
 

 

Abstract—Lattice Quantum Chromodynamics is used to 

investigate the behavior of quarks under the influence of the 

Strong Nuclear force. The computer implementation requires 

the solution of square sparse matrices with the number of 

rows up to the 100’s of millions, and this represents the major 

computational factor with regards to overall runtime. In this 

paper we present verification of an algorithm that grows only 

linearly with respect to matrix size in terms of the computing 

resources required. Once realistically sized calculations can 

be done on commonly available hardware, this opens the door 

to the investigation of quantum fields in other areas such as 

condensed matter physics and nanotechnology. 

 

Index Terms—Linear Algebra, Algebraic Multigrid, Lattice 

Quantum Field Theory, High Performance Computing. 

 

I. INTRODUCTION 

HE analysis of Quantum Chromodynamics, QCD, 

requires the solution of very large matrices derived 

from the discretization of the Dirac Equation over a four-

dimensional spacetime lattice.  Lattice QCD, LQCD, is a 

necessary tool for the understanding of the Strong Force 

within the Standard Model of Particle Physics since 

analytic techniques used for Quantum Electrodynamics fail 

to provide useful results due to the large coupling strengths 

involved. 

 LQCD was first successfully formulated in 1974 by K. G. 

Wilson[1], but only since the 1990’s have supercomputers 

gained sufficient performance to provide meaningful 

results. Larger lattices with finer grid spacings are still 

sought after in order to improve the agreement with 

experiment, and in particular, investigate the low-mass 

region that may be able to provide a first-principles 

calculation of the proton mass [2]. 

 Lattice sizes currently used are typically around 48 grid-

points per dimension, which raised to the power of 4 to 

model the 4 dimensions of spacetime, and multiplied by the 

24 wavefunction components per lattice site, can result in 

matrices with rank of over 100 million requiring solution. 
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The actual algorithm used to extract observable data is 

based upon the Hybrid Monte Carlo algorithm, and requires 

updates based upon the new configurations resulting from 

the solutions[3]. The Dirac-Wilson matrices are constructed 

from the following formula: 

 

 
 

P-μ are constant projection matrices, δ are constant Dirac 

deltas, and Uμ
x,y are the color gauge fields that model the 

strong nuclear force. Each lattice site x uses one in each of 

the eight space-time directions μ to neighboring sites y. 

These are generated at random for each step in the Hybrid 

Monte Carlo algorithm. A mass value of m = -0.4 was used 

for this paper. Since matrix elements Ax,y depend only on 

links to eight nearest neighbor sites, the matrix has a well 

defined and constant sparse structure. 

II. KRYLOV SOLVERS 

Non-stationary iterative Krylov methods are particularly 

suitable as solvers since they do not require the explicit 

construction of the entire matrix, it just needs an efficient 

algorithm for the BLAS level-2 Matrix-Vector product. The 

algorithm to solve Ax=b is shown below [4]. 

 

 
 

Conjugate Gradients can be distributed across clusters fairly 

efficiently with mainly nearest neighbor communication. 

The primary bottleneck turns out to be the global scalar-
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reductions alpha and beta, required to calculate iteration 

updates. Each processor can calculate a sub-part of the 

scalar product relating to the matrix rows held locally, but 

those sub-parts need collecting and broadcasting back to all 

processors before the algorithm can further continue. 

A particular feature of the Dirac Equation though, is that 

it is a non-symmetric matrix, so the simplest method of 

Conjugate Gradients is not directly applicable. Common 

variants for non-symmetric matrices are Generalised 

Minimal Residual (GMRES), Conjugate Gradient Normal 

Equations (CGNE, CGNR) or the BiConjugate Gradient 

methods (BiCG, BiCGStab) [5]. 

III. RESEARCH 

The general time complexity of matrix solvers is O(N3) 

where N is the matrix rank.  Conjugate Gradient converges 

on the exact solution after O(N3) iterations, but is normally 

stopped after sufficient accuracy has been achieved. In 

practice the time complexity achieved is O(N2). 

Convergence is further accelerated by preconditioning the 

linear system to reduce its spectral radius. Many different 

preconditioners are usable, with optimized preconditioners 

dependent on the eigenvalue structure of the matrix[6]. 

LQCD calculations are thus performed with a core 

algorithm that has an effective time-complexity of O(N2), 

and this has impeded progress with regards to increasing 

the lattice grid sizes and finer lattice spacings. MPI clusters 

of 100’s or 1000’s of CPU nodes are currently being used 

and may take months to run applications [7]. With large 

data sets distributed over a network, communication 

overhead also becomes a constraining factor. 

Graphical Processing Units, GPUs, have been 

investigated as co-processor accelerators, and have shown 

promising results with regards to accelerating existing 

algorithms [8]. With hundreds of execution threads, GPUs 

are highly effective at floating-point parallel processing. 

However, they are limited by the size of their internal 

memory and the IO bandwidth for updates of matrix data. 

Field Programmable Gate Arrays, FPGAs, also provide 

an alternative to commodity CPUs.  Whilst FPGA speeds 

will never match GPU floating-point speeds nor even 

typical CPU’s, they do offer the ability to customize the 

data-paths between fast embedded multipliers and directly 

adjacent Block-RAM. FPGAs can provide customized 

ALUs with directly connected Level 1 cache at a purchase 

cost as low as US$0.50 per multiplier, and with the 

additional benefit of low on-going operational costs [9]. 

In order to dramatically increase the lattice size for QCD, 

it becomes necessary to look at the algorithms being used, 

and options to tailor them for distributed architectures. The 

two key features that would enable even larger lattices are: 

 

i) minimal communication between computing nodes; 

ii) linear complexity algorithms for the matrix solver. 

 

Matrix inversion, and hence solution of Ax = b, is an 

inherently global operation. Hence the default O(N3) time 

complexity and the difficulty with communication 

bandwidth for matrices that require data distributed across 

a computational cluster. 

It has been suggested that Domain Decomposition and 

Multigrid techniques may provide the answer [10]. Domain 

Decomposition would divide the matrix into sub-matrices 

and solve each in parallel, before recombining into a final 

solution.  This paper will present results to suggest 

Multigrid on its own can provide an effective way forward, 

since a design can be provided that satisfies both counts 

above: O(N) time complexity with constant communication. 

The sparse structure of the Dirac Equation can be 

exploited to allow O(N) time, memory, and communication 

increases with matrix order N.. The design must eliminate 

any O(N2) or higher complexities, since these would grow 

to swamp all other O(N) performances. 

IV. DESIGN 

The idea behind Multigrid is to take advantage of the fact 

that stationary iterative solvers such as Jacobi, Gauss-Seidel 

and SOR are excellent at damping the high-frequency 

components of a solution’s error. Specifically, repeated 

iterations will reduce the error in the initial guess by a 

factor of a component frequency’s eigenvalue. For 

eigenvalues less than zero, the error will diminish, with 

larger frequencies that have smaller eigenvalues, 

disappearing faster. 

Stationary iterative solvers may rapidly diminish high 

frequency components, but low frequency components, with 

eigenvalues near (or larger than) one, take longer, often 

resulting in O(N4) performance. These solvers quickly 

smooth out initial guesses, but are two slow to overall 

convergence. 

 Multigrid combines lattice data together to create coarser 

grids [11]. What may be a low frequency on a fine grid, will 

be a high frequency on a coarse grid. By applying a fixed 

number of smoother-iterations at each grid level, one ends 

up with a smoothing effect at all frequencies.  Since a fixed 

number of iterations are applied at each grid-level, and 

each grid-level is smaller than the previous, the total work 

is a geometric sum that totals a value proportional to the 

original matrix size N. Multigrid is inherently a linear 

time-complexity algorithm. 

Multigrid is often applied to a Krylov subspace method 

as a preconditioning step, and results in rapid convergence 

of the Krylov algorithm with an almost constant  number of 

Krylov iterations. The combination of pre-conditioner 

smoothing and Krylov subspace traversal provides an 

extremely effective algorithm. 

The results presented here will demonstrate the practical 

linearity of the multigrid preconditioned Krylov methods, 

but it is also important to note that communication between 

distributed processors can also effectively be made time-

constant with respect to increasing matrix size. With P 

processors and N matrix rows, the method can be 

partitioned into N/P parallel segments. The Jacobi solver 

can be run completely in parallel for the preconditioning 

stages, whilst the Krylov loops only require nearest 

neighbor updates across the solution vector boundaries and 



 

some inner-product scalar-reduction. When the solution 

vector x is distributed into P processors, neighbors will 

need to communicate a fixed number of updates, but the 

communication overhead between nearest neighbors only, 

will not increase with the total number of processors: each 

processor will always have two nearest neighbors, and can 

remain oblivious to additional computing nodes. 

With standard Krylov algorithms the global scalar reduce 

can become a major bottleneck since the algorithm is 

unable to proceed until all processors have contributed their 

segment to the global sum, and then have had the result 

broadcast back to them.  With a multigrid preconditioned 

Krylov method we will produce results that show the 

number of Krylov loops is small and essentially constant, 

hence the global-reduce bottleneck is of fixed time-

complexity, and actually becomes less significant as N 

increases. 

With the multigrid preconditioner having linear time 

complexity, and the Krylov iterations fixed in number, the 

remaining time complexity is in the Krylov product Ax. 

Nominally Ax is O(N2) but the sparse structure of A 

reduces this to linear O(N): namely each row has a fixed 

number of elements k, so the actual Krylov product has 

time complexity O(kN) ~ O(N). 

 One aspect that bears attention is that in current 

typical implementations, it is usual that the matrix is never 

stored, but generated on-the-fly as the Ax terms are 

required. Generating the Dirac-Wilson matrix is in itself a 

O(N) algorithm, which could introduce an O(N2) 

dependency when the matrix is regenerated O(N) times. 

Whilst the multigrid algorithm just presented works on the 

basis of a fixed number of iterations, the design facilitates 

the one-off generation and storage of the Dirac-Wilson 

matrix. Since each processor only needs a subset number 

(N/P) of rows of the matrix elements that it uses for 

solution vector updates, the matrix storage is distributed 

over a cluster without the need to ever communicate matrix 

elements between processors. 

V. RESULTS 

The code is written in C++ and was compiled and tested on 

two machines: 

 

i)  MSVC10, Win7 Desktop; Intel Duo E860, 3.33GHz. 

ii)  GCC, GNU Linux; AMD Operton 2356, 2.3Ghz. 

 

The Windows7 machine could access 2GB of RAM, whilst 

the Linux machine had 16GB of real memory available. 

The results are for a single active processor running a 

single thread in order to investigate the linearity of the 

solver design. Once optimized for a single process, adding 

parallelization will provide the necessary additional 

speedup. 

The current implementation builds a matrix in 

Compressed Row Storage format [4], then passes that into 

the Algebraic Multigrid system. The matrix is not limited 

to an LQCD matrix, but can be any general matrix, and any 

Krylov based algorithm can be selected for the main loop 

based upon knowledge about the structure of the matrix 

requiring solution. Alternative preconditioners are also 

available for comparison against multigrid. 

Initial development was undertaken with a simpler 1-

dimensional Laplacian partial differential equation. The 

discretization results in a symmetric tri-diagonal matrix, 

with diagonal elements a small fraction greater than the 

sum of the off-diagonals (i.e. just diagonally dominant). 

 

 
 

Tables 1 and 2 compare the simple Aii-1 (inverse 

diagonals) preconditioning against solution of the 

Laplacian matrix with Multigrid Preconditioned Conjugate 

Gradient. 

 

 
 

Table 1: Inverse Diagonals Preconditioning. 

 

 
 

Table 2 :Multigrid Preconditioning. 

 

It can be seen that the time complexity of the Conjugate 

Gradient solver with the simple inverse-diagonals pre-

conditioner is approximately O(N2), which consists of O(N) 

for the number of row elements increasing, multiplied by 

O(N) for the number of loop-iterations taken for 

convergence: the number of iterations required is increasing 

at a rate of approximately ½ N. For dense matrices the third 

power of O(N) to give O(N3) comes from the increase in 

column elements, but for sparse matrices this is often a 

fixed number: here it is 3 from the tri-diagonal structure, 

for LQCD it is also fixed at 97 originating from the 8 

nearest neighbors lattice sites. 

The performance of Multigrid-preconditioned conjugate 

gradient is in stark contrast, where convergence is achieved 

within a small and constant number of iterative loops (i.e. 



 

within less than or equal to 25 loops for all matrix sizes 

presented). The only source of time-complexity growth is 

the number of rows that require evaluating: O(N). With a 

parallel implementation, these rows can be distributed 

across a cluster, and only nearest neighbors require 

communication to update overlapping vector solution value. 

The potential bottleneck of the global scalar-reduce 

required by the Conjugate Gradient algorithm is also kept 

under control since it is needed a couple of times per loop-

iteration; so for this example no more than a constant 50 

number of calls. For the Multigrid preconditioned 

Conjugate Gradient the sole time-complexity growth is the 

number of rows N of the matrix, and those N rows can be 

independently distributed over a cluster of P processors. 

Table 3 shows the linearity of the algorithm for the 

Laplacian matrix up to rank 45 million. It can be seen that 

both the time taken and the memory usage both double as 

the matrix size N doubles, to give linear performance for 

both time and memory.  The gradual increase in iterations 

required can be traced to the fact that as matrix size 

increases the number of individual element errors 

contributing to the total error (residual) is also steadily 

increasing in a linear way.  That is, twice as many elements 

in the solution vector gives twice the overall residual error 

(even if the individual element error is the same). Thus an 

extra loop or so is required to get the residual error below 

the termination tolerance criterion. 

 

 
 

Table 3: Multigrid upto matrix size  N = 45 million. 

 

Since multigrid is such as effective preconditioner, the 

residual often drops by several magnitudes per Conjugate 

Gradient loop, thus preventing the residual error from 

introducing a linear increase in the required iteration loops, 

as can potentially happen for other types of Conjugate 

Gradient algorithm. In contrast to stationary solvers such as 

Jacobi which tend to monotonically smooth-out errors, 

Conjugate Gradient is a search-algorithm and convergence 

can be seen to vary; sometimes stalling, sometimes finding 

a plateau, sometimes increasing again. It can be seen 

however, that for a given error tolerance in the result, 

multigrid preconditioning tends to need only a small 

number of CG loops, and within a fixed upper limit (25 in 

the case of figure 1). 

Results for LQCD are now presented to show that the 

Multigrid method and its linearity performance also work 

for the more complicated Dirac-Wilson matrices. The 

Dirac-Wilson matrix elements represent probability 

amplitudes for the quantum wavefunction to propagate 

from spin-color states (4 times 3 complex numbers) at one 

site to the 12 complex components at each of the 8 adjacent 

lattice sites; plus diagonal terms related to mass.  The 

complex numbers are split between even and odd rows, to 

make a total of ½ * ( 2 * 4 * 3 * 8 ) + 1, equals 97 elements 

per row. This is still very sparse in comparison to the total 

matrix order of millions, but is over 20 times larger than 

the previous tri-diagonal Laplacian. 

 
 

Figure 1: Multigrid solver time versus Laplace matrix size. 

 

For the purposes of this investigation the non-sysmmetry of 

the Dirac-Wilson matrix will be handled by the simplest 

approach with respect to Krylov Subspace algorithms, 

namely the Conjugate Gradient on Normal Equations, the 

CGNR variant where the matrix system Ax = b is left-

multiplied by the matrix transpose to give: 

 

ATAx = ATb 

 

This is the simplest approach since ATA is guaranteed to be 

symmetric for non-singular matrices, and thus the regular 

Conjugate Gradient algorithm can be applied. There are 

several drawbacks, including the extra computations 

required, and the sparsity is affected due to the cross-

multiplications requiring more memory for storage of the 

resulting ATA matrix. The most troublesome drawback 

though, is the fact that the convergence is reduced due to 

the ATA matrix condition-number being the square of the 

original matrix. 

If the multigrid design can survive these significant 

drawbacks, the authors are optimistic that the more 

sophisticated variants will mark further improvement. In 

intial testing multigrid preconditioned BiCGStab with 

Symmetric-SOR smoothing has also demonstrated converge 

with linear time complexity and requires only three Krylov 

iterations for the same level of accuracy. 

The convergence of the Dirac-Wilson matrix was found 

to be very sensitive to the relaxation parameter used. The 



 

stationary smoother used for the multigrid pre-conditioner 

was the over-relaxed variant of the Jacobi Iteration. Over-

relaxing does not affect the embarrassingly parallel nature 

of the Jacobi algorithm and a relaxation parameter of 

around 0.17 (1.0/6.0) was found to obtain convergence. 

Unlike the Laplacian examples, the Dirac-Wilson matrices 

typically fail the diagonal dominance criteria, so un-relaxed 

Jacobi (omega = 1) did not converge at all. 

 

 
Table 4: Dirac-Wilson with multigrid (fixed iterations). 

 

In table 4 one can see that both the memory usage and time 

taken increase linearly with respect to matrix rank. For test 

4 the number of Conjugate Gradient iterations was set to 40 

for all matrices, whereas the following table 5 shows 

similar results when the result-tolerance was used as the 

terminating criterion (more realistic in practice). 

 

 
Table 5: Dirac-Wilson with multigrid (fixed tolerance). 

 

The memory performance is identical as one would expect, 

and again the time performance is linear, with a slight 

improvement since 40 loops were generally not required for 

the specified terminating tolerance of 1e-08. Note the 

terminating tolerance criterion for preconditioned 

Conjugate Gradient is generally related to the magnitude of 

the preconditioned residual, which is typically of order of 

the square of the actual output residual. 

 
Figure 2: Multigrid solver time versus LQCD matrix size. 

Since the time complexity performance is linear, 

extrapolating to a lattice width of 24 for a matrix rank of 8 

million, the estimate is 12,300 seconds (3½ hours). 

Compared to the GPU results of 13.6 seconds in table 6, 

this appears slow, but then consider this algorithm is almost 

100% scalable.  Assuming 90% scalability and using 200 

processors (192 in a GPU), the multigrid estimate reduces 

to 68 seconds. Assuming 90% scalability with the 9000 

processors as available to some full scale systems, we now 

have an estimated time to solution of 1.5 seconds. 

 

 
 

Table 6: GPU Performance. 

 

A key feature of multigrid, also investigated by the authors 

of the GPU code[2], is that multigrid is robust at critical 

lighter masses, where the ordinary Conjugate Gradient 

algorithms have problems converging. A key feature of the 

multigrid program presented here is that it is row orientated 

to enable embarrassingly parallel scalability. 

 

Figure 3 below shows the output of the multigrid algorithm 

for the case of lattice width equal to 12 with fixed iteration 

count (from table 3a). 

 

 
 

Figure 3. Showing the program’s output log. 

 

The size of the Dirac matrix constructed is reported, 

followed by statistics for the multigrid grid-level 

construction. Relative refers to the ratio of grid-sizes 

between levels, with order being the matrix rank at the 

given level. The first few values of the solution vector x are 

displayed, along with b and a sanity check of Ax to confirm 

a solution was found within the range indicated by the 

reported residuals. 



 

VI. MEMORY 

Memory usage is far greater than actually required for 

several reasons, the main one being the creation of the ATA 

matrix required for the Conjugate Gradient Normalized 

algorithm variant. Table 7 shows the time and memory 

performance of the Dirac-Wilson matrix generator 

component of the code alone. 

 

 
 

Table 7: Dirac-Wilson Matrix Generator Performance. 

 

The code has been optimized to have linear behavior in 

both time complexity and memory requirements, as well as 

being 100% scalable with regards to parallelization. With 

the matrix rows distributed across P processors, each 

processor needs only to generate the N/P rows of matrix 

elements it requires. Even with matrix ranks of a billion, 

the storage requirements would be relatively modest for a 

cluster with 1000’s of processors and Terabytes of RAM. 

If it was undesirable to store the Dirac-Wilson matrix, 

with calls to Ax limited to a constant factor of the number 

of Conjugate Gradient loops, a linear matrix generator 

would not cause an O(N2) blowout in time complexity for 

the overall calculation. With non-multigrid conjugate 

gradient, the O(N2) can be related to the fact that Ax 

products are O(N), and with iterations to convergence are 

also being O(N). The tradeoff between saving memory and 

saving time is configurable here, since both behave in a 

linear manner. For GPU and FPGA implementations saving 

memory is probably more important, but CPU clusters 

would probably have sufficient RAM and prefer the savings 

in time. 

The storage requirement for multigrid is again a 

geometric sum, since each coarser sub-grid requires some 

fraction less in space than the previous finer grid. In the tri-

diagonal Laplacian case, each sub-grid has exactly half the 

number of grid-points of the previous level: the geometric 

sum is exactly twice the storage of the original matrix 

alone. For LQCD, the Algebraic Multigrid algorithm 

coarsens the grid much faster, as can be seen from the data 

in figure 7 (initially by a factor of over 100 corresponding 

to the fact there are 97 elements per row). 

VII. CONCLUSION 

The time complexity and memory usage of the Multigrid 

Preconditioned Conjugate Gradient algorithm have been 

empirically verified to be linear in agreement with 

theoretical predictions, and results shown to converge for 

the Dirac-Wilson matrix as required. 

At all levels of the software design efforts have been made 

to keep the code embarrassingly parallel by selecting, as far 

as possible, algorithms that are inherently scalable without 

compromising the linear memory usage and time 

complexity. 

Potentially expensive communication bottlenecks that 

might degrade scalability for the parallel version have been 

kept under control by implementing algorithms that are 

matrix-row orientated, and allowing solution vector updates 

that are almost entirely independent of any other row. For 

the limited areas of inter-row dependencies, the 

communication requirements have been designed to be at a 

constant bandwidth, effectively independent of matrix size. 

Having verified and validated the sequential version of 

the algorithm for LQCD, the next step will be to implement 

the parallel versions for both CGNR and BiCGStab variants 

with multigrid preconditioning. 
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