator is invoked at run-time to generate and link complete
host functions which concatenates several micro operations.

The project llvm-qemu [13] uses components of the LLVM
compiler infrastructure to modify the QEMU dynamic transla-
tor to increase the performance of QEMU. Instead of directly
emitting code for the host architecture QEMU is running
on, the micro instructions are first translated to LLVM in-
termediate representation (IR) , then a selection of LLVM’s
optimization functions are applied to the IR and the LLVM
JIT is used to generate code from the optimized IR for the host
architecture. This is similar to our work, but no performance
has been published as of this writing, making comparison
difficult.

The library libcpu [14] is claiming to improve its architec-
ture with LLVM, but it is not available yet.

III. DYNAMIC TRANSLATION WITH LLVM

A. Previous work

The SimSoc simulator is implementing four kinds of in-
struction simulation corresponding to four modes that the
simulator can run in. It can simulate several architectures, but
in this section, we will focus on the PowerPC architecture.

The first mode, named DT0, is purely interpretive simula-
tion. Each instruction of the target program is fetched from
memory, decoded, and executed, when simulator runs. This
method is flexible and easy to implement, but the simulation
speed is slow as it wastes a lot of time in decoding. It
however provides a basis from which one can fairly compare
performance with other simulation modes, for the same host
machine and the same application program. The second mode

DT1 is a simple minded dynamic cache translation, with no
optimization, that makes it possible to evaluate the perfor-
mance of the cache technique over DT0.

The third mode, named DT2, is dynamic cached transla-
tion with optimization. In this mode each type and variant
of an instruction has a class structure corresponding to it.
For example, the PowerPC add instruction corresponds to
the PPC_add class, the stw instruction corresponding to
PPC_stw class and so on. These instruction instances store
all information obtained from the instruction decoding. Such
information include for example operand registers, target regis-
ters, immediate values, and include a reference to the execution
function. This mode also uses a partial evaluation technique
at decoding time to possibly specialize each instruction into a
more specialized execution function.

DT2 mode shows the performance improvement obtained
with optimized dynamic translation compared to simple DT1.
The benchmarks results in [15] show that simulation speed
vary from 9.5 Mips in DT0 mode, to more than 30 Mips in
DT1, to reach close to over 70 Mips in DT2. In average DT2
mode is between five to ten times faster than DT0 mode.

B. Dynamic compilation

Our work is about introducing a new mode, named DT3,
with dynamic translation based on LLVM.

LLVM is a Low Level Virtual Machine [3] that has been
designed to serve as intermediate representation in compilers
suitable for complex optimizations. LLVM consists in an
abstract instruction set, each instruction having well defined
semantics. An LLVM program can be interpreted directly
using the LLVM interpreter, or compiled to machine code.
The code generation can be done either with a JIT compiler
or a batch compiling phase. It contains a complete set of
high-level compiler optimizations, ranging from simple scalar
simplifications to complex loop transformations.

In the DT3 mode, our translation-unit is a Basic block, a
straight sequence of code with only one entry point and only
one exit, with a branch instruction at the end. That is to say,
all instructions from a basic block will certainly be executed
when it is entered. The idea is to compile each basic block into
a linear simulation function that does not contain any control
flow instruction, which allows fast translation.

Below is an example of a basic block of PowerPC instruc-
tions to be translated into an LLVM function:

addis r9, r0, 385
lwz r0, 1076 (r9)
or r1, r0, r0
bl 0xffffff70

To translate a basic block to LLVM, we first create an
LLVM function, containing a single LLVM block entry.
This LLVM function has a parameter %proc that holds the
processor state. Then, for each instruction, we generate a
call to the corresponding execution function, which must be
defined by LLVM code. The implementations of the LLVM ex-
ecution functions are stored in a LLVM bitcode library, whose
generation is explained below. For example, the instructions



addis and lwz are translated to specialized llvm function
calls to corresponding functions addis_ra0 and lwz_raS.
Each instruction is followed by a function call to update the
value of the PC register. The status returned by an execution
function tells whether a branch has occurred; by definition, all
status but the last tell that no branch occurred.

Thus, the basic block above is translated to the following
LLVM function.

define void @bb_687 (%"struct.Proc"* %proc) {
entry:
%status = call i32 @addis_ra0(%"struct.

Proc"* %proc, i8 9, i32 385)
call void @inc_pc(%"struct.Proc"* %proc)
%status1 = call i32 @lwz_raS(%"struct.

Proc"* %proc, i8 0, i8 9, i32 1076)
call void @inc_pc(%"struct.Proc"* %proc)
%status2 = call i32 @or(%"struct.

Proc"* %proc, i8 0, i8 1, i8 0)
call void @inc_pc(%"struct.Proc"* %proc)
%status3 = call i32 @bl(%"struct.

Proc"* %proc, i32 -144)
call void @inc_pc_if_no_branch(i32 %status3,

%"struct.Proc"* %proc)
ret void

}

When a basic block has been constructed, one can use
LLVM optimization functions at will. In particular, we sys-
tematically call the AlwaysInline optimization first so that all
the code of the execution functions is actually inlined, and thus
available for further optimizations. Next, other optimizations
can be accomplished. For example, LLVM will reduce the K
successive calls to inc_pc() inlined functions into a single
addition of K×4 to the PC when the PC variable is never read.
In general, after the AlwaysInline pass, we apply the LLVM
optimization passes named GVNPass, InstructionCombining-
Pass, CFGSimplificationPass, and DeadStoreEliminationPass.

After the LLVM optimization passes, we call the LLVM
JIT compiler to compile LLVM bitcode into host binary code.
Then we update the instruction cache so that this optimized
binary code is called instead of the DT2 simulation function.

As it is much easier to write C++ code than LLVM
bitcode, to obtain the LLVM library, we start from a library
of C++ functions that we compile into a LLVM library
prior to simulation, using the llvm-g++ compiler. All the
instructions implemented in C++ code for the PowerPC in-
struction set are stored in the file ppc_llvm_lib.cpp.
Using the llvm-g++ compiler, we generate the file
ppc_llvm_lib.bc, which contains the corresponding
LLVM bitcode.

As an example, here is the C++ code implementing the
PowerPC add instruction:

extern "C" PseudoStatus ppc_add
(Proc &proc, u8 rt, u8 ra, u8 rb) {

const uint32_t a = proc.cpu.gpr[ra];
const uint32_t b = proc.cpu.gpr[rb];
proc.cpu.gpr[rt] = a+b;
return OK;

}

And here is the LLVM bitcode generated by llvm-g++:

define i32 @ppc_add(%"struct.Proc"* nocapture
%proc, i8 zeroext %rt, i8 zeroext %ra,

i8 zeroext %rb) nounwind {
entry:
%0 = zext i8 %ra to i64;
%1 = geteleptr inbounds %"struct.Proc"*

%proc, i64 0, i32 2, i32 4, i64 %0;
%2 = load i32* %1, align 4;
%3 = zext i8 %rb to i64;
%4 = geteleptr inbounds %"struct.Proc"*

%proc, i64 0, i32 2, i32 4, i64 %3;
%5 = load i32* %4, align 4;
%6 = add i32 %5, %2;
%7 = zext i8 %rt to i64;
%8 = geteleptr inbounds %"struct.Proc"*

%proc, i64 0, i32 2, i32 4, i64 %7;
store i32 %6, i32* %8, align 4
ret i32 0

}

C. Profiling and compilation threshold

On average, a program spends a lot of time to execute a
small portion of its code. Since translation to LLVM is costly,
an idea to speed up simulation, already exploited in JIT-CCS
[8], is to only translate that small portion of code, whereas
the remaining code might only execute once or only a few
times and the extra time spent to generate the optimized code
would not pay off. Therefore we need to find out the frequently
executed basic blocks. To solve this problem we add a counter
C for each basic block. When the counter has reached a
specified threshold CT the basic block is identifies as a hot
basic block. The value of the CT threshold is a run time
parameter. Only hot basic blocks are compiled into LLVM
bitcode.

This is of course optimistic, hoping that blocks executed
frequently in the past will be executed frequently in the future.

IV. VALIDATION AND PERFORMANCES

The dynamic translation based on LLVM is now available
in SimSoC version 0.7. Some tests were already written to test
dynamic translation. We reused them to test the new dynamic
compilation, and all the tests worked well in the DT3 mode.

In this paper, we consider three benchmark programs that
we have written to test the performance of our simulator,
named “loop”, “sorting”, and “crypto”. The loop program
is a simple loop, the sorting program executes many sorting
algorithm, and the crypto program is a more complex crypto-
graphic program using functions from the XYSSL library. We
have compiled sorting and crypto using different optimization
options: a first time with optimization (-O3) and a second time
without (-O0) .

A. Simulation speed of the compiled code

First, we measured the results with the compilation thresh-
old CT set to 1. That is to say, all basic blocks that are
executed at least twice were compiled (For technical reasons
not detailed here, it is not possible to compile a basic block



TABLE I
COMPILATION AND SIMULATION TIME

total time − compil. = simul. DT2
crypto-O0 31.67 s − 30.32 s = 1.35 s 2.92 s
crypto-O3 14.50 s − 13.50 s = 1.00 s 2.77 s

loop 1.03 s − 0.02 s = 1.01 s 1.58 s
sorting-O0 4.13 s − 2.64 s = 1.49 s 3.36 s
sorting-O3 3.62 s − 2.03 s = 1.59 s 3.29 s

total 54.95 s − 48.51 s = 6.44 s 13.92 s

before its first execution, and so CT = 0 is not feasible). The
results are detailed in Table I.

We can see that the compiled code (DT3) is more than twice
as fast as the simply-translated code (DT2, not using LLVM).
Given that the five compiled benchmarks total up to 1,018
millions of simulated instructions, the simulated speed of the
compiled code SC is 158 Mips on average, whereas the speed
of the DT2 mode ST was 73 Mips.

However, we notice that the runtime compiler itself is
slow. Summing up the five benchmarks, 34,548 instructions
in 1,500 basic blocks were compiled. Thus, on average, one
can compile only C = 712 instructions per seconds. It results
that the total simulation time is smaller only for the loop
benchmark whose binary code is very short. That is the
rationale to use a compilation threshold.

B. Speed of the runtime compiler

Regarding speed of the runtime compiler, Fig. 1 shows the
relation between the size of a basic block and its compilation
time, using the same benchmarks than above. It appears that a
constant time of about 10 ms adds to the compilation time of
any basic blocks, and after that compile time is linear with
block size. Thus, very small blocks are less interesting to
translate than large blocks.

C. Overall speed and best threshold value

Theoretically, we know that if a binary instruction is exe-
cuted N times, then its cost using the DT2 mode is N ×S−1
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Fig. 1. Relationship between size of blocks and their compilation time
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Fig. 2. Effect of the compilation threshold on the simulation speed

where ST is the speed of the translated code, and its cost
using the DT3 mode is C−1 + N × S−1

C , where SC is the
speed of the compiled code and C the speed of the compiler.
Consequently, compiling an instruction is paying off only if:

N >
C−1

S−1
T − S−1

C

≈ 1/712

1/(73·106)− 1/(158·106)
≈ 190·103.

So, we expect that the best compilation threshold value CT
should be in the same order of magnitude than 190,000. For
this experiment, we tested the same benchmarks with different
values of CT in DT3 mode, and we compare the overall
simulation speeds.

Fig. 2 shows that if the value of CT is small, most
basic blocks counters exceed the threshold, thus much time
is spent compiling basic blocks which are not really “hot
blocks”; the compile time is quite long and consequently the
simulation speed is lower than DT2 mode. When increasing
the compilation threshold, less blocks get compiled and the
simulation speed is going up, above the DT2 speed. But when
the value of CT is too large, the number of compiled blocks
decreases towards none. An infinite value of CT means that
any basic block counter can never exceed the threshold, and the
whole simulation is done using the intermediate representation
of the DT2 mode.

The users should run the simulations with an optimized
value of CT , so that the simulation speed will reach its peak.
According to Fig. 2, the best value is around 50,000. Using
this value, our new DT3 mode is 29% faster than the previous
DT2 mode. However, there are significant differences: the DT3
mode is more interesting for program with long execution but
short binary code, or at least short hot sections. For example,
the DT3 mode is not interesting for the crypto benchmark
because the control flow never stay in the same function for
a long time. However, if one does cryptographic computation
during a longer time, (e.g., one minute instead of 3 seconds),
then the DT3 mode will become advantageous.



V. CONCLUSION

In this paper we presented a new simulation mode in
SimSoc which is called dynamic translation based on LLVM.
This approach compiles target instructions into LLVM bit-
code, followed by several optimization passes invoked during
compilation. We have tested five benchmark programs on this
simulation mode, and the results demonstrate that it is faster
than the DT2 mode.

With the technique exposed, we found that a reasonable
value of the CT threshold is relatively high. To decrease
this threshold to a value that would be suitable to more
applications, we must shorten the compilation time and in-
crease the speed of the compiled code. Our future work
to further increase simulation speed will thus concentrate
on parallelizing the compilation phase, and exploring larger
translation units with higher optimization of these units.
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