



Abstract— Pairwise testing which is the most used of

combinatorial strategy has been shown to be a very effective

testing technique. An important problem in pairwise testing

deals with constraints and selects the optimal input parameters

and values. This paper proposes an approach to select an

optimal set of input parameters and values using statistical user

profile for pairwise test case generation and to apply constraint

handling to deal with unrealistic combinations.

Index Terms—pairwise testing, combinatorial testing,

software testing, test cases generation, test case selection

I. INTRODUCTION

oftware testing is an important activity in software

development process to assure product value delivered

to customers. Moreover, software testing generally

consumes between 30 and 60 percent of overall development

effort [1].

In the past few years, an increasing trend on software

system shown that it usually operates in a very complex

environment. Exhaustive testing in a software system is

practically impossible for real-world software that requires

extensive efforts and enormous resources [2], [3]. Therefore,

testing techniques have been researched and adopted on

software testing.

One of the most used combinatorial techniques is pairwise

testing, a type of test case selection method which test cases

are created by the combinations of interesting values

previously identified by a tester [4]. Pairwise testing has

been proven are very effective in fault detection with less

costs and aims at testing numerous combinations of inputs

with reducing set of test cases. Pairwise testing considers

only combinations of all possible pairs [5]. However,

practical system testing often has constraints on the

combination of parameter values. As a result, some

combinations of parameter values are frequently invalid.

Each individual tester would come up with different

models depends on creativity and experience [6]. Input

parameters and values are essential steps in pairwise testing.

However, there is currently no adequate scientific

recommendations or any solid theoretical method to select

an optimal set of input parameters and values [7].

Consequently, the goal of this paper is to make a step toward

Manuscript received November 09, 2015.

S. Nakornburi and T. Suwannasart are with the Software Engineering

Laboratory Center of Excellence in Software Engineering, Faculty of

Engineering, Chulalongkorn University, Bangkok, Thailand (e-mail:

Sompong.N@student.chula.ac.th, Taratip.S@chula.ac.th).

filling such that gap.

In this paper we propose an approach to generate test

cases for pairwise testing by applying user profile for

guiding and prioritizing input parameters and values to be

selected and also providing solution for the constraints

handling between parameters and values.

The remainder of this paper is structured as follows:

Section II briefly reviews the background on pairwise

testing, constraint handling, and user profile. Section III

describes our proposed approach of constraint handling in

pairwise test case generation using statistical user profile to

select input parameters and values. Finally, section IV

provides conclusion and a plan for future work.

II. BACKGROUND

A. Pairwise Testing

Pairwise (2-way combination) testing is a combinatorial

technique which aims at testing all possible numerous

combinations set of input parameters. Each pair of values of

any two parameters is covered by at least one test case [5],

[8]. Empirical results show that software defects are

triggered by a single input parameters or a combination of

two input parameters [3], [5], [9].

To illustrate the concept of pairwise testing, consider a

system with three parameters A, B and C. Each of the first

two parameters consist of two values {A1, A2}, {B1, B2}

and the third parameter consist of three values {C1, C2, C3}

respectively. This will be end up with 16 different pairs in

total. In order to test all combinations would need 2 × 2 × 3

= 12 test cases. Furthermore, a generated pairwise test case

set includes of 6 test cases covered in all parameters

participated in a particular parameter interactions for this

scenario.

B. Constraint Handling

In software testing, some combination of parameters and

values are frequently invalid and untestable because they do

not exist for the system under test. The pairwise testing

technique does not handle the constraints between input

parameters and values, the tester must review the results

obtained from pairwise testing and manually delete bad pair

test cases themselves.

Changhai Nie and Hareton Leuang [2] claim that the

existence of constraints increases the difficulty in applying

combinatorial testing due to the fact that (1) Most existing

test generation methods cannot deal with any constraints,

and eventually ignore them. Ignoring constraints might lead

Constrained Pairwise Test Case Generation

Approach based on Statistical User Profile

Sompong Nakornburi and Taratip Suwannasart

S

Proceedings of the International MultiConference of Engineers and Computer Scientists 2016 Vol I,
IMECS 2016, March 16 - 18, 2016, Hong Kong

ISBN: 978-988-19253-8-1
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2016

to the generation of test configurations that is invalid.

Resulting in ineffective test planning and wasted test effort.

(2) It is difficult to design a general algorithm for test

generation with consideration of constraints. (3) Even a

small number of constraints may give rise to an enormous

number of invalid configurations. When the generated test

suite contains many invalid test cases, this will cause a loss

of combination coverage. (4) Complicated constraints may

exist in the system under test, and multiple constraints can

interact to produce additional implicit constraints. It is both

time consuming and highly error prone to manually deal

with constraints in test suite generation. Thus, proper

handling of constraints is a key issue we must address in test

suite generation.

More or less in the number of test cases may be obtained

for pairwise testing after applied constraints handling but it

is better than those obtained without taking constraints into

account.

Constraints must be specified by a tester before test

generation. Constraints can be specified as a set of logical

expression. A logical expression describes a condition that

satisfies by every single test and is used to perform validity

check during test generation [10], [11].

Mats Grindal, Jeff Offutt, and Jonas Mellin [12] present

constraint handling methods in input parameters models

when using combination strategies to select test cases. One

of handling constraint is the replace method, bad pair in test

cases can be resolved after the test case set has been

generated and preserves the coverage of the test case set.

Instead of removing bad pair test cases, the bad pair test

cases are cloned, in each clone one or more of the parameter

values involved in the conflict is changed to an arbitrary

value that can remove the bad pair. With the replace method,

almost as simple, reduces the final test cases, completely

general the combination strategy, and short execution time.

C. User Profile

A user profile describes an environment and a collection

of settings that the user uses to run the software, which are

being tracked. The profile information includes platform,

operating system, software, hardware, and additional

description, for example [13], [14].

In this paper, we describe a user profile as a collection of

settings and information associated with a user and the

software under test. It can be defined as the identity of the

user considering to the operating environment, which could

be platform, operating system, software applications, or

hardware information. User profile must be collected into

the system for analyzing and prioritizing test cases.

With a user profile, a quantitative characterization of the

way a system can be tested more efficiently because testing

can focus on how users will employ the product and the

relative importance of different uses. It is a practical

approach to ensure that a system delivered with a maximized

reliability because the operation most used also has been

tested the most [15].

III. PROPOSED APPROACH

This section describes the proposed approach of

constrained pairwise test case generation based on statistical

user profile. The whole process of constructing consists of

four steps:

1) Select Input Parameters and Values

2) Define Parameters and Constraint Values

3) Generate Test Case

4) Execute Test Case Set

Fig. 1 shows the schematic representation of our

proposed approach. The four steps of the approach are

described separately in the following subsections.

Database
(User Profile)

1. Select Input Parameters
and Values

2. Define Parameters and
Constraint Values

3. Generate Test Case

4. Execute Test Case Set

Parameters
and Values

Constraints

Test Case Set

Test Report

Fig. 1. Constrained pairwise test case generation based on statistical user

profile approach

A. Select Input Parameters and Values

The input parameters and values for generating test case

to be selected based on the user profile which are collected

from the database. In this paper, the user profile must be in a

comma-separated values (CSV) format file. CSV files can be

exported from any modern database. For example, suppose

we have a user profile intended to execute on a variety of

platforms shown in Fig. 2.

Fig. 2. A sample of user profile from a database

The user profile comprises of a lot of information as it is

simply impractical to test a system that is intended to run on

a variety of platforms. Thus, testers need to consider only on

parameters and values that are related and interested in order

Proceedings of the International MultiConference of Engineers and Computer Scientists 2016 Vol I,
IMECS 2016, March 16 - 18, 2016, Hong Kong

ISBN: 978-988-19253-8-1
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2016

to cover the most important parameters and values which

impact the test focus. For example, we select Operating

System, Browser, Microsoft Office, and Antivirus as input

parameters.

The selection of optimal number of values on frequently

used parameters requires statistical method for analyzing and

interpreting. The values of input parameters are

automatically ordered using the summation of the most

frequently used by a tool as it can be used to guide the

selection of input values. With this, the tester can specify the

most important values with a high occurrence usage from

testing perspective. It also allows testers to know the most

valuable test cases to be generated and executed that reflect

the usage characteristics statistically.

From the user profile in Fig. 2., supposing that the most

frequently used at least 10 percent of users were selected and

formulated as input parameters and values by the tester,

which are shown in Table I.

TABLE I

A SAMPLE OF SELECTED PARAMETERS AND VALUES

No. Operating System Users %

1 Windows 7 Enterprise 64-bit 58,991 38

2 Windows 7 Professional 32-bit 25,328 16

No. Web Browser Users %

1 Internet Explorer 10 58,949 38

2 Internet Explorer 11 50,057 32

3 Internet Explorer 9 19,258 12

4 Internet Explorer 8 17,207 11

No. Microsoft Office Users %

1 Office 2010 SP2 32-bit 21,191 37

2 Office 2007 SP3 8,811 16

3 Office 2013 64-bit 7,613 13

No. Antivirus Users %

1 McAfee VirusScan Enterprise 2,735 31

2 Symantec Endpoint Protection 2,264 28

B. Define Parameters and Constraint Values

Some combinations are not valid from the selected

parameters and values from previous subsection in Table I

that will generate bad pair test cases and must be excluded

from the result of test case set. Constraints among selected

parameters and values need to be specified by testers before

taken into consideration during test generation in order to

avoid bad pair test cases when generating test case set.

Currently, we support a collection of terms and rules that

come with Natural Language of logical terms and Boolean

type of constraints in order to have a meaningful constraint.

Table I shows the possible input parameters and values of a

platform that could be executed for Operating System (OS),

Browser (BROWSER), Microsoft Office (OFFICE), and

Antivirus (ANTIVIRUS). A test case set generated does not

take constraints into account so the result of test case set will

cover combinations including bad pair test cases. Bad pair

test cases combine 32-bits Operating System with 64-bits

Microsoft Office, or Operating System with Internet

Explorer. In the Table II, we give a formal syntax of the

expressions that can be used to specify a constraint and

ensure that the selected parameters and values in Table I are

not generated.

To set constraints between input parameters and values can

be set as required or exclude from the final test case set.

TABLE II

A SAMPLE OF DEFINED CONSTRAINTS

Constraint Description

1 IF (OS = “32-bits”)

THEN (OFFICE != “64-

bits”)

If Operating System is

32-bits, then Microsoft

Office must not be 64-

bits

2 IF (Browser = “IE”)

THEN (OS != “Mac”)

If Browser is Internet

Explorer, then Operating

System must not be

Macintosh

3 IF (OS = “Windows8”)

THEN (Browser !=

“IE7”)

If Operating System is

Windows 8, then

Browser must not be

Internet Explorer 7

4 IF (OS = “Windows10”)

THEN (Browser =

“IE11”)

If Operating System is

Windows 10, then

Browser must be Internet

Explorer 11

C. Generate Test Case

We first generate a pairwise test case for the first two

parameters until cover all values then extend it to another

parameter. Starting the next iteration on this step until we

cover all the parameters and values from Table I the

resulting test case set as shown in Fig. 3.

The highlighted row in Fig. 3., represents to bad pair test

cases. In the resulting test case set, there are two bad pair

test cases: TC3 and TC9 contain Office 2013 64-bit on

Operation System 32-bit version. These test cases are

infeasible and need to be managed by taking the constraints

into account as defined by the tester in previous subsection

in order to generate feasible test case set.

Fig. 3. Test cases obtained using pairwise without constraints

Consider the test case set that is satisfied pairwise

coverage, we perform validity check by using a replace

method to determine whether all the constraints are satisfied

by a test case with the specified constraints from Table II. If

a bad pair test case is detected, that test case will be cloned.

In each clone, one or more of the parameter values involved

in the bad pair is changed to another value that removes the

bad pair. Then, the next iteration on this step is started until

we cover all generated test cases in Fig. 3.

The number of clones is chosen such that the number of

Proceedings of the International MultiConference of Engineers and Computer Scientists 2016 Vol I,
IMECS 2016, March 16 - 18, 2016, Hong Kong

ISBN: 978-988-19253-8-1
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2016

test case is preserved. The resulting final test case set is

cover combinations that satisfy those constraints as shown in

Fig. 4.

Fig. 4. Final test case set obtained using pairwise with constraints

D. Execute Test Case Set

 To evaluate the proposed approach, we consider the

number of parameters due to the fact that each parameter

usually has different number of values and compare the

number of test cases generated with and without constraints

with existing algorithms for Combinatorial Testing [2].

IV. CONCLUSION AND FUTURE WORK

In this paper we have presented the proposed approach to

generate test case for pairwise testing based on user profile,

a goal oriented testing that guides and prioritizes testing to

the most used of the system under test statistically and

allows the tester to handle constraints to avoids bad pair test

cases.

There are several directions to continue our work. First,

we want to implement a tool from the proposed approach.

Second, we want to conduct similar studies of the real-world

application to evaluate the effeteness for our approach.

Finally, we plan to investigate how to integrate our approach

with other automate test execution.

REFERENCES

[1] M. Utting and B. Legeard, Practical model-based testing: a tools

approach: Morgan Kaufmann, 2010.

[2] C. Nie and H. Leung, "A survey of combinatorial testing," ACM

Comput. Surv., vol. 43, pp. 1-29, 2011.

[3] D. R. Kuhn, R. N. Kacker, and Y. Lei, "SP 800-142. Practical

Combinatorial Testing," National Institute of Standards \&

Technology2010.

[4] B. Pérez Lamancha, M. Polo, and M. Piattini, "PROW: A Pairwise

algorithm with constRaints, Order and Weight," Journal of Systems

and Software, vol. 99, pp. 1-19, 1// 2015.

[5] C. B. A. L. Monteiro, L. A. Vieira Dias, and A. M. Da Cunha, "A

Case Study on Pairwise Testing Application," in Information

Technology: New Generations (ITNG), 2014 11th International

Conference on, 2014, pp. 639-640.

[6] M. N. Borazjany, Y. Linbin, L. Yu, R. Kacker, and R. Kuhn,

"Combinatorial Testing of ACTS: A Case Study," in Software

Testing, Verification and Validation (ICST), 2012 IEEE Fifth

International Conference on, 2012, pp. 591-600.

[7] S. Vilkomir and B. Amstutz, "Using Combinatorial Approaches for

Testing Mobile Applications," in Software Testing, Verification and

Validation Workshops (ICSTW), 2014 IEEE Seventh International

Conference on, 2014, pp. 78-83.

[8] J. Bach and P. J. Schroeder, "Pairwise testing: A best practice that

isn’t," in Proceedings of 22nd Pacific Northwest Software Quality

Conference, 2004, pp. 180-196.

[9] P. Flores and C. Yoonsik, "PWiseGen: Generating test cases for

pairwise testing using genetic algorithms," in Computer Science and

Automation Engineering (CSAE), 2011 IEEE International

Conference on, 2011, pp. 747-752.

[10] Y. Linbin, L. Yu, M. Nourozborazjany, R. N. Kacker, and D. R.

Kuhn, "An Efficient Algorithm for Constraint Handling in

Combinatorial Test Generation," in Software Testing, Verification

and Validation (ICST), 2013 IEEE Sixth International Conference

on, 2013, pp. 242-251.

[11] G. Shiwei, D. Binglei, J. Yaruo, L. Jianghua, and M. Shilong, "An

efficient algorithm for pairwise test case generation in presence of

constraints," in Systems and Informatics (ICSAI), 2014 2nd

International Conference on, 2014, pp. 406-410.

[12] M. Grindal, J. Offutt, and J. Mellin, "Handling constraints in the

input space when using combination strategies for software testing,"

2006.

[13] (2015, 25 Oct.). User Profiles. Available:

http://www.mantisbt.org/manual/admin.user.profiles.html

[14] (2015, 25 Oct.). What is a User Profile? - Definition from

Techopedia. Available:

https://www.techopedia.com/definition/16137/user-profile

[15] H. Koziolek, "Operational profiles for software reliability," in

Seminar on Dependability Engineering, Germany, 2005.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2016 Vol I,
IMECS 2016, March 16 - 18, 2016, Hong Kong

ISBN: 978-988-19253-8-1
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2016

http://www.mantisbt.org/manual/admin.user.profiles.html
https://www.techopedia.com/definition/16137/user-profile

