

Abstract—Lattice Quantum Chromodynamics is used to

investigate the behavior of quarks under the influence of the

Strong Nuclear force. The computer implementation requires

the solution of square sparse matrices with the number of

rows up to the 100’s of millions, and this represents the major

computational factor with regards to overall runtime. In this

paper we present verification of an algorithm that grows only

linearly with respect to matrix size in terms of the computing

resources required. Once realistically sized calculations can

be done on commonly available hardware, this opens the door

to the investigation of quantum fields in other areas such as

condensed matter physics and nanotechnology.

Index Terms—Linear Algebra, Algebraic Multigrid, Lattice

Quantum Field Theory, High Performance Computing.

I. INTRODUCTION

HE analysis of Quantum Chromodynamics, QCD,

requires the solution of very large matrices derived

from the discretization of the Dirac Equation over a four-

dimensional spacetime lattice. Lattice QCD, LQCD, is a

necessary tool for the understanding of the Strong Force

within the Standard Model of Particle Physics since

analytic techniques used for Quantum Electrodynamics fail

to provide useful results due to the large coupling strengths

involved.

 LQCD was first successfully formulated in 1974 by K. G.

Wilson[1], but only since the 1990’s have supercomputers

gained sufficient performance to provide meaningful

results. Larger lattices with finer grid spacings are still

sought after in order to improve the agreement with

experiment, and in particular, investigate the low-mass

region that may be able to provide a first-principles

calculation of the proton mass [2].

 Lattice sizes currently used are typically around 48 grid-

points per dimension, which raised to the power of 4 to

model the 4 dimensions of spacetime, and multiplied by the

24 wavefunction components per lattice site, can result in

matrices with rank of over 100 million requiring solution.

Manuscript received December 8, 2011; revised Jan 28, 2012.

Dieter Beaven is with the School of Computer Science and Software

Engineering, and with the School of Engineering Physics, at the University of

Wollongong, Australia (phone: +61 2-4221-3606; fax: +612-4221-4843;

e-mail: djdb684@ uowmail.edu.au).

John Fulcher is with the School of Computer Science and Software

Engineering, at the University of Wollongong, Australia (e-mail: john@

uow.edu.au).

Chao Zhang is with the School of Engineering Physics, at the University of

Wollongong, Australia (e-mail: czhang@ uow.edu.au).

The actual algorithm used to extract observable data is

based upon the Hybrid Monte Carlo algorithm, and requires

updates based upon the new configurations resulting from

the solutions[3]. The Dirac-Wilson matrices are constructed

from the following formula:

P-μ are constant projection matrices, δ are constant Dirac

deltas, and Uμ
x,y are the color gauge fields that model the

strong nuclear force. Each lattice site x uses one in each of

the eight space-time directions μ to neighboring sites y.

These are generated at random for each step in the Hybrid

Monte Carlo algorithm. A mass value of m = -0.4 was used

for this paper. Since matrix elements Ax,y depend only on

links to eight nearest neighbor sites, the matrix has a well

defined and constant sparse structure.

II. KRYLOV SOLVERS

Non-stationary iterative Krylov methods are particularly

suitable as solvers since they do not require the explicit

construction of the entire matrix, it just needs an efficient

algorithm for the BLAS level-2 Matrix-Vector product. The

algorithm to solve Ax=b is shown below [4].

Conjugate Gradients can be distributed across clusters fairly

efficiently with mainly nearest neighbor communication.

The primary bottleneck turns out to be the global scalar-

A Linear Time Complexity Solver for Lattice

Quantum Field Theory Computations

Dieter Beaven, John Fulcher, and Chao Zhang.

T

reductions alpha and beta, required to calculate iteration

updates. Each processor can calculate a sub-part of the

scalar product relating to the matrix rows held locally, but

those sub-parts need collecting and broadcasting back to all

processors before the algorithm can further continue.

A particular feature of the Dirac Equation though, is that

it is a non-symmetric matrix, so the simplest method of

Conjugate Gradients is not directly applicable. Common

variants for non-symmetric matrices are Generalised

Minimal Residual (GMRES), Conjugate Gradient Normal

Equations (CGNE, CGNR) or the BiConjugate Gradient

methods (BiCG, BiCGStab) [5].

III. RESEARCH

The general time complexity of matrix solvers is O(N3)

where N is the matrix rank. Conjugate Gradient converges

on the exact solution after O(N3) iterations, but is normally

stopped after sufficient accuracy has been achieved. In

practice the time complexity achieved is O(N2).

Convergence is further accelerated by preconditioning the

linear system to reduce its spectral radius. Many different

preconditioners are usable, with optimized preconditioners

dependent on the eigenvalue structure of the matrix[6].

LQCD calculations are thus performed with a core

algorithm that has an effective time-complexity of O(N2),

and this has impeded progress with regards to increasing

the lattice grid sizes and finer lattice spacings. MPI clusters

of 100’s or 1000’s of CPU nodes are currently being used

and may take months to run applications [7]. With large

data sets distributed over a network, communication

overhead also becomes a constraining factor.

Graphical Processing Units, GPUs, have been

investigated as co-processor accelerators, and have shown

promising results with regards to accelerating existing

algorithms [8]. With hundreds of execution threads, GPUs

are highly effective at floating-point parallel processing.

However, they are limited by the size of their internal

memory and the IO bandwidth for updates of matrix data.

Field Programmable Gate Arrays, FPGAs, also provide

an alternative to commodity CPUs. Whilst FPGA speeds

will never match GPU floating-point speeds nor even

typical CPU’s, they do offer the ability to customize the

data-paths between fast embedded multipliers and directly

adjacent Block-RAM. FPGAs can provide customized

ALUs with directly connected Level 1 cache at a purchase

cost as low as US$0.50 per multiplier, and with the

additional benefit of low on-going operational costs [9].

In order to dramatically increase the lattice size for QCD,

it becomes necessary to look at the algorithms being used,

and options to tailor them for distributed architectures. The

two key features that would enable even larger lattices are:

i) minimal communication between computing nodes;

ii) linear complexity algorithms for the matrix solver.

Matrix inversion, and hence solution of Ax = b, is an

inherently global operation. Hence the default O(N3) time

complexity and the difficulty with communication

bandwidth for matrices that require data distributed across

a computational cluster.

It has been suggested that Domain Decomposition and

Multigrid techniques may provide the answer [10]. Domain

Decomposition would divide the matrix into sub-matrices

and solve each in parallel, before recombining into a final

solution. This paper will present results to suggest

Multigrid on its own can provide an effective way forward,

since a design can be provided that satisfies both counts

above: O(N) time complexity with constant communication.

The sparse structure of the Dirac Equation can be

exploited to allow O(N) time, memory, and communication

increases with matrix order N.. The design must eliminate

any O(N2) or higher complexities, since these would grow

to swamp all other O(N) performances.

IV. DESIGN

The idea behind Multigrid is to take advantage of the fact

that stationary iterative solvers such as Jacobi, Gauss-Seidel

and SOR are excellent at damping the high-frequency

components of a solution’s error. Specifically, repeated

iterations will reduce the error in the initial guess by a

factor of a component frequency’s eigenvalue. For

eigenvalues less than zero, the error will diminish, with

larger frequencies that have smaller eigenvalues,

disappearing faster.

Stationary iterative solvers may rapidly diminish high

frequency components, but low frequency components, with

eigenvalues near (or larger than) one, take longer, often

resulting in O(N4) performance. These solvers quickly

smooth out initial guesses, but are two slow to overall

convergence.

 Multigrid combines lattice data together to create coarser

grids [11]. What may be a low frequency on a fine grid, will

be a high frequency on a coarse grid. By applying a fixed

number of smoother-iterations at each grid level, one ends

up with a smoothing effect at all frequencies. Since a fixed

number of iterations are applied at each grid-level, and

each grid-level is smaller than the previous, the total work

is a geometric sum that totals a value proportional to the

original matrix size N. Multigrid is inherently a linear

time-complexity algorithm.

Multigrid is often applied to a Krylov subspace method

as a preconditioning step, and results in rapid convergence

of the Krylov algorithm with an almost constant number of

Krylov iterations. The combination of pre-conditioner

smoothing and Krylov subspace traversal provides an

extremely effective algorithm.

The results presented here will demonstrate the practical

linearity of the multigrid preconditioned Krylov methods,

but it is also important to note that communication between

distributed processors can also effectively be made time-

constant with respect to increasing matrix size. With P

processors and N matrix rows, the method can be

partitioned into N/P parallel segments. The Jacobi solver

can be run completely in parallel for the preconditioning

stages, whilst the Krylov loops only require nearest

neighbor updates across the solution vector boundaries and

some inner-product scalar-reduction. When the solution

vector x is distributed into P processors, neighbors will

need to communicate a fixed number of updates, but the

communication overhead between nearest neighbors only,

will not increase with the total number of processors: each

processor will always have two nearest neighbors, and can

remain oblivious to additional computing nodes.

With standard Krylov algorithms the global scalar reduce

can become a major bottleneck since the algorithm is

unable to proceed until all processors have contributed their

segment to the global sum, and then have had the result

broadcast back to them. With a multigrid preconditioned

Krylov method we will produce results that show the

number of Krylov loops is small and essentially constant,

hence the global-reduce bottleneck is of fixed time-

complexity, and actually becomes less significant as N

increases.

With the multigrid preconditioner having linear time

complexity, and the Krylov iterations fixed in number, the

remaining time complexity is in the Krylov product Ax.

Nominally Ax is O(N2) but the sparse structure of A

reduces this to linear O(N): namely each row has a fixed

number of elements k, so the actual Krylov product has

time complexity O(kN) ~ O(N).

 One aspect that bears attention is that in current

typical implementations, it is usual that the matrix is never

stored, but generated on-the-fly as the Ax terms are

required. Generating the Dirac-Wilson matrix is in itself a

O(N) algorithm, which could introduce an O(N2)

dependency when the matrix is regenerated O(N) times.

Whilst the multigrid algorithm just presented works on the

basis of a fixed number of iterations, the design facilitates

the one-off generation and storage of the Dirac-Wilson

matrix. Since each processor only needs a subset number

(N/P) of rows of the matrix elements that it uses for

solution vector updates, the matrix storage is distributed

over a cluster without the need to ever communicate matrix

elements between processors.

V. RESULTS

The code is written in C++ and was compiled and tested on

two machines:

i) MSVC10, Win7 Desktop; Intel Duo E860, 3.33GHz.

ii) GCC, GNU Linux; AMD Operton 2356, 2.3Ghz.

The Windows7 machine could access 2GB of RAM, whilst

the Linux machine had 16GB of real memory available.

The results are for a single active processor running a

single thread in order to investigate the linearity of the

solver design. Once optimized for a single process, adding

parallelization will provide the necessary additional

speedup.

The current implementation builds a matrix in

Compressed Row Storage format [4], then passes that into

the Algebraic Multigrid system. The matrix is not limited

to an LQCD matrix, but can be any general matrix, and any

Krylov based algorithm can be selected for the main loop

based upon knowledge about the structure of the matrix

requiring solution. Alternative preconditioners are also

available for comparison against multigrid.

Initial development was undertaken with a simpler 1-

dimensional Laplacian partial differential equation. The

discretization results in a symmetric tri-diagonal matrix,

with diagonal elements a small fraction greater than the

sum of the off-diagonals (i.e. just diagonally dominant).

Tables 1 and 2 compare the simple Aii-1 (inverse

diagonals) preconditioning against solution of the

Laplacian matrix with Multigrid Preconditioned Conjugate

Gradient.

Table 1: Inverse Diagonals Preconditioning.

Table 2 :Multigrid Preconditioning.

It can be seen that the time complexity of the Conjugate

Gradient solver with the simple inverse-diagonals pre-

conditioner is approximately O(N2), which consists of O(N)

for the number of row elements increasing, multiplied by

O(N) for the number of loop-iterations taken for

convergence: the number of iterations required is increasing

at a rate of approximately ½ N. For dense matrices the third

power of O(N) to give O(N3) comes from the increase in

column elements, but for sparse matrices this is often a

fixed number: here it is 3 from the tri-diagonal structure,

for LQCD it is also fixed at 97 originating from the 8

nearest neighbors lattice sites.

The performance of Multigrid-preconditioned conjugate

gradient is in stark contrast, where convergence is achieved

within a small and constant number of iterative loops (i.e.

within less than or equal to 25 loops for all matrix sizes

presented). The only source of time-complexity growth is

the number of rows that require evaluating: O(N). With a

parallel implementation, these rows can be distributed

across a cluster, and only nearest neighbors require

communication to update overlapping vector solution value.

The potential bottleneck of the global scalar-reduce

required by the Conjugate Gradient algorithm is also kept

under control since it is needed a couple of times per loop-

iteration; so for this example no more than a constant 50

number of calls. For the Multigrid preconditioned

Conjugate Gradient the sole time-complexity growth is the

number of rows N of the matrix, and those N rows can be

independently distributed over a cluster of P processors.

Table 3 shows the linearity of the algorithm for the

Laplacian matrix up to rank 45 million. It can be seen that

both the time taken and the memory usage both double as

the matrix size N doubles, to give linear performance for

both time and memory. The gradual increase in iterations

required can be traced to the fact that as matrix size

increases the number of individual element errors

contributing to the total error (residual) is also steadily

increasing in a linear way. That is, twice as many elements

in the solution vector gives twice the overall residual error

(even if the individual element error is the same). Thus an

extra loop or so is required to get the residual error below

the termination tolerance criterion.

Table 3: Multigrid upto matrix size N = 45 million.

Since multigrid is such as effective preconditioner, the

residual often drops by several magnitudes per Conjugate

Gradient loop, thus preventing the residual error from

introducing a linear increase in the required iteration loops,

as can potentially happen for other types of Conjugate

Gradient algorithm. In contrast to stationary solvers such as

Jacobi which tend to monotonically smooth-out errors,

Conjugate Gradient is a search-algorithm and convergence

can be seen to vary; sometimes stalling, sometimes finding

a plateau, sometimes increasing again. It can be seen

however, that for a given error tolerance in the result,

multigrid preconditioning tends to need only a small

number of CG loops, and within a fixed upper limit (25 in

the case of figure 1).

Results for LQCD are now presented to show that the

Multigrid method and its linearity performance also work

for the more complicated Dirac-Wilson matrices. The

Dirac-Wilson matrix elements represent probability

amplitudes for the quantum wavefunction to propagate

from spin-color states (4 times 3 complex numbers) at one

site to the 12 complex components at each of the 8 adjacent

lattice sites; plus diagonal terms related to mass. The

complex numbers are split between even and odd rows, to

make a total of ½ * (2 * 4 * 3 * 8) + 1, equals 97 elements

per row. This is still very sparse in comparison to the total

matrix order of millions, but is over 20 times larger than

the previous tri-diagonal Laplacian.

Figure 1: Multigrid solver time versus Laplace matrix size.

For the purposes of this investigation the non-sysmmetry of

the Dirac-Wilson matrix will be handled by the simplest

approach with respect to Krylov Subspace algorithms,

namely the Conjugate Gradient on Normal Equations, the

CGNR variant where the matrix system Ax = b is left-

multiplied by the matrix transpose to give:

ATAx = ATb

This is the simplest approach since ATA is guaranteed to be

symmetric for non-singular matrices, and thus the regular

Conjugate Gradient algorithm can be applied. There are

several drawbacks, including the extra computations

required, and the sparsity is affected due to the cross-

multiplications requiring more memory for storage of the

resulting ATA matrix. The most troublesome drawback

though, is the fact that the convergence is reduced due to

the ATA matrix condition-number being the square of the

original matrix.

If the multigrid design can survive these significant

drawbacks, the authors are optimistic that the more

sophisticated variants will mark further improvement. In

intial testing multigrid preconditioned BiCGStab with

Symmetric-SOR smoothing has also demonstrated converge

with linear time complexity and requires only three Krylov

iterations for the same level of accuracy.

The convergence of the Dirac-Wilson matrix was found

to be very sensitive to the relaxation parameter used. The

stationary smoother used for the multigrid pre-conditioner

was the over-relaxed variant of the Jacobi Iteration. Over-

relaxing does not affect the embarrassingly parallel nature

of the Jacobi algorithm and a relaxation parameter of

around 0.17 (1.0/6.0) was found to obtain convergence.

Unlike the Laplacian examples, the Dirac-Wilson matrices

typically fail the diagonal dominance criteria, so un-relaxed

Jacobi (omega = 1) did not converge at all.

Table 4: Dirac-Wilson with multigrid (fixed iterations).

In table 4 one can see that both the memory usage and time

taken increase linearly with respect to matrix rank. For test

4 the number of Conjugate Gradient iterations was set to 40

for all matrices, whereas the following table 5 shows

similar results when the result-tolerance was used as the

terminating criterion (more realistic in practice).

Table 5: Dirac-Wilson with multigrid (fixed tolerance).

The memory performance is identical as one would expect,

and again the time performance is linear, with a slight

improvement since 40 loops were generally not required for

the specified terminating tolerance of 1e-08. Note the

terminating tolerance criterion for preconditioned

Conjugate Gradient is generally related to the magnitude of

the preconditioned residual, which is typically of order of

the square of the actual output residual.

Figure 2: Multigrid solver time versus LQCD matrix size.

Since the time complexity performance is linear,

extrapolating to a lattice width of 24 for a matrix rank of 8

million, the estimate is 12,300 seconds (3½ hours).

Compared to the GPU results of 13.6 seconds in table 6,

this appears slow, but then consider this algorithm is almost

100% scalable. Assuming 90% scalability and using 200

processors (192 in a GPU), the multigrid estimate reduces

to 68 seconds. Assuming 90% scalability with the 9000

processors as available to some full scale systems, we now

have an estimated time to solution of 1.5 seconds.

Table 6: GPU Performance.

A key feature of multigrid, also investigated by the authors

of the GPU code[2], is that multigrid is robust at critical

lighter masses, where the ordinary Conjugate Gradient

algorithms have problems converging. A key feature of the

multigrid program presented here is that it is row orientated

to enable embarrassingly parallel scalability.

Figure 3 below shows the output of the multigrid algorithm

for the case of lattice width equal to 12 with fixed iteration

count (from table 3a).

Figure 3. Showing the program’s output log.

The size of the Dirac matrix constructed is reported,

followed by statistics for the multigrid grid-level

construction. Relative refers to the ratio of grid-sizes

between levels, with order being the matrix rank at the

given level. The first few values of the solution vector x are

displayed, along with b and a sanity check of Ax to confirm

a solution was found within the range indicated by the

reported residuals.

VI. MEMORY

Memory usage is far greater than actually required for

several reasons, the main one being the creation of the ATA

matrix required for the Conjugate Gradient Normalized

algorithm variant. Table 7 shows the time and memory

performance of the Dirac-Wilson matrix generator

component of the code alone.

Table 7: Dirac-Wilson Matrix Generator Performance.

The code has been optimized to have linear behavior in

both time complexity and memory requirements, as well as

being 100% scalable with regards to parallelization. With

the matrix rows distributed across P processors, each

processor needs only to generate the N/P rows of matrix

elements it requires. Even with matrix ranks of a billion,

the storage requirements would be relatively modest for a

cluster with 1000’s of processors and Terabytes of RAM.

If it was undesirable to store the Dirac-Wilson matrix,

with calls to Ax limited to a constant factor of the number

of Conjugate Gradient loops, a linear matrix generator

would not cause an O(N2) blowout in time complexity for

the overall calculation. With non-multigrid conjugate

gradient, the O(N2) can be related to the fact that Ax

products are O(N), and with iterations to convergence are

also being O(N). The tradeoff between saving memory and

saving time is configurable here, since both behave in a

linear manner. For GPU and FPGA implementations saving

memory is probably more important, but CPU clusters

would probably have sufficient RAM and prefer the savings

in time.

The storage requirement for multigrid is again a

geometric sum, since each coarser sub-grid requires some

fraction less in space than the previous finer grid. In the tri-

diagonal Laplacian case, each sub-grid has exactly half the

number of grid-points of the previous level: the geometric

sum is exactly twice the storage of the original matrix

alone. For LQCD, the Algebraic Multigrid algorithm

coarsens the grid much faster, as can be seen from the data

in figure 7 (initially by a factor of over 100 corresponding

to the fact there are 97 elements per row).

VII. CONCLUSION

The time complexity and memory usage of the Multigrid

Preconditioned Conjugate Gradient algorithm have been

empirically verified to be linear in agreement with

theoretical predictions, and results shown to converge for

the Dirac-Wilson matrix as required.

At all levels of the software design efforts have been made

to keep the code embarrassingly parallel by selecting, as far

as possible, algorithms that are inherently scalable without

compromising the linear memory usage and time

complexity.

Potentially expensive communication bottlenecks that

might degrade scalability for the parallel version have been

kept under control by implementing algorithms that are

matrix-row orientated, and allowing solution vector updates

that are almost entirely independent of any other row. For

the limited areas of inter-row dependencies, the

communication requirements have been designed to be at a

constant bandwidth, effectively independent of matrix size.

Having verified and validated the sequential version of

the algorithm for LQCD, the next step will be to implement

the parallel versions for both CGNR and BiCGStab variants

with multigrid preconditioning.

REFERENCES

[1] Wilson, K. G. (1974). "Confinement of quarks." Physical Review D

10(8): 2445-2459.

[2] Brannick, J., R. C. Brower, et al. (2008). "Adaptive Multigrid

Algorithm for Lattice QCD." Physical review letters 100(4).

[3] Schaefer, S. (2011). Algorithms for lattice QCD: Progress and

challenges, American Institute of Physics.

[4] R. Barrett, M. Berry, T.F. Chan, J. Demmel, J. Donato, J. Dongarra, V.

Eijkhout, R. Pozo, C. Romine and H. van der Vorst, Templates for the

Solution of Linear Systems: Building Blocks for Iterative Methods,

SIAM, Philadelphia, PA (1994).

[5] H. A. van der Vorst. 1992. BI-CGSTAB: a fast and smoothly

converging variant of BI-CG for the solution of nonsymmetric linear

systems. SIAM J. Sci. Stat. Comput. 13, 2 (March 1992), 631-644.

[6] Saad, Y. and H. A. van der Vorst (2000). "Iterative solution of linear

systems in the 20th century." Journal of Computational and Applied

Mathematics 123(1-2): 1-33.

[7] T. Streuer and H. Stuuben, Simulations of QCD in the Era of Sustained

Tflop/s Computing, in C. Bischof, M. Bruckner, P. Gibbon, G. Goubert,

T. Lippert, B. Mohr, F. Peters (Eds.), Parallel Computing: Architectures,

Algorithms and Applications, NIC Series, Vol. 38 (2007), 535-542.

[8] M. A. Clark, R. Babich, K. Barros, R. C. Brower, and C. Rebbi,

"Solving Lattice QCD systems of equations using mixed precision

solvers on GPUs," Comput. Phys. Commun. 181 (2010) 1517—1528

[9] Asano, S., T. Maruyama, et al. (2009). Performance comparison of

FPGA, GPU and CPU in image processing. International Conference on

Field Programmable Logic and Applications, 2009. FPL 2009.

[10] M. Luscher, "Solution of the Dirac equation in lattice QCD using a

domain decomposition method," Comput.Phys.Commun. 156 (2004)

209—220

[11] Brandt, A., McCormick, S., and Ruge, J.: Algebraic multigrid (AMG)

for sparse matrix equations. In Evans, D., editor, Sparsity and Its

Applications. Cambridge University Press, (1984).

