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Abstract— In this paper, differential calculus was used to 

obtain the ordinary differential equations (ODE) of the 

probability density function (PDF), Quantile function (QF), 

survival function (SF), inverse survival function (ISF), hazard 

function (HF) and reversed hazard function (RHF) of 

Kumaraswamy distribution. The parameters and support that 

define the distribution inevitably determine the nature, 

existence, uniqueness and solution of the ODEs. The method 

can be extended to other probability distributions, functions 

and can serve an alternative to estimation and approximation. 

Computer codes and programs can be developed and used for 

the implementation.              

 

Index Terms— Differentiation, quantile function, survival 

function, approximation, hazard function, Kumaraswamy. 

 

I. INTRODUCTION 

ALCULUS is a very key tool in the determination of 

mode of a given probability distribution and in 

estimation of parameters of probability distributions, 

amongst other uses. The method of maximum likelihood is 

an example.                                                     

Differential equations often arise from the understanding 

and modeling of real life problems or some observed 

physical phenomena. Approximations of probability 

functions are one of the major areas of application of 

calculus and ordinary differential equations in mathematical 

statistics. The approximations are helpful in the recovery of 

the probability functions of complex distributions [1-10]. 

Apart from mode estimation, parameter estimation and 

approximation, probability density function (PDF) of 

probability distributions can be expressed as ODE whose 

solution is the PDF. Some of which are available. They 

include: beta distribution [11], Lomax distribution [12], beta 

prime distribution [13], Laplace distribution [14] and raised 

cosine distribution [15]. 

The aim of this research is to develop homogenous 

ordinary differential equations for the probability density 

function (PDF), Quantile function (QF), survival function 

(SF), inverse survival function (ISF), hazard function (HF) 
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and reversed hazard function (RHF) of Kumaraswamy 

distribution. This will also help to provide the answers as to 

whether there are discrepancies between the support of the 

distribution and the necessary conditions for the existence of 

the ODEs. Similar results for other distributions have been 

proposed, see [16-28] for details.                                                                                                                                  

 

Kumaraswamy Distribution is one of the interval 

bounded support probability distributions and introduced by 

Kumaraswamy [29]. It is one of the most studied probability 

distribution as evidenced by the many research materials 

available. Some of the advantages of the distribution over 

the beta distribution were highlighted in [30] and [31]. A 

short note of the distribution was written by Nadarajah [32]. 

The boundary properties and inference of the distribution 

were discussed extensively in Okagbue [33] and Wang et 

al., [34] respectively.                                                                                                                                               

Some aspects of the distribution investigated by authors 

include: generalized order statistics [35], improved point 

estimation [36], Bayesian estimation of the parameters 

under censored samples [37-38], conditional estimation 

[39], analysis of the distribution based on record data [40] 

and statistical moments for the generalized distribution [41].      

                                   

 Its flexibility, ease of computation and tractability 

properties of the distribution are motivations for the 

numerous modifications and generalizations of the 

distribution. Some of which are listed as follows; 

exponentiated Kumarswamy distribution [42], 

Kumaraswamy Weibull distribution [43], bivariate 

Kumaraswamy distribution [44], Kumaraswamy generalized 

gamma distribution [45], Kumaraswamy Lindley 

distribution [46]. Also available are; Kumaraswamy-

generalized Lomax distribution [47], Kumaraswamy Pareto 

distribution [48],  Kumaraswamy-geometric distribution 

[49], Kumaraswamy Birnbaum–Saunders distribution [50], 

Kumaraswamy linear exponential distribution [51], 

Kumaraswamy-generalized exponentiated Pareto 

distribution [52], generalized Kumaraswamy exponential 

distribution [53], Kumaraswamy power series distribution 

[54] and [55]. Also available are; Kumaraswamy GP 

distribution [56], Exponentiated Kumaraswamy-Dagum 

distribution [57] and [58], Kumaraswamy Quasi Lindley 

distribution [59], transmuted Kumaraswamy distribution 

[60], exp-kumaraswamy distributions [61], the weighted 

kumaraswamy distribution [62], Kumaraswamy skew-

normal distribution [63] Kumaraswamy modified inverse 
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Weibull distribution [64]. Also available are; Kumaraswamy 

odd log-logistic distribution [65],  Kumaraswamy binomial 

distribution [66], Kumaraswamy-power distribution [67], 

beta generated kumaraswamy-G family of distributions [68], 

Kumaraswamy Marshall-Olkin family of distributions [69], 

Kumaraswamy GEV distribution [70], Kumaraswamy 

skew-t distribution [71]. Also available are; Kumaraswamy-

Burr III distribution [72], Kumaraswamy-transmuted 

exponentiated modified Weibull distribution [73], inverted 

Kumaraswamy distribution [74], exponentiated 

Kumaraswamy-power function distribution [75], 

Kumaraswamy complementary Weibull geometric 

distribution [76] and others.                       The ordinary 

differential calculus was used to obtain the results.     

II. PROBABILITY DENSITY FUNCTION 

The probability density function of the Kumaraswamy 

distribution is given as;          

 
1 1( ) (1 )   (0,1)a a bf x abx x x               (1) 

To obtain the first order ordinary differential equation for 

the probability density function of the Kumaraswamy 

distribution, differentiate equation (1), to obtain;     

 

2 1 1

1 1

( 1) ( 1) (1 )
( ) ( )  

(1 )

a a a b

a a b

a x a b x x
f x f x

x x

  

 

   
   

 
                                                                                 (2)

     

1( 1) ( 1)
( ) ( )  

(1 )

a

a

a a b x
f x f x

x x

  
   

 
    (3) 

The necessary condition for the existence of equation is that 

, 0,0 1.a b x                                                                               

The ordinary differential equations can be obtained for 

particular values of a and b.                                                                                             

Special cases;                                                                                                                                                                                         

1. When a = 1, b = 1, the equation (3) becomes;     

   ( ) 0f x                                                  (4)                                                                                                    

2. When a = 1 and b = 2, 3, 4, … , n.                                                 

When a = 1, b = 2, substitute in equations 3, to obtain;     

 
( )

( )
1

f x
f x

x
  


                                           (5)                    

When a = 1, b = 3, substitute in equations 3, to obtain;     

 
2 ( )

( )
1

f x
f x

x
  


                                       (6)                                      

When a = 1, b = 4, substitute in equations 3, to obtain;     

 
3 ( )

( )
1

f x
f x

x
  


                                       (7)                              

When a = 1, b = n, substitute in equations 3, to obtain;     

 
( 1) ( )

( )
1

n f x
f x

x


  


                               (8)                                               

3. When b = 1 and a = 2, 3, 4, … , n.                                        

When b = 1, a = 2, substitute in equations 3, to obtain;     

 
( )

( )
f x

f x
x

                                                               (9)                             

When b = 1, a = 3, substitute in equations 3, to obtain;     

 
2 ( )

( )
f x

f x
x

                                                           (10)                  

When b = 1, a = 4, substitute in equations 3, to obtain;     

 
3 ( )

( )
f x

f x
x

                                                           (11)                       

When b = 1, a = n, substitute in equations 3, to obtain;     

 
( 1) ( )

( )
n f x

f x
x


                                                  (12)          

To obtain a simplified ordinary differential equation that is 

independent of the powers of the parameters, differentiate 

equation (3);   
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




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  

 
   

  
  

  
 

 

        (13) 

The necessary condition for the existence of equation is that 

, 0,0 1.a b x                                                                          

The following equations obtained from equation (3) are 

needed to simplify equation (13);      

 

1( ) 1 ( 1)
  

( ) 1

a

a

f x a a b x

f x x x

  
 


                   (14)

  

1( 1) 1 ( )
  

1 ( )

a

a

a b x a f x

x x f x

  
 


                   (15)

  

2 21( 1) 1 ( )
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a

a

a b x a f x

x x f x

     
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   
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221

2

( 1)( ) 1 1 ( )
  

(1 ) 1 ( )

a

a

b ax a f x

x b x f x

   
  

   
     (17)

                

 

1( 1)( 1) 1 ( )
1   

1 ( )

a

a

a a b x a f x
a

x x f x

    
   

  
    (18)

                

 

2( 1)( 1) 1 1 ( )
  

1 ( )

a

a

a a b x a a f x

x x x f x

     
  

  
    (19) 

Substitute equations (14), (17) and (19) into equation (13) to 

obtain;  

 
2

22

( 1) 1 1 ( )

1 ( )( )
( ) ( )  

( ) 1 1 ( )

( )

a a f x

x b x f xf x
f x f x

f x a a f x

x x f x

   
   

       
   

   
  

                                                                                          (20)

         
1 1(0.1) (0.1) (1 (0.1) )  a a bf ab           (21)
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1 1(0.1) (0.1) (1 (0.1) )

10 ( 1)(0.1)
10( 1)

(1 (0.1) )

a a b

a

a

f ab

a b
a
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 
  

 

              (22)                 

The necessary condition for the existence of equation is that 

0,0 1, 1a x b    .                                   

III. QUANTILE FUNCTION 

  The Quantile function of the Kumaraswamy distribution is 

given as;      

 

1 1

( ) (1 (1 ) )   p (0,1)b aQ p p             (23) 

To obtain the first order ordinary differential equation for 

the Quantile function of the Kumaraswamy distribution, 

differentiate equation (23), to obtain;                                                                                                                                                                       

 

1 1 1
1 11

( ) (1 ) (1 (1 ) )   b b aQ p p p
ab

 

           (24)  

1 1 1

1

(1 ) (1 (1 ) )
( )   

(1 )(1 (1 ) )

b b a

b

p p
Q p

ab p p

  
 

  

               (25) 

The necessary condition for the existence of equation is that 

, 0,0 1.a b p                                                             

Substitute equation (23) into equation (25);       

 

1

1

(1 ) ( )
( )   

(1 )(1 (1 ) )

b

b

p Q p
Q p

ab p p


 

  

               (26) 

The following equations obtained from equation (23) are 

needed to simplify equation (26);  

 

1

( ) 1 (1 )   a bQ p p                             (27)

 

1

(1 ) 1 ( )  abp Q p                             (28) 

Substitute equations (27) and (28) into equation (26);   

 
(1 ( )) ( )

( )   
(1 ) ( )

a

a

Q p Q p
Q p

ab p Q p


 


                       (29) 

The necessary condition for the existence of equation (29) is 

that:  , 0 and 1 0a b p   .    

 
1(1 ) ( ) (1 ( )) ( ) a aab p Q p Q p Q p            (30) 

The first order ordinary differential equation is given by;  

 
1(1 ) ( ) ( ) ( ) 0 aab p Q p Q p Q p           (31)

        (0) 0Q                                            (32) 

The first ordinary differential equations for the Quantile 

function of the Kumaraswamy distribution can be obtained 

for particular values of a and b.                                                        

When a = 1, equation (31) becomes;         

 (1 ) ( ) ( ) 1 0 b p Q p Q p                       (33) 

When a = 2, equation (31) becomes;         

 
22 (1 ) ( ) ( ) ( ) 1 0 b p Q p Q p Q p           (34) 

When a = 3, equation (31) becomes;         

 
2 33 (1 ) ( ) ( ) ( ) 1 0 b p Q p Q p Q p          (35)      

 

IV. SURVIVAL FUNCTION 

  The Survival function of the Kumaraswamy distribution is 

given as;              

 ( ) (1 )a bS t t                                        (36) 

To obtain the first order ordinary differential equation for 

the survival function of the Kumaraswamy distribution, 

differentiate equation (36), to obtain;                                                                                                                                                                       

 
1 1( ) (1 )a a bS t abt t                           (37)

 
(1 )

( )
(1 )

a a b

a

abt t
S t

t t


  


                          (38) 

The necessary condition for the existence of equation is that 

, 0,0 1.a b t                                                                

Substitute equation (36) into equation (38);       

 
( )

( )
(1 )

a

a

abt S t
S t

t t
  


                              (39) 

The following equations obtained from equation (36) are 

needed to simplify equation (39);     

 

1

( ) 1 abS t t                                            (40)

  

1

1 ( )a bt S t                                            (41) 

Substitute equations (40) and (41) into equation (39);   

 

1

1

(1 ( )) ( )
( )

( )

b

b

ab S t S t
S t

tS t


                     (42)

 

1 1
1

( ) (1 ( )) ( )b btS t ab S t S t


              (43)

 

1
1

( ) ( ( ) ( )) 0btS t ab S t S t


              (44)

 (0.1) (1 (0.1) )a bS                             (45)

  

V. INVERSE SURVIVAL FUNCTION 

    The inverse survival function of the Kumaraswamy 

distribution is given as;         

 

1 1

( ) (1 )   b aQ p p                                (46) 

To obtain the first order ordinary differential equation for 

the inverse survival function of the Kumaraswamy 

distribution, differentiate equation (46), to obtain;                                                                                                                                                                       

 

1 1 1
1 1

(1 )  
( )  

b b ap p
Q p

ab

 


                          (47)

 

1 1 1

1

(1 )  
( )  

(1 )

b b a

b

p p
Q p

pab p


  



                               (48) 

The necessary condition for the existence of equation is that 

, 0,0 1.a b p                                                       

Substitute equation (46) into equation (49);       

 

1

1

( )
( )  

(1 )

b

b

p Q p
Q p

pab p
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

                               (49) 
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The following equations obtained from equation (46) are 

needed to simplify equation (49);   

 

1

( ) (1 )  a bQ p p                                (50)

 

1

1 ( )  abp Q p                                    (51) 

Substitute equations (50) and (51) into equation (49);   

 
(1 ( )) ( )

( )   
( )

a

a

Q p Q p
Q p

abpQ p


                      (52) 

The necessary condition for the existence of equation (52) is 

that: , 0 and 0a b p        

 
1( ) (1 ( )) ( ) a aabpQ p Q p Q p               (53) 

The first order ordinary differential equation is given by;  

 
1( ) ( ) ( ) 0 aabpQ p Q p Q p                   (54)

 

1 1

(0.1) (1 0.1 )   b aQ                             (55) 

The first ordinary differential equations for the inverse 

survival function of the Kumaraswamy distribution can be 

obtained for particular values of a and b.                                                        

When a = 1, equation (54) becomes;         

 ( ) ( ) 1 0 bpQ p Q p                                   (56) 

When a = 2, equation (54) becomes;         

 
22 ( ) ( ) ( ) 1 0 bpQ p Q p Q p                   (57) 

When a = 3, equation (54) becomes;         

 
2 33 ( ) ( ) ( ) 1 0 bpQ p Q p Q p                   (58) 

VI. HAZARD FUNCTION 

   The Hazard function of the Kumaraswamy distribution 

is given as;          

 

1 1(1 )
( )

1 (1 )

a a b

a b

abt t
h t

t

 


 
                          (59) 

To obtain the first order ordinary differential equation for 

the Hazard function of the Kumaraswamy distribution, 

differentiate equation (59), to obtain;                                                                                                                                                                       

 

1 1 2

2 1

1 1 2

1

( 1) ( 1) (1 )
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(1 ) (1 (1 ) )

(1 (1 ) )

a a a b

a a b

a a b a b

a b
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 

  



   
 

 
   

   
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                                          (60)

 

1 1 1( 1) ( 1) (1 )
( ) ( )

(1 ) (1 (1 ) )

a a a b

a a b

a a b t abt t
h t h t

t t t

     
    

   
                                                                                        (61) 

The necessary condition for the existence of equation is that 

, 0,0 1.a b t                                      

 

1( 1) ( 1)
( ) ( ) ( )

(1 )

a

a

a a b t
h t h t h t

t t

  
    

 
        (62) 

The necessary condition for the existence of equation (62) is 

that: , 0b t  .                                                       

Differentiate equation (62), to obtain;                                                                   

 

2 1 2

2 2

1

1

( 1) ( 1)( )

(1 )
( ) ( )

( 1)( 1)
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(1 )

( 1) ( 1)
         ( ) ( )
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a

a

a

a

a

a
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h t h t
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t

a a b t
h t h t

t t







  
 

 
   

   
  

  
   

 

    (63) 

The necessary condition for the existence of equation is that 

, 0,0 1.a b t                                                                        

The following equations obtained from equation (62) are 

needed in the simplification of equation (63);       

   

1( 1) ( 1) ( )
( )

(1 ) ( )

a

a

a a b t h t
h t

t t h t

  
  


            (64)

        

1( 1) ( 1) ( )
( )

(1 ) ( )

a

a

a b t a h t
h t

t t h t

  
  


            (65)

        

2 21( 1) 1 ( )
( )

1 ( )

a

a

a b t a h t
h t

t t h t

     
     

   
    (66)

  

21 2

2

( 1)( ) 1 1 ( )
( )

(1 ) 1 ( )

a

a

b at a h t
h t

t b t h t

   
   

   
    (67) 

1( 1)( 1) 1 ( )
1 ( )

(1 ) ( )

a

a

a a b t a h t
a h t

t t h t

    
    

  
    (68) 

2( 1)( 1) 1 1 ( )
( )

(1 ) ( )

a

a

a a b t a a h t
h t

t t t h t

     
   

  
   (69) 

Substitute equations (64), (67) and (69) into equation (63);   

2

2

2

( 1) 1 1 ( )
( )

1 ( )
( ) ( )

1 1 ( )
( ) ( )

( )

( )
                     

( )

a a h t
h t

t b t h t
h t h t

a a h t
h t h t

t t h t

h t

h t

   
    

     
   

     
  




                                                                                          (70) 

The necessary condition for the existence of equation is that 

0,0 1, 1.a t b            

                                   

VII. REVERSED HAZARD FUNCTION 

 The reversed hazard function of the Kumaraswamy 

distribution is given as;          

 

1

( )
1

a

a

abt
j t

t






                                      (71) 

To obtain the first order ordinary differential equation for 

the reversed hazard function of the Kumaraswamy 

distribution, differentiate equation (71), to obtain;   

 

1 1 2

2 1

( 1) (1 )
( ) ( )

(1 )

a a a

a a

a t at t
j t j t

t t

  

 

  
   

 
    (72) 
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1

a

a

a at
j t j t

t t

 
   

 
                                (73)

 
1 ( )

( ) ( )
a h t

j t j t
t b

 
   

 
                                (74) 

The first order ordinary differential equation for the 

reversed Hazard function of the Kumaraswamy 

distribution is given by;        

 
2( ) ( ) ( 1) ( ) 0btj t tj t a bj t                             (75)

 
10 (0.1)

(0.1)
(1 (0.1) )

a

a

ab
j 


                          (76)  

VIII. CONCLUDING REMARKS 

Ordinary differential equations (ODEs) has been obtained 

for the probability density function (PDF), Quantile function 

(QF), survival function (SF), inverse survival function 

(ISF), hazard function (HF) and reversed hazard function 

(RHF) of Kumaraswamy distribution. This differential 

calculus and efficient algebraic simplifications were used to 

derive the various classes of the ODEs. The parameter and 

the supports that characterize the Kumaraswamy 

distribution determine the nature, existence, orientation and 

uniqueness of the ODEs. The results are in agreement with 

those available in scientific literature. Furthermore several 

methods can be used to obtain desirable solutions to the 

ODEs [77-86]. This method of characterizing distributions 

cannot be applied to distributions whose PDF or CDF are 

either not differentiable or the domain of the support of the 

distribution contains singular points.    
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