
Abstract — We propose a novel approach to improve further the 
quality of recovered images from standard super-resolution 
reconstruction, using Lewitt’s Kaiser-Bessel window functions 
(blobs) as the basis functions instead of normal pixels or voxels.  
The spatially localised and rotationally symmetric properties of 
blobs have made them very attractive for iterative image 
reconstruction. However, these same properties of blobs can be 
also very advantageous for super-resolution recovery, when more 
than one of a similar 2D or 3D scene is available. We show in this 
paper that by incorporating blobs into the super-resolution 
algorithm for image recovery; we can obtain much better quality, 
especially when there are only a few lower quality images 
available for the same scene. Moreover, using fewer low-resolution 
images for super-resolution reconstruction, we can also guarantee 
improvement in computational time.

Index Terms — Super-resolution, Kaiser-Bessel window functions 
(blobs)

I. INTRODUCTION

Reconstruction algorithms are usually approximated by a linear 
combination of known basis functions and greatly influence the 
outcome of the reconstruction algorithms. The basis functions 
that are commonly used are those, having a unit value inside a 
cubic volume and zero outside, known as cubic voxels, for 
example in 3D. The resulting approximations from using cubic 
voxels have undesirable artificial sharp edges; therefore it 
appears to be more appropriate to use basis functions with a 
smooth transition from one to zero. Lewitt et. al. [1, 2, 3, 4] have 
proposed the use of the modified Kaiser-Bessel window 
functions, commonly known as blobs to be the basis functions 
for image reconstruction. The main characteristics of the blobs 
include :

 blobs are spatially localized
 blobs are rotationally symmetric
 their Fourier transform are effectively localized, i.e. they 

are almost band-limited
 there are analytical formulas for computing in 

n-dimensions of their projections, Fourier transforms, 
gradients and Laplacians

 blobs are constructed to have any finite number of 
continuous derivatives

 blobs act as low-pass filters, suppressing high-frequency 
noise

Super-resolution is the process of combining multiple 
low-resolution images of the same scene to produce an image of 
superior quality. Information contained within the 
low-resolution images has to be overlapped accurately in order 
to produce the super-resolution image. Early attempts of 
super-resolution framework were based on the generalised 
sampling theorem [5] and restoration in the frequency domain 
[6]. Other recent approaches include using projection onto 
convex sets to solve iteratively the super-resolution inverse 
model [7,8]. The above authors assumed that the scene 
intensities are a continuous function. However, in order to 
re-define the super-resolution reconstruction in an optimisation 
framework, a suitable discrete representation of the scene 
intensities is necessary for the super-resolution imaging model. 
Some related literatures on generative models include a simpler 
motion of pure translation [9], Euclidean transformation [10] 
and affine transformation [11]. In [12], Capel and Zisserman 
used a rectangular window PSF and in [13], Irani and Peleg used 
their well-known image registration approach for 
super-resolution reconstruction. Other approaches include 
reconstruction based on a sequence of images with different 
zoom factors [14]. Rajan and Chaudhuri [15,16] used 
generalised interpolation to interpolate decomposed image data
on individual subspaces before transforming them back into the 
image domain. Literatures of other super-resolution framework 
can be found in [17].

In this paper, we use Capel’s [18] generative imaging model for 
the super-resolution reconstruction. However, we use blobs as
the basis functions in our iterative image reconstruction 
algorithm.

II. THEORETICAL BACKGROUND

A. Modified Kaiser-Bessel Window Functions (Blobs)

In iterative image reconstruction techniques, we approximate a 
density function, ),,( zyxf  representing the reconstructed 

image using a linear combination of a set of coefficients,  jc

and known basis functions, ),,( jjj zzyyxx  , where 

 jjj zyx ,,  is the usual orthogonal axes in the Cartesian 

coordinates. 
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As suggested above, in this case we choose blobs, 






  222)( zyxbrb  to be our basis functions rather than the 

conventional voxel basis functions and we are able to define the 
density function using a single variable, i.e. the radial 
coordinate, r  because of the spherically symmetric property of 
blobs. Blobs are functions of rotationally symmetry and can be 
defined by a function of a single variable, the distance r  from 
the origin,
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mI     :   modified Bessel function of order m ;

a       :   radius of support of the blob;
      :   a parameter controlling the shape of the blob.

Figure 1 shows the profiles of three types of blobs by selecting 
different parameters value for a  and  .

Figure 1 : Profiles of a standard blob, a narrow blob and a wide blob

B. Discretisation of Imaging Model in Super-Resolution

In [18], it is assumed that a set of low-resolution images were 
produced by a single high-resolution image, the generative 
imaging model for one low-resolution image is

),())],((*),([),( yxyxTfvuhsyxg iii          (3)

where

ig is the thi observed low-resolution image;

f is the ground truth, high-resolution image;

iT is the geometric transformation of thi image;

h is the point-spread function (PSF);
s↓   is the down-sampling operator by a factor s;

i is the observation noise.

From the imaging model, we know that each low-resolution 
pixel is therefore a weighted sum of super-resolution pixels, the 
weights being determined by the registration parameters, the 
point-spread function and spatial integration. In order to explain 
the model in a simpler way, we drop other explicit photometric 
parameters. The model can be expressed in matrix form as an 
over-determined linear system :

ηMg  f or
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Capel derived a maximum likelihood estimate, mlef  for the 

super-resolution image f , given the measured set of 

low-resolution images, g  and imaging matrix, M . Assuming 

the image noise to be Gaussian with zero mean, variance, 2 ;
the total probability of an observed image, ),( yxgi

 given an 

estimate of the super-resolution image, ),(ˆ yxf  is
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where a simulated low-resolution image is fMg ii
ˆˆ 

The corresponding log-likelihood function is
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The log-likelihood over all images is 

22

gMˆ)(
,

 


fgfMgL
yx

ii
n

i
   (7)

The estimate which maximizes the log-likelihood over all 
images is 

2
gMminarg  ff

f
mle

   (8)

The optimum 
mlef̂  is given by

gMgMM)(Mˆ   TT
mlef 1          (9)

where M  is the Moore-Penrose pseudo-inverse of M .

III. INCORPORATING BLOBS INTO SUPER-RESOLUTION 

FRAMEWORK

In this section, we propose a novel approach by incorporating 
the basis functions, blobs, into the super-resolution 
reconstruction framework. Before we introduce the approach, 
let us first look into how Capel computed the above matrix, M .

In order to compute the M  matrix, the intensity value of each 
low-resolution pixel is given by an area integral over the 
geometrically warping of the original (super-resolution) image, 
weighted by a PSF, 

 
1

0

1

0

dxdyhf psfxy
(10)

Each row in a matrix, 
iM  is therefore a discretisation of the 

integral of the surface 
psfhf   for a single pixel in the 
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corresponding low-resolution image, ),( yxgi
. The mapping 

between a low-resolution image and the super-resolution image 
is accomplished by using homographic (affine) transformation 
of the Gaussian PSF. Each Gaussian PSF is mapped onto the 
homography under local affine transformation using 
approximation.

During the warping of the super-resolution pixels, we assume
that the super-resolution image is actually made up of a set of 
coefficients and the known basis functions; in this case we 
choose blobs. Similar to the previous approach, the 
super-resolution image (represented using blob elements in our 
novel approach) undergoes geometrical warping, weighted by a 
PSF.

IV. EXPERIMENTS FOR JUSTIFICATION AND RESULTS

In order for us to justify that our new super-resolution algorithm 
based on blobs can give better reconstruction results, we have 
selected two different synthetic images for experimental 
justification. In both sets of experiments, we have chosen some 
suitable parameters for the super-resolution imaging model, 
with increasing noise. Both the point-spread function and the 
image noise are assumed to be Gaussian. We have used 
‘standard’ blob parameters for our blob-based super-resolution 
reconstructions.

We have chosen a 32x32 pixels ‘text’ image as our original 
(super-resolution) image in our first set of experiments since it 
has high contrast with fine detail. We used a 32x32 pixels 
synthetic phantom with four different grey-levels which are 
coarsely quantized in our second set of experiments. Figure 2 
shows the two synthetic images used in our experiments. 

The quality of super-resolution reconstruction obtained using 
the maximum-likelihood estimator (MLE) depends on several 
factors :

 number of low-resolution images available
 up-sampling ratio
 accuracy of the geometric registration
 noise on the observed images
 size and accuracy of the PSF

Figure 2 : Synthetic images used for super-resolution reconstruction

We know that the MLE is extremely sensitive to noise sources, 
including image noise and model noise, especially when there 
are inaccuracies in the design of the PSF and the registration 
parameters.

From our previous experiences as well as the parameters 
selected in [18], we have chosen some suitable values for the 
registration parameters,

H
 , the Gaussian PSF, 

psf
  and the 

down-sampling ratio, s↓ in our generative imaging model as in 
Equation (3) when using the model to generate low-resolution 
images from the synthetic images.

Experiment Set I

Figure 3 shows a series of low-resolution images used in this set 
of experiments with increasing Gaussian image noise added 
while other parameters remain fixed.

Figure 3 : Low-resolution images used for super-resolution
reconstruction

Figure 4 shows the results of a set of 25 experiments obtained, 
each with the selected parameters, different number of 
low-resolution images versus various image noise added.

Figure 4 : Reconstructed super-resolution images using the MLE

The new algorithm :

 Compute the local warping (affine transformation) about the 
centre of low-resolution pixel, ),( 00 yx  onto the 

super-resolution frame;
 Transform the parameters of the Gaussian PSF centred at 

),( 00 yx  using the same affine transformation and determine 

a truncated ellipse of the Gaussian PSF, say using 3 standard 
deviation;

 Scan-convert the ellipse to obtain the set of super-resolution 
pixels using blobs as its basis functions, centred at ),( 00 yx ;

 Evaluate the coefficients for the warped super-resolution 
frame within the truncated Gaussian PSF ellipse, weighted 
using blob basis functions;

 Normalise the row of the imaging matrix such that its sum is 
equal to 1.
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Each column in the figure shows the recovery of the 
super-resolution reconstructions by the MLE in Equation (9) 
using different number of low-resolution images generated from 
the imaging model. This set of experiments is only repeating 
Capel’s approach of using pixels as the basis functions for the 
super-resolution reconstruction.

Figure 5 shows a series of low-resolution images similar to the 
above set of experiments except at this time we used blobs as the 
basis functions for the super-resolution reconstruction.

Figure 5 : Low-resolution images used for super-resolution 
reconstruction with blobs as its basis functions

Figure 6 shows the results of a set of 25 experiments obtained, 
using blobs as the basis functions for the image reconstruction, 
each with the selected parameters, different number of 
low-resolution images versus various image noise added. 

Figure 6 : Reconstructed super-resolution images using the MLE with 
blobs as its basis functions

Each column in Figure 6 also shows the recovery of the 
super-resolution reconstructions by the MLE in Equation (9) 
using different number of low-resolution images generated from 
the imaging model. 

From the results obtained, only by qualitative observation, it is 
very encouraging to say that the super-resolution reconstruction 
algorithm using blobs as the basis functions can recover a set of 
much better super-resolution images. We shall come to 

quantitative evaluations of the two set of results in the next 
section.

Experiment Set II

Similar to Experiment Set I, Figure 7 shows a series of 
low-resolution images used in this set of experiments with 
increasing Gaussian image noise added while other parameters 
remain fixed.

Figure 7 : Low-resolution images used for super-resolution
reconstruction

Figure 8 shows the results of a set of 25 experiments obtained, 
each with the selected parameters, different number of 
low-resolution images versus various image noises added, 
except at this time reconstruction of the synthetic image is more 
sensitive to noise. Each column in the figure shows the recovery 
of the super-resolution reconstructions by the MLE in Equation 
(9) using different number of low-resolution images generated 
from the imaging model. This set of experiments only repeats 
Capel’s approach of using pixels as the basis functions for the 
super-resolution reconstruction.

Figure 8 : Reconstructed super-resolution images using the MLE

Figure 9 shows a series of low-resolution images similar to the 
above set of experiments except at this time we used blobs as the 
basis functions for the super-resolution reconstruction.
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Figure 9 : Low-resolution images used for super-resolution 
reconstruction with blobs as its basis functions

Figure 10 shows the results of a set of 25 experiments obtained, 
using blobs as the basis functions for image reconstruction, each 
with the selected parameters, different number of low-resolution 
images versus various image noise added. 

Figure 10 : Reconstructed super-resolution images using the MLE 
with blobs as its basis functions

Each column in Figure 10 also shows the recovery of the 
super-resolution reconstructions by the MLE in Equation (9) 
using different number of low-resolution images generated from 
the imaging model. 

Again, from the results obtained, we can see that this synthetic 
image used for super-reconstruction is more sensitive to noise. 
Without using blobs as the reconstructed image basis functions, 
we can hardly identify the properties of the original image.

V. DISCUSSION

In order for us to make quantitative evaluation of the 
experimental results, we have calculated the root-mean-square 
errors (RMSE) for each set of the results obtained.

Figure 11 and Figure 12 respectively show the RMSE per pixel 
between the original synthetic ‘text’ image used in the 
Experiment Set I comparing the reconstructed super-resolution 
images without and with using blobs as its basis functions, using 
different numbers of low-resolution images generated with 

increasing Gaussian image noise while other imaging model 
parameter remained fixed.
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Figure 11 : RMSE per pixel for different number of low-res images used  in 
reconstruction against Gaussian image noise for ‘text’ image without blobs
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Figure 12 : RMSE per pixel for different number of low-res images used  in 
reconstruction against Gaussian image noise for ‘text’ image with blobs

From the above figures, we can see that using blobs as the basis 
functions in the super-resolution reconstructions, we obtained 
almost 10 times more accurate results compared with those 
reconstructed super-resolution images without using blobs as
basis functions.

Figure 13 and Figure 14 respectively show the RMSE per pixel 
between the original synthetic phantom image used in the 
Experiment Set II comparing the reconstructed super-resolution 
images without and with using blobs as its basis functions, using 
different numbers of low-resolution images generated with 
increasing Gaussian image noise while other imaging model 
parameter remained fixed.

Phantom without blobs

0

5

10

15

20

25

30

0.5 1 1.5 2 2.5

Gaussian image noise

R
M

S
E

 p
er

 p
ix

el
 i

n
 g

re
y-

le
ve

l

10 low-res

20 low-res

30 low-res

40 low-res

50 low-res

Figure 13 : RMSE per pixel for different number of low-res images used in
reconstruction against Gaussian image noise for phantom image without blobs
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Figure 14 : RMSE per pixel for different number of low-res images used  in 
reconstruction against Gaussian image noise for phantom image with blobs

From the figures, we can also see that using blobs as the basis 
functions in the super-resolution reconstructions, we obtained 
approximately 10 times more accurate results compared with 
those reconstructed super-resolution images without using 
blobs as its basis functions. From Experiment Set I and II the 
synthetic phantom image is more sensitive to image noise than 
the ‘text’ image because it contains more grey-level variations.

VI. CONCLUSION

Many different approaches have been suggested to further 
improve the quality of super-resolution reconstructions, such as 
using splines and interpolations.  Higher-order interpolation 
methods, particularly smoothing splines, can perform better, but 
they tend to blur the image. In contrast, blobs act as low-pass 
filters suppressing high-frequencies noise but not blurring the 
image.

In this paper, we have proposed a novel approach by 
incorporating Kaiser-Bessel window functions (blobs) as the 
image basis functions in the super-resolution reconstruction 
framework. We obtained excellent reconstruction results that 
guarantee saving computational time and giving a much better 
quality of recovered image compared with reconstruction 
results of other super-resolution framework using normal pixels 
as their basis functions. Obviously, our framework can easily be 
extended to 3-D super-resolution reconstructions where we 
replace voxels with 3-D blobs as the basis functions. 

Although we have chosen a slightly high registration error 
relative to the image size in our experiments in order for us to 
emphasize that using blobs as the basis functions can actually 
recovered much better quality reconstructions, one can certainly 
use lower registration error according to raw data obtained from 
commercial cameras or medical imaging scanners, which 
depends on the ability of those equipments. Using lower 
registration error relative to other parameters, we should obtain 
a linear relationship between the RMSE and the image noise 
(reconstruction error versus the observation noise).

Since we chose to use synthetic images in our experiments, 
where low-resolution images were generated from the imaging 
model, one can actually uses raw acquired low-resolution data 
without assuming that blobs were used as their basis functions, 
one can still obtain similar improvement on the super-resolution 

reconstruction.

We believe that this is the first paper where this novel approach 
of incorporating blobs into super-resolution reconstruction 
framework has been presented. We only used standard blobs to 
deliver the results. However, further improvement can be seen if 
we were to use optimized blobs that are best suited with other 
reconstruction parameters. Normally, selecting optimized blobs 
for super-resolution reconstructions depends on a few criteria 
such as down-sampling ratio, registration error and image noise 
of the raw data.
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