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Abstract—In this paper, we present the real-time implementa-
tion of a nonlinear feedback controller for the balance of a single
inverted pendulum based on the power series approximation to
the solution of the Hamilton-Jacobi-Bellman (HJB) equation.

Index Terms—inverted pendulum, Hamilton-Jacobi-Bellman
equation, nonlinear feedback control, real-time implementation,
power series approximation.

I. INTRODUCTION

The single inverted pendulum (SIP) system is a classic
example of a nonlinear system. It is considered as one of
the most popular benchmarks of nonlinear control theory.
Many nonlinear methods have been proposed for the swing-
up and stabilization of a self-erecting inverted pendulum
[1], however, most of these techniques are too complex
and impractical for real-time implementation. In this paper,
we present the successful real-time implementation of a
nonlinear feedback control based on the power series ap-
proximation to the solution of the Hamilton-Jacobi-Bellman
equation [6], [7], [8], [9]. In our experiments, we have
studied the disturbance rejection of our model and found that
our controller is better than the traditional linear quadratic
regulator. However, the analysis of our model’s disturbance
rejection is beyond the scope of this paper and will be
described in future publications.

II. SYSTEM DYNAMICS

A. Conventions

Figure 1 shows a diagram of the Single Inverted Pendulum
(SIP) mounted on an IP02 linear cart. The positive sense of
rotation is defined to be counterclockwise, when facing the
cart. The perfectly vertical upward pointing position of the
inverted pendulum corresponds to the zero angle, modulus
2π, (i.e. α = 0 rad [2π]). The positive direction of the cart’s
displacement is to the right when facing the cart, as indicated
by the Cartesian frame of coordinates presented in Figure 1.

B. System Parameters

The model parameters and their values as specified by
Quanser in [2] and [3] are provided in Table I.
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Fig. 1. Single inverted pendulum diagram.

TABLE I
INVERTED PENDULUM MODEL PARAMETERS

Symbol Description Value
Mw Cart Weight Mass 0.37 kg
M Cart Mass with Extra Weight 0.57 + Mw kg
Jm Rotor Moment of Inertia 3.90E-007 kg.m2

Kg Planetary Gearbox Gear Ratio 3.71
rmp Motor Pinion Radius 6.35E-003 m
Beq Equivalent Viscous Damping Coefficient 5.4 N.m.s/rad
Mp Pendulum Mass 0.230 kg
lp Pendulum Length from Pivot to COG 0.3302 m
Ip Pendulum Moment of Inertia about its COG 7.88E-003 kg.m2

Bp Viscous Damping Coefficient 0.0024 N.m.s/rad
g Gravitational Constant 9.81 m/s2
Kt Motor Torque Constant 0.00767 N.m/A
Km Back-ElectroMotive-Force Constant 0.00767 V.s/rad
Rm Motor Armature Resistance 2.6 Ω

C. Equations of Motion

We use Lagrange’s method to derive the dynamic model
of the system. In this approach, we consider the driving
force, Fc, generated by the DC motor acting on the cart
through the motor pinion as the single input to the system.
For Lagrange’s method we need to determine the Lagrangian
of the system through the calculation of the system’s total
potential and kinetic energies.

According to the reference frame definition presented in
Figure 1, the coordinates of the pendulum’s center of gravity
are characterized by:

xp(t) = x(t)− lp sin(α(t)) and yp(t) = lp cos(α(t)) (1)
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To begin, we calculate the system’s total potential energy
VT . Since there is no elastic potential energy in the system,
the system’s potential energy is only due to gravity. The cart’s
linear motion is horizontal with no vertical displacement.
Therefore, the total potential energy is fully described by
the pendulum’s gravitational potential energy,

VT =Mpglp cos(α(t)). (2)

Next, we will determine the system’s total kinetic energy
TT . The total kinetic energy is given by the sum of the
translational and rotational kinetic energies of both the cart
and its mounted inverted pendulum. The cart’s translational
kinetic energy, Tct, can be expressed as

Tct =
1

2
M

(
d

dt
x(t)

)2

, (3)

while its rotational kinetic energy due to its DC motor, Tcr,
is given by

Tcr =
1

2

JmK
2
g

(
d
dtx(t)

)2
r2mp

. (4)

Adding (3) and (4) we get that the cart’s total kinetic energy
is

Tc =
1

2
Mc

(
d

dt
x(t)

)2

where Mc =M +
JmK

2
g

r2mp
. (5)

The mass of the pendulum is assumed to be concentrated
at its Center Of Gravity (COG). Therefore, the pendulum’s
transitional kinetic energy, Tpt, is given by

Tpt =
1

2
Mp

((
d

dt
xp(t)

)2

+

(
d

dt
yp(t)

)2
)
, (6)

where the x-coordinate of velocity of the pendulum’s center
of gravity is

d

dt
xp(t) =

(
d

dt
x(t)

)
− lp cos(α(t))

(
d

dt
α(t)

)
(7)

and the y-coordinate is

d

dt
yp(t) = −lp sin(α(t))

(
d

dt
α(t)

)
. (8)

Furthermore, the pendulum’s rotational kinetic energy, Tpr
is given by

Tpr =
1

2
Ip

(
d

dt
α(t)

)2

. (9)

Therefore, the total kinetic energy of the system is the sum
of the four individual kinetic energies given by Equations
(5)-(9). After rearranging and simplifying, the system’s total
kinetic, TT , can be written as

TT =
1

2
(Mc +Mp)

(
d

dt
x(t)

)2

−Mplp cos(α(t))

(
d

dt
α(t)

)(
d

dt
x(t)

)
+

1

2
(Ip +Mpl

2
p)

(
d

dt
α(t)

)2

.

(10)

Note that the total kinetic energy can be expressed in terms
of both the two generalized coordinates, x and α, and of
their first derivatives.

Next, consider Lagrange’s equations for our system. By
definition, the two Lagrange’s equations have the formal
formulations(

∂

∂t∂
(
d
dtx(t)

)L)− ( ∂

∂x
L

)
= Qx (11)

and (
∂

∂t∂
(
d
dtα(t)

)L)− ( ∂

∂α
L

)
= Qα. (12)

In (11) and (12) L represents the Lagrangian and is defined
as the difference of the total kinetic energy and the total
potential energy,

L = TT − VT . (13)

In (11), Qx is the generalized force applied on the general-
ized coordinate x, and is defined as

Qx(t) = Fc(t)−Beq
(
d

dt
x(t)

)
. (14)

Similarly, in (12), Qα is the generalized force applied on the
generalized coordinate α, which is defined as

Qα(t) = −Bp
(
d

dt
α(t)

)
. (15)

It should be noted that in our current model the Coulomb
friction applied to the cart, and the force on the cart due to
the pendulum’s action have both been neglected.

Substituting into (11) and (12), and solving for the second-
order time derivatives of x and α results in the two non-linear
equations

d2

dt2
x =

(
− (Ip +Mpl

2
p)Beq

(
d

dt
x

)
− (M2

p l
3
p + IpMplp) sin(α)

(
d

dt
α

)2

−Mplp cos(α)Bp

(
d

dt
α

)
+ (Ip +Mpl

2
p)Fc

+M2
p l

2
pg cos(α) sin(α)

)
/(

(Mc +Mp)Ip +McMpl
2
p +M2

p l
2
p sin

2(α)
)

(16)

and

d2

dt2
α =

(
(Mc +Mp)Mpglp sin(α)− (Mc +Mp)Bp

(
d

dt
α

)
−M2

p l
2
p sin(α) cos(α)

(
d

dt
α

)2

−Mplp cos(α)Beq

(
d

dt
x

)
+Mplp cos(α)Fc

)
/(

(Mc +Mp)Ip +McMpl
2
p +M2

p l
2
p sin

2(α)
)
,

(17)

where x and α are both functions of t. Equations (16) and
(17) represent the Equations of Motion (EOM) of the system.

In our implementation the system’s input is equal to the
cart’s DC motor voltage, Vm, so we must convert the driving
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force, Fc, to voltage input. Using Kirchoffs voltage law and
the physical properties of our system, we can easily show
that

Fc = −
K2
gKtKm

(
d
dtx(t)

)
Rmr2mp

+
KgKtVm
Rmrmp

. (18)

III. CONTROLLER DESIGN

A. Problem Statement

The state-space representation of our system has the form

d

dt
X(t) = f(X(t)) +B(X(t))u(t) (19)

where X , the system’s state vector is given by

XT (t) =

[
x(t), α(t),

d

dt
x(t),

d

dt
α(t)

]
= [x1, x2, x3, x4] ,

(20)
and the input u is set to equal the linear cart’s DC motor
voltage, i.e. u = Vm. Based on equations (16)-(18) the
nonlinear function f(X) can be expressed as

f(X) =


0 0 1 0

0 0 0 1

0 0 a33 a34

0 0 a43 a44




x1

x2

x3

x4

+


0

0
M2

p l
2
pg cos(x2) sin(x2)

D(X)

(Mc+Mp)Mpglp sin(x2)
D(X)


(21)

where

a33 =
−(Ip +Mpl

2
p)(BeqRmr

2
mp +K2

gKtKm)

D(X)Rmr2mp

a34 = −
(M2

p l
3
p + IpMplp) sin(x2)x4 +Mplp cos(x2)Bp

D(X)

a43 = −
(Mplp cos(x2))(BeqRmr

2
mp +K2

gKtKm)

D(X)Rmr2mp

a44 = −
(Mc +Mp)Bp +M2

p l
2
p sin(x2) cos(x2)x4

D(X)

and

D(X) = (Mc +Mp)Ip +McMpl
2
p +M2

p l
2
p sin

2(x2).

Similarly, B(X(t)) can be expressed as

B(X(t)) =


0

0
(Ip+Mpl

2
p)KgKt

D(X)Rmrmp

Mplp cos(x2)KgKt

D(X)Rmrmp

 . (22)

Equation (22) can be linearized as

B =


0

0
(Ip+Mpl

2
p)KgKt

((Mc+Mp)Ip+McMpl2p)Rmrmp

Mplp cos(x2)KgKt

((Mc+Mp)Ip+McMpl2p)Rmrmp

 .

Replacing B(X(t)) by B in (19) we obtain the nonlinear
system

∂

∂t
X(t) = f(X(t)) +Bu(X(t)) (23a)

X(0) = X0. (23b)

Now, consider the cost functional

J(X0, u) =

∫ ∞
0

(
XTQX +Ru2

)
dt, (24)

where Q is a given constant-valued 4×4 symmetric positive-
semidefinite matrix and R is a positive scalar. In the case of
starting and balancing the inverted pendulum in the upright
position, the optimal control problem is to find a state
feedback control u∗(x) which minimizes the cost (24) for
the initial condition XT

0 = [0, 0, 0, 0].
The function f is commonly linearized around the zero

angle (i.e. α = 0) as f(X) = A0X . This linearization results
in the well-know linear quadratic regulator (LQR) problem,
for which the optimal feedback control is given by

u∗(X) = −R−1BTPX,

where P is the unique symmetric positive-definite matrix
solution to the algebraic Riccati equation

PA0 +AT0 P − PBR−1BTP +Q = 0. (25)

The theories for the LQR problem have been well-
established, and multiple stable and robust algorithms for
solving (25) have already been developed and are well
documented in the literature and in textbooks [4], [5].

In our case, where f is nonlinear, the optimal feedback
control is given by

u∗(X) = −1

2
R−1BTSX(X),

where the function S is the solution to the Hamilton-Jacobi-
Bellman (HJB) equation

STX(X)f(X)− 1

4
STX(X)BR−1BTSX(X) +XTQX = 0.

(26)
It is well know that the HJB equation is very difficult to solve
analytically. Several efforts have been made to numerically
approximate the solution of the HJB equation in order to
obtain a usable feedback control [6]. The following section
describes one of these methods as it applies to the SIP
system.

B. Power Series Approximation

The following method was adapted for the SIP system
based on [6]. As it has been done by Garrard and others
in references [7], [8], [9], the solution of the HJB equation
can be numerically approximated using its power series
expansion

S(X) =
∞∑
n=0

Sn(X),

where each Sn(X) = O(Xn+2). Similarly, the nonlinear
function f(X) can be approximated by

f(X) = A0X +

∞∑
n=2

fn(X),
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with fn(X) = O(Xn). In our implementation, the power
series of f was calculated using the MATLAB function
taylor from the Symbolic Math Toolbox. These expan-
sions can be substituted into the HJB equation (26) to yield[ ∞∑

n=0

(Sn)
T
X

][
A0X +

∞∑
n=2

fn(X)

]

− 1

4

[ ∞∑
n=0

(Sn)
T
X

]
BR−1BT

[ ∞∑
n=0

(Sn)X

]
+XTQX = 0.

We can separate out powers of X to obtain a series of
equations,

(S0)
T
XA0X−

1

4
(S0)

T
XBR

−1BT (S0)X+XTQX = 0, (27)

(S1)
T
XA0X −

1

4
(S1)

T
XBR

−1BT (S0)X

− 1

4
(S0)

T
XBR

−1BT (S1)X + (S0)
T
Xf2(X) = 0,

(28)

(Sn)
T
XA0X −

1

4

n∑
k=0

[
(Sk)

T
XBR

−1BT (Sn−k)X
]

+
n−1∑
k=0

[
(Sk)

T
Xfn+1−k(X)

]
= 0,

(29)

where n = 2, 3, 4, . . ..
The solution of equation (27) is

S0(X) = XTPX,

where P solves (25). As described earlier this gives the
standard linear control. It is possible to solve equations
(28)-(29) for Sn, n = 1, 2, 3, . . ., by making Sn a scalar
polynomial containing all possible combinations of products
of the state elements with a total order of n + 2. However,
this method can get very complicated quickly. In [7], Garrard
proposed a very easy method of finding (S1)X and obtaining
a quadratic type control.

Instead of the polynomial representation, we may use the
solution of (27) and make the substitution (S0)X = 2PX in
equation (28) to obtain

(S1)
T
XA0X −

1

4
(S1)

T
XBR

−1BT (2PX)

− 1

4
(2XTP )BR−1BT (S1)X + (2XTP )f2(X) = 0.

This can be rearranged to yield

XT
[
AT0 (S1)X − PBR−1BT (S1)X + 2Pf2(x)

]
= 0,

which is satisfied when

(S1)X = −2(AT0 − PBR−1BT )−1Pf2(X).

This along with the (S0)X term give a quadratic feedback
control law of the form

u∗(X) = −R−1BT
[
PX − (AT0 − PBR−1BT )−1Pf2(X)

]
.

(30)
The series expansion of f(X) in our case doesn’t contain any
quadratic terms (i.e. f2(X) = 0), so (28) is trivially solved
by S1 = 0. In this case, by [6], equation (29) for n = 2 will
be of the form

(S2)
T
XA0X −

1

4
(S2)

T
XBR

−1BT (S0)X

− 1

4
(S0)

T
XBR

−1BT (S2)X + (S0)
T
Xf3(X) = 0

Fig. 2. Single inverted pendulum mounted on a Quanser IP02 servo plant.
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Fig. 3. Diagram of experimental setup.

which is exactly the same form as (28) except that S1 is
replaced be S2 and f2 is replaced by f3. Thus, the solution
is comparable to that of (28), with

(S2)X = −2(AT0 − PBR−1BT )−1Pf3(X),

resulting in a feedback control of the form

u∗(X) = −R−1BT
[
PX − (AT0 − PBR−1BT )−1Pf3(X)

]
.

(31)

IV. REAL-TIME IMPLEMENTATION

A. Apparatus

In our experiments we use apparatus designed and pro-
vided by Quanser Consulting Inc (119 Spy Court Markham,
Ontario, L3R 5H6, Canada). This includes a single inverted
pendulum mounted on an IP02 servo plant (pictured in Figure
2), a VoltPAQ amplifier, and a Q2-USB DAQ control board.
A diagram of our experimental setup is included in Figure
3.

B. Design Specifications

The goal of our experiment is to balance the inverted
pendulum with minimal cart movement and control effort.
The weights Q ≥ 0 and R > 0 in the cost functional (24)
are chosen so that the system satisfies the following design
performance requirements specified by Quanser:
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Fig. 4. Main Simulink model diagram.

1) Regulate the pendulum angle around its upright posi-
tion and never exceed a ±1-degree-deflection from it,
i.e. |α| ≤ 1.0◦.

2) Minimize the control effort produced, which is pro-
portional to the motor input voltage Vm. The power
amplifier should not go into saturation in any case, i.e.
|Vm| ≤ 10V .

In order to strongly penalize non-zero positions, the state
weight Q was chosen with large weights on the positions
and no weights on the velocities. The particular choice of
Q = diag(5, 50, 0, 0) and R = 0.002 were selected using
the tuning procedure described by Quanser, however, within
these considerations they are somewhat arbitrary.

C. MATLAB Implementation

Our control is implemented using Quanser’s QuArc real-
time control software in MATLAB Simulink. The diagram of
the main Simulink model is given in Figure 4. The control u
is computed in real-time with a sampling rate of 1 kHz (1ms)
using an Embedded Matlab Function block. The SIP+IP02
Actual Plant subsystem block that reads and computes the
cart’s position and velocity, and the pendulum’s angle and
angle velocity is taken from a model provided by Quanser.

D. Experimental Results

The experimental results are provided in Figure 5. As
the graphs indicate, the results are well-within the desired
model design specifications provided in Section IV-B. The
pendulum’s angle is regulated around the upright position
and never exceeds a ±0.14◦-deflection from it. The amplifier
input voltage always stays within ±1.91V and the power
amplifier never goes into saturation. Furthermore, the cart’s
movement is very minimal with no more than a 2 mm
displacement in either direction.

V. CONCLUSION

We have described the successful real-time implementation
of a new power series based nonlinear feedback control
method for the balance of a single inverted pendulum. Our
experimental results fall within the desired design specifi-
cations, however, further fine tuning of the weights Q and
R may yield even better results with lower control effort
and more accurate position tracking. Future work includes a
more in-depth analysis of the system’s disturbance rejection
as well as the implementation of another nonlinear controller
based on the state-dependent Riccati equation.
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Fig. 5. Real-time experimental results. The top plot shows the actual (red)
versus the desired (blue) cart position. The middle plot shows the angle of
the pendulum, and the bottom plot shows the motor input voltage.
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