
FPGA Based Intelligent Co-operative Processor
in Memory Architecture

Zaki Ahmad, Reza Sotudeh, D. M. Akbar Hussain, Shahab-ud-din ∗

Abstract—In a continuing effort to improve com-
puter system performance, Processor-In-Memory
(PIM) architecture has emerged as an alternative so-
lution. PIM architecture incorporates computational
units and control logic directly on the memory to pro-
vide immediate access to the data. To exploit the
potential benefits of PIM, a concept of Co-operative
Intelligent Memory (CIM) was developed by the in-
telligent system group of University of Hertford-
shire, based on the previously developed Co-operative
Pseudo Intelligent Memory (CPIM). This paper pro-
vides an overview on previous works (CPIM, CIM)
and realization of CPIM over two scenarios, cumu-
lative successive addition, and non-cumulative suc-
cessive addition, using Nexar 2004 EDS tool as
a design environment to target device (SPARTAN
II, XC2S300E-6PQ208C).The performance (speedup)
is then measured against an SISD without signifi-
cant performance acceleration methods to ensure a
speedup assessment obtained against base-line archi-
tecture.

Keywords: Co-operative Intelligent Memory (CIM),

Processor-in-Memory (PIM), Shared memory,

CPU−major, CPU−minor, Observer, Task optimizer

1 Introduction

Due to the growing processor-memory performance gap,
those applications having high degree of locality are able
to exploit the full performance capability of the current
microprocessors. Applications that suffer frequent cache
or TLB misses find their performance limited by the
speed of the memory system. A concept, Processor-in-
Memory (PIM) architecture, IRAM, has been proposed
to improve system performance by the computer archi-
tecture group of the University of Berkeley [1]. PIM ar-
chitecture incorporates computational units and control
logic directly on the memory to provide immediate access
to the data. For class of tasks which are heavily reliant on

∗Manuscript submitted January, 2011 Dr. Zaki Ahmed is
working as a Principal Engineer at PILO (Pakistan Institute of
Laser and Optics). Email: zaki786@ieee.org. Prof. Reza So-
tudeh works at the School of Electronics, Communication and
Electrical Engineering, University of Hertfordshire, UK Email:
R.sotudeh@herts.ac.uk. Dr. M. Akbar Hussain is member of IEEE,
IDA, IAENG and works at the Department of Electronic Systems
Aalborg University, Niels Bohrs Vej 8, 6700 Esbjerg, Denmark.
Email: akh@es.aau.dk

memory to-memory iterative process [2][3][4][5][6][7][8],
an extension of IRAM, Co-operative Intelligent Memory
(CIM) was developed by the intelligent system group of
University of Hertfordshire, based on previously devel-
oped Co-operative Pseudo Intelligent Memory (CPIM),
to reduce the performance gap between the processor and
memory by partitioning computation through dividing
workload between major (non-iterative) and minor (iter-
ative) CPUs.

The choice of FPGA for the implementation of the pro-
posed architecture was driven by the growth in the size
and capabilities of programmable logic. Generally, there
are two primary methods in conventional computing for
the execution of algorithms. The first is to use hard-wired
technology, either an Application Specific Integrated Cir-
cuit (ASIC) or a group of individual components forming
a board-level solution, to perform the operations in hard-
ware. ASICs are designed specifically to perform a given
computation, and thus they are very fast and efficient
when executing the exact computation for which they
were designed. However, the circuit cannot be altered af-
ter fabrication. This forces a re-design and re-fabrication
of the chip if any part of its circuits requires modification.
This is an expensive process, especially when one consid-
ers the difficulties in replacing ASICs in a large number of
deployed systems. Board-level circuits are also somewhat
inflexible, frequently requiring a board re-design and re-
placement in the event of changes to the application.

The second method is to use software-programmed mi-
croprocessors, more flexible solution. Processors execute
a set of instructions to perform a computation. By chang-
ing the software instructions, the functionality of the sys-
tem is altered without changing the hardware. However,
the downside of this flexibility is that the performance can
suffer, and is far below that of ASICs. The reason is that
the processor must read each instruction from memory,
decode its meaning, and then execute it. This results in
a high execution overhead for each individual operation.
Additionally, the set of instructions that may be used by
a program is determined at the fabrication time of the
processor. Reconfigurable computing is intended to fill
the gap between hardware and software, achieving po-
tentially much higher performance than software, while
maintaining a higher level of flexibility than hardware.



Reconfigurable devices in the form of Field-
Programmable Gate Arrays (FPGAs) contain an
array of computational elements whose functionality is
determined through multiple programmable configura-
tion bits. These elements, known as logic blocks, are
connected using a set of routing resources that are also
programmable. In this way, custom digital circuits can
be mapped to the reconfigurable hardware by computing
the logic functions of the circuits within the logic blocks,
and using the configurable routing to connect the blocks
together to form the necessary circuits. However to do
this the designer need a design environment that solves
the system integration issues, where they can capture the
hardware design, test and debug the system on the target
FPGA. This paper describes some key characteristics of
CPIM and CIM architecture and design flow to establish
the basic methodology used in the implementation of
proposed CPIM. The performance (speedup) over two
scenarios, cumulative successive addition, and non-
cumulative successive addition is then measured against
an SISD without significant performance acceleration
methods (by modern standards) to ensure a speedup
assessment is obtained against base-line architecture.
For this, we chose 68000 as a base-line. This choice
was primarily driven by the rich instruction portfolio
that covers all relevant addressing modes and the clear
mapping of instruction and machine cycle to the 68000
hardware building block.

2 Architectures Description

The CPIM and CIM architectures are shown in figure 1
and 2 respectively. The main CPU, CPU−major, has a
conventional architecture and poses no real design con-
straints on the CPIM architecture and backed up by a
deep cache hierarchy and suffers high latency to access
memory. The enhancement called CPIM, introducing a
new block of memory (shared memory), shared through
arbitration between CPU−major and task specific pro-
cessor, CPU−minor, that consists of a small computa-
tional unit performing iterative processing and an Iter-
ation Control Unit (ICU). ICU provides an instruction
format for the CPU−minor, consists of a set of regis-
ters, namely address register (addr-register), job size reg-
ister (job-size-register), job nature register (job-nature-
register) and destination register (dest-register).

A detailed discussion of the CPIM architecture with dis-
tribution of workload and code optimization technique
can be found in [9][10]. The CIM architecture (figure
2) differs from CPIM in terms of approach; instead of
Von-Neumann (instruction and data are stored in a single
memory) it requires a Harvard approach towards mem-
ory (Separate memory for instruction and data). This
approach may simplify read / write mechanism, partic-
ularly as programs are normally read during execution,
while data might be read or altered. Also establish a

Figure 1: CPIM Architecture

path for the extraction of vector components by mon-
itoring the activity operating on the address and data
buses. The detection of iterative tasks, conducted by an
additional hardware unit called ”observer” having addi-
tional knowledge of the location of specific logic blocks
(CPIM) with reference to their operational capability.

Figure 2: CIM Architecture

The following jobs are performed by the observer;

• Extraction of vectors that characterize the iteration.

• Transfer of vector components with the related set
of data into specific logic block.

• Removal of selected / corresponding iterative loop
from the main stream.

A detailed discussion of the CIM architecture with design
methodology, acceleration and speedup parameter can be
found in [9][10]. Our CPIM and CIM architectures have
the following characteristics:

• The memory capacity is large enough to hold large
data frames synonymous with high resolution image
frames.



• Eliminates the overhead associated with the time it
takes to fetch and execute the instruction in a specific
program loop.

• No need for special instructions as required in the
case of coprocessor.

• CPU−major (main CPU) can continue with other
operations while the CPIM is completing its allo-
cated task.

The major characteristics that make CIM distinctive
from the existing PIM systems, is its learning capability
to gather intelligence from the current program execution
profile.

3 Realization of CPIM

Along with the growth in the size and the functionality of
application specific ICs, there has been a corresponding
growth in the size and capabilities of programmable logic.
This has made it possible to implement CPIM on FPGA.
However to do this the designer need a design environ-
ment that solves the system integration issues, where they
can capture the hardware design, test and debug the sys-
tem on the target FPGA. This section shows the use of
a window based EDS tool (Nexar 2004, a window based
electronics design software introduced by Altium limited)
for FPGA design.

3.1 FPGA Design Flow

Design flow is the step by step methodology to go through
the process of FPGA design. The design flow is shown in
figure 3 and it can be seen that it is divided into five (5)
basic steps:

• Design Entry or Capture H/W design: The
first step of FPGA design flow describes the design
that has to be implemented on FPGA.

• Functional Verification and Simulation: This
step checks the logical correctness of design.

• FPGA Synthesis: This step converts design entry
into logic blocks.

• FPGA Place and Route: Optimized the circuit
and minimizes the length of interconnection.

• Circuit Analysis This step performs timing analy-
sis.

• Programming to FPGA: Download FPGA pro-
gramming file into target FPGA.

3.2 Design Environment

Nexar design environment ?? allows designing a digital
system in an FPGA project as a set of Schematic sheets,
VHDL codes, or using a mixture of Schematic and VHDL.
For the designers, the choice of whether to use Schematic
or VHDL based design entry comes down to their concept
towards design. Those who think in software terms HDL
are the better choice, and those are hardware oriented,
schematic or the mixture of schematic and VHDL are the
best choice. Schematic design is facilitated in Nexar by
the inclusion of extensive libraries of pre-synthesized, pre-
verified IP components, including a range of processor
cores, which can be simply dropped onto the schematic
and connected together to form the system hardware.
This is analogous to the way designers work at the board
level with the physical ”off-the-shelf” components.

The concept of multi-board is very common at the system
level design. Nexar provides a multi-sheet design method-
ology, similar to the multi board design. Designers turn
to multi-sheet design for various reasons, the primary one
being project size; some projects are simply too large or
complicated to fit on a single sheet. But even small design
can benefit from a multi sheet approach. For example,
the design may include various modular elements, and
dividing those modules into individual documents would
allow several designers to work on a project in parallel.

At the system level, Nexar provides a schematic-based
design methodology to define system connectivity. The
reason being that graphical schematic-based capture or
design entry is more efficient for connecting functional
blocks than HDLs, and allows complex systems to be cre-
ated quickly at the component level. Along with IP-based
components, Nexar includes a library of IP-based virtual
instruments (as pre-synthesized models), such as logic an-
alyzers, frequency counters/generators and I/O monitors
that can be incorporated into the design at the schematic
level to facilitate system testing and debugging. These in-
struments have on-screen front panels analogous to their
physical counterparts to provide a natural way for the
designers to examine the working of their circuits, and
to see inside the FPGA during the design process. Af-
ter design entry, the compilation stage can verify that
the design entry or captured source is free of electrical,
drafting, and coding errors. Resolve any error found and
re-compile the project to check.

3.3 Constraints On All Sides

The FPGA is constrained by the timing requirement of
the design (timing constraints), the capacity and archi-
tecture of the device (routing constraints) and the I/O
standards applied to the I/O buffers (I/O constraints).
A constraints file is an input to the synthesis process.
Constraints can be applied globally or to the specific por-
tions of the design. The synthesis engine uses these con-



straints to optimize the net-list. However, it is equally
important to not over constrain the design, which will
generally result in less than optimal results from the next
step in the implementation process-physical device place-
ment and interconnecting routing. Synthesis constraints
soon become place and route constraints. Nexar provides
a handy way to add the constraints file into the FPGA
project by using Configuration Manager.

Integral to Nexar is a versatile FPGA-based develop-
ment board called a Nano-Board that provides a re-
configurable platform for implementing the design. The
Nano-Board uses JTAG-based communication to both
download the design to the on-board FPGA, and to in-
teract with processor cores and instruments in the design
once it has been downloaded to the target device (FPGA)
housed on the removable daughterboard.

Synthesis stage can be run with the ”Devices” view con-
figured in either ’Live’ or ’not Live’ mode. During syn-
thesis, the source documents are translated into interme-
diate VHDL files which are then synthesized into EDIF
netlist, suitable for vendor Place and Route tools. Errors
detected during synthesis are based on errors in the in-
termediate files, so go back to the source files to fix any
problems. After netlist synthesize, the design is auto-
matically converted into the format supported internally
by the FPGA vendors Place-and-Route tools. This stage
”Build” can be run with the Device view configured in
”live” or ”not live” mode. Running the tools at this stage
can verify a design fit inside the chosen physical device.
The end result of this stage is the generation of an FPGA
programming file that will ultimately be used to program-
ming the physical device with the design.

3.4 Program FPGA

Finally, the programming file, once successfully down-
loaded to the device via the JTAG link, the text un-
derneath the target device will change from ”Power” to
”Loaded” and any Nexus-enabled devices on the soft de-
vices chain will be display as running.

3.5 Hardware Design

The major component of CPIM architecture described in
figure 1, includes an optimized CPU, shared memory, an
iteration control unit and an arbiter. Optimized CPU
(CPU−minor) is a task specific processor that consists
of a dedicated computation unit. The CPIM under dis-
cussion equipped with a task ”cumulative Successive ad-
dition” (An array of numbers is added and the result is
stored in the defined memory location).

Shared memory is a SRAM-type memory, holding data
related to the iterative job, having enough capacity to
hold large frame synonyms with high resolution image
frames. Iteration control unit provides an instruction for-
mat for the CPU−minor. It consists of three registers,

namely Address register, Job size register and Job nature
register. Address register is 24-bit wide, representing the
starting address of the operand block. Once initialized,
a counter will then increment a pointer, pointing to the
next operand required by the task. Job-size register is
16-bit wide, representing the total number of operands
(number of iteration involved in the iterative loop). Job-
nature register is 8-bit wide, representing the nature of
Job. Destination register, two registers are required to
hold the start and end address of the destination block.

Arbiter facilitates the transfer of information between
components. The processors in shared-memory multi-
processor system request access to common resources
through the system bus. When two or more processors
share the same memory, some hardware mechanism is re-
quired to make sure that only one processor can access
the memory at a time. This can be achieved by using an
arbiter in a shared memory system.

Figure 3: FPGA Design Steps

4 Conclusion

CPIM uses a pre-compilation task optimization method-
ology for the workload distribution between CPU−major
and CPU−minor. It can be seen from Figure 4 and 5
where we have used two different tasks relating to cu-
mulative and non-cumulative successive addition and the
performance in speed up is approximately 20%. Image
processing applications generally require high bandwidth,
low latency access to image data, and generally decom-
posed into simple iterative operations. For this reason,
computing in memory or intelligent memory architectures
best fit for co-operative processing, executing the func-
tions that they are optimized for, while leaving functions
that are mostly serial and compute intensive to the main
processor (CPU−major). Hence, the described architec-
tures have the potential for scaling up to tackle more de-
manding jobs that exhibit frequent and intense program
locality behavior.



Figure 4: Cumulative Successive Addition

Figure 5: Non-Cumulative Successive Addition

References

[1] D. Patterson, T. Anderson, N. Cardwell, R. Fromm,
K. Keeton, C. Kozyrakis, R. Thomas and K. Yelick.
A Case for Intelligent RAM: IRAM. IEEE Micro,
April 1997.

[2] Y. Kang, J. Torrellas and T. S. Huang, An IRAM
Architecture for Image Analysis and Pattern Recog-
nition. 14th International Conference on Pattern
Recognition, 1998.

[3] M. Oskin et al., ”Active Pages: A computation
model for intelligent memory”, IEEE, 1999.

[4] Y. Kang et al., ”FlexRAM: Towards an intelligent
memory system”, ICCD, Oct 1999.

[5] J. Darper et al., ”The architecture of DIVA process-
ing in memory chips”, ICS, June 2002.

[6] A. Saulsbury et al., ”Missing the memory wall: The
case for processor/memory integration”, ICSA,May
1996.

[7] D. Burger et al., ”Memory bandwidth limitations of
future microprocessors”,I SCA, Aug 1996.

[8] K. Mai et al., ”Smart memories: A modular recon-
figurable architecture”, ISCA, June 2000.

[9] Zaki Ahmad ”Co-operative Intelligent Memory”,
PHD thesis, University of Hertfordshire, United
Kingdom, 2007.

[10] R. Sotudeh, Z. Ahmad, F. Bensaali ”Intelligent Co-
operative Processor in Memory Architectures” The
Mediterranean Journal of Electronics and Commu-
nication, Vol. 3, 2007, pp 17-30.

[11] R. Boyle and R. Thomas ”Computer vision: A first
course”, Blackwell Scientific Publications, 1988.

[12] R. Dougherty and A. Laplante, ”Introduction to
REAL-Time IMAGING”, SPIE optical Engineering
Press, 1995.

[13] Designing with Nexar 2004, Altium Ltd.




