
 
 

 

    
Abstract— In the present paper, for optimization of statistical 

decisions under parametric uncertainty, a new technique of 
invariant embedding of sample statistics in a performance index 
is proposed. This technique represents a simple and 
computationally attractive statistical method based on the 
constructive use of the invariance principle in mathematical 
statistics. Unlike the Bayesian approach, an invariant 
embedding technique is independent of the choice of priors. It 
allows one to eliminate unknown parameters from the problem 
and to find the best invariant decision rule, which has smaller 
risk than any of the well-known decision rules. To illustrate the 
proposed technique, application examples are given. 
 

Index Terms— Optimization, parametric uncertainty, 
statistical decision rule, technique of invariant embedding. 
 

I. INTRODUCTION 

  Most of the operations research and management science 
literature assumes that the true distributions are specified 
explicitly. However, in many practical situations, the true 
distributions are not known, and the only information 
available may be a time-series (or random sample) of the past 
data.   

Analysis of decision-making problems with unknown 
distribution is not new. Several important papers have 
appeared in the literature. When the true distribution is 
unknown, one may either use a parametric approach (where it 
is assumed that the true distribution belongs to a parametric 
family of distributions) or a non-parametric approach (where 
no assumption regarding the parametric form of the unknown 
distribution is made). 

Under the parametric approach, one may choose to 
estimate the unknown parameters or choose a prior 
distribution for the unknown parameters and apply the 
Bayesian approach to incorporating the past data available. 
Parameter estimation is first considered in [1] and recent 
development is reported in [2]. Scarf [3] considers a Bayesian 
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framework for the unknown demand distribution. 
Specifically, assuming that the demand distribution belongs 
to the family of exponential distributions, the demand process 
is characterized by the prior distribution on the unknown 
parameter. Further extension of this approach is presented in 
[4]. 

Within the non-parametric approach, either the empirical 
distribution [2] or the bootstrapping method (e.g. see [5]) can 
be applied with the available past data to obtain a statistical 
decision rule. 

A third alternative to dealing with the unknown distribution 
is when the random variable is partially characterized by its 
moments. When the unknown demand distribution is 
characterized by the first two moments, Scarf [6] derives a 
robust min–max inventory control policy. Further 
development and review of this model is given in [7]. 

In the present paper we consider the case, where it is known 
that the true distribution function belongs to a parametric 
family of distributions. It will be noted that, in this case, most 
stochastic models to solve the problems of control and 
optimization of system and processes are developed in the 
extensive literature under the assumptions that the parameter 
values of the underlying distributions are known with 
certainty. In actual practice, such is simply not the case. When 
these models are applied to solve real-world problems, the 
parameters are estimated and then treated as if they were the 
true values. The risk associated with using estimates rather 
than the true parameters is called estimation risk and is often 
ignored. When data are limited and (or) unreliable, estimation 
risk may be significant, and failure to incorporate it into the 
model design may lead to serious errors. Its explicit 
consideration is important since decision rules that are 
optimal in the absence of uncertainty need not even be 
approximately optimal in the presence of such uncertainty.  

The problem of determining an optimal decision rule in the 
absence of complete information about the underlying 
distribution, i.e., when we specify only the functional form of 
the distribution and leave some or all of its parameters 
unspecified,  is seen to be a standard problem of statistical 
estimation. Unfortunately, the classical theory of statistical 
estimation has little to offer in general type of situation of loss 
function. The bulk of the classical theory has been developed 
about the assumption of a quadratic, or at least symmetric and 
analytically simple loss structure. In some cases this 
assumption is made explicit, although in most it is implicit in 
the search for estimating procedures that have the “nice” 
statistical properties of unbiasedness and minimum variance. 
Such procedures are usually satisfactory if the estimators so 
generated are to be used solely for the purpose of reporting 
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information to another party for an unknown purpose, when 
the loss structure is not easily discernible, or when the number 
of observations is large enough to support Normal 
approximations and asymptotic results. Unfortunately, we 
seldom are fortunate enough to be in asymptotic situations. 
Small sample sizes are generally the rule when estimation of 
system states and the small sample properties of estimators do 
not appear to have been thoroughly investigated. Therefore, 
the above procedures of the statistical estimation have long 
been recognized as deficient, however, when the purpose of 
estimation is the making of a specific decision (or sequence of 
decisions) on the basis of a limited amount of information in a 
situation where the losses are clearly asymmetric – as they are 
here. 

In this paper, we propose a new technique to solve 
optimization problems of statistical decisions under 
parametric uncertainty. The technique is based on the 
constructive use of the invariance principle for improvement 
(or optimization) of statistical decisions. It allows one to yield 
an operational, optimal information-processing rule and may 
be employed for finding the effective statistical decisions for 
many problems of the operations research and management 
science, the illustrative application examples of which are 
given below. 

 

II.  INVARIANT EMBEDDING TECHNIQUE 

This paper is concerned with the implications of group 
theoretic structure for invariant performance indexes. We 
present an invariant embedding technique based on the 
constructive use of the invariance principle for 
decision-making. This technique allows one to solve many 
problems of the theory of statistical inferences in a simple 
way.  

The aim of the present paper is to show how the invariance 
principle may be employed in the particular case of 
improvement or optimization of statistical decisions. The 
technique used here is a special case of more general 
considerations applicable whenever the statistical problem is 
invariant under a group of transformations, which acts 
transitively on the parameter space [8-15]  

A. Preliminaries 

In the general formulation of decision theory, we observe a 
random variable X (which may be multivariate) with 
distribution function F(x|θθθθ) where a parameter θθθθ (in general, 
vector) is unknown, θθθθ∈Θ, and if we choose decision d from 
the set of all possible decisions D, then we suffer a loss l(d,θθθθ). 
A “decision rule” is a method of choosing d from D after 
observing x∈X, that is, a function u(x)=d. Our average loss 
(called risk) Ex{ l(u(X),θθθθ)} is a function of both θθθθ and the 
decision rule u(⋅), called the risk function r(u,θθθθ), and is the 
criterion by which rules are compared. Thus, the expected 
loss (gains are negative losses) is a primary consideration in 
evaluating decisions. We will now define the major quantities 
just introduced. 

Definition 1. A general statistical decision problem is a 
triplet (Θ,D,l) and a random variable X. The random variable 
X (called the data) has a distribution function F(x|θθθθ) where θθθθ 

is unknown but it is known that θθθθ∈Θ. X will denote the set of 
possible values of the random variable X. θθθθ is called the state 
of nature, while the nonempty set Θ is called the parameter 
space. The nonempty set D is called the decision space or 
action space. Finally, l is called the loss function and to each 
θθθθ∈Θ and d∈D it assigns a real number l(d,θθθθ). 

Definition 2. For a statistical decision problem (Θ,D,l), X, 
a  (nonrandomized)  decision  rule is a function  u(⋅)  which to 
each x∈X assigns a member d of D: u(X)=d. 

Definition 3. The risk function r(u,θθθθ) of a decision rule 
u(X) for a statistical decision problem (Θ,D,l), X (the 
expected loss or average loss when θθθθ is the state of nature and 
a decision is chosen by rule u(⋅)) is r(u,θθθθ)=Ex{ l(u(X),θθθθ)}. 

This paper is concerned with the implications of group 
theoretic structure for invariant loss functions. Our underlying 
structure consists of a class of probability models (X, A, P), 
a one-one mapping ψ taking P onto an index set Θ, a 
measurable space of actions (D, B), and a real-valued loss 
function 
 

   { }),( ),( XdlEdl x
o=θθθθ   (1) 

 

defined on  Θ × D,  where ),( Xdlo  is a random loss function 

with a random variable X∈(0,∞) (or (−∞,∞)). We assume that 
a group G of one-one A - measurable transformations acts on 
X  and that it leaves the class of models (X, A, P ) invariant. 

We further assume that homomorphic images G  and G
~

 of G 

act on Θ and D, respectively. (G  may be induced on Θ 

through ψ; G
~

 may be induced on D  through l). We shall say 
that l is invariant if for every (θθθθ, d) ∈ Θ × D 
 

 ),,(),~( θθθθθθθθ dlgdgl =    g∈G.    (2) 

 
A loss function, ),( θθθθdl , can be transformed as follows: 

 

),,(),~(),( #1
ˆ

1
ˆ Vηlgdgldl == −− θθθθθθθθ θθθθθθθθ

 (3) 

 

where V=V(θθθθ, θθθθ
)

) is a pivotal quantity whose distribution 

does not depend on unknown parameter θθθθ; η=η(d, θθθθ
)

) is an 

ancillary factor; θθθθ
)

 is a maximum likelihood estimator of θθθθ  
(or a sufficient statistic for θθθθ). Then the best invariant decision 
rule (BIDR) is given by 

 

),,(1BIDR θθθθ
)

∗−∗ =≡ ηηdu  (4) 

 
where 
 

{ }),(  inf arg # Vv ηη
η

lE=∗   (5) 

 
and a risk function 
 

 { } { }),( )( )( #BIDRBIDR Vvθ

∗=,=, ηlEulEur θθθθθθθθ )  (6) 

 
does not depend on θθθθ.  
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Consider now a situation described by one of a family of 
density functions f(x|µ,σ) indexed by the vector parameter 
θθθθ=(µ,σ), where µ and σ (>0) are respectively parameters of 
location and scale. For this family, invariant under the group 
of positive linear transformations: x → ax+b with a > 0, we 
shall assume that there is obtainable from some informative 
experiment (a random sample of observations X=(X1, …, Xn)) 
a sufficient statistic (M,S) for (µ,σ) with density function 
h(m,s|µ,σ) of the form 
 

 ]/ ,/)[(),|,( 2 σσµσσµ smhsmh −= •
−  (7) 

 

such that 
  

,) ,(),|,( 2121 dvdvvvhdmdssmh •=σµ   (8) 

 
where V1=(M−µ)/σ, V2=S/σ. We are thus assuming that for the 
family of density functions an induced invariance holds under 
the group G of transformations: m→am+b, s→as (a>0). The 
family of density functions f(x|µ,σ) satisfying the above 
conditions is, of course, the limited one of normal, negative 
exponential, Weibull and gamma, with known index, density 
functions. The structure of the problem is, however, more 
clearly seen within the general framework. 

Below, we give some applications of the invariant 
embedding technique. 
 

III.  OPTIMIZATION OF STATISTICAL DECISIONS FOR 

NEWSBOY PROBLEM 

The classical newsboy problem is reflective of many real 
life situations and is often used to aid decision-making in the 
fashion and sporting industries, both at the manufacturing and 
retail levels (Gallego and Moon [7]). The newsboy problem 
can also be used in managing capacity and evaluating 
advanced booking of orders in service industries such as 
airlines and hotels (Weatherford and Pfeifer [16]). A partial 
review of the newsboy problem literature has been recently 
conducted in a textbook by Silver et al. [17]. Researchers 
have followed two approaches to solving the newsboy 
problems. In the first approach, the expected costs of 
overestimating and underestimating demand are minimized. 
In the second approach, the expected profit is maximized. 
Both approaches yield the same results. We use the first 
approach in stating the newsboy problem.  

For product j, define: 
Xj quantity demanded during the period, a random  
 variable,  
fj(xj|µj,σj) the probability density function of Xj, 
θθθθj=(µj,σj) the parameter of  fj(xj|µj,σj), 
Fj(xj|µj,σj) the cumulative distribution function of Xj, 

)1(
jc   overage (excess) cost per unit, 

)2(
jc   underage (shortage) cost per unit, 

dj inventory/order quantity, a decision variable. 
The cost per period is 

 







≥−

<−
=

. if   ),(

, if   ),(
),(

)2(

)1(

jjjjj

jjjjj

jjj
dXdXc

dXXdc
Xdlo   (9) 

 Complete Information. A standard newsboy formulation 
(see, e.g., Nahmias [18]) is to consider each product j’s cost 
function: 

∫
∞−

+ −=
jd

jjjjjjjjjjj dxxfxdcdl ),|()(),( )1( σµθθθθ  

 

∫
∞

−+
jd

jjjjjjjj dxxfdxc .),|()()2( σµ    (10) 

 

Expanding (10) gives 
 

∫
∞−

+ −=
jd

jjjjjjjjjj dxxfxcdl ),|(),( )1( σµθθθθ
 

 

∫
∞

+
jd

jjjjjjj dxxfxc ),|()2( σµ
 

 

   .),|()(
)2()1(

)2(
)2()1(















+
−++

jj

j
jjjjjjj

cc

c
dFdcc σµ  (11) 

 

Let the superscript * denote optimality. Using Leibniz's 
rule to obtain the first and second derivatives shows that 

)|( jjj dl θθθθ+  is concave. The sufficient optimality condition is 

the well-known fractile formula: 
 

)2()1(

)2(

),|(
jj

j
jjjj

cc

c
dF

+
=∗ σµ . (12) 

 

It follows from (12) that 
 

 














+
= −∗

jj
jj

j
jj cc

c
Fd σµ ,|

)2()1(

)2(
1 . (13) 

 

At optimality, substituting (12) into the last (bracketed) term 
in Eq. (11) gives 
 

.0),|()(
)2()1(

)2(
)2()1( =









+
−+ ∗∗

cc

c
dFdcc jjjjjjj σµ   (14) 

 

Hence (11) reduces to 
 

.),|()(}{),( )2()1()2(

∫
∗

∞−

∗+ +−=
j

j

d

jjjjjjjjjxjjjj dxxfxccXEcdl σµθθθθ  

(15) 
 

Parametric Uncertainty. Let us assume that the functional 
form of the probability density function fj(xj|µj,σj) is specified 
but its parameter θθθθ=(µj,σj) is not specified. Let X j=(Xj1, …, 
Xjn) be a random sample of observations on a continuous 
random variable Xj. We shall assume that there is obtainable 
from a random sample of observations X j=(Xj1, …, Xjn)  a 
sufficient statistic (Mj,Sj) for θθθθ=(µj,σj) with density function of 
the form (7), 
 

  ],/ ,/)[(),|,( 2
jjjjjjjjjjjj smhsmh σσµσσµ −= •

−  (16) 
 

and with 
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   ,) ,(),|,( 2121 jjjjjjjjjjjj dvdvvvhdsdmsmh •=σµ  (17) 

 
where V1j=(Mj−µj)/σj, V2j=Sj/σj. 

Using the above-mentioned invariant embedding 
technique, we transform (10) as follows: 
 

 ),,()(),( #
jjjjjjjj ldl Vησω=+ θθθθ  (18) 

 

where ωj(σj)=σj, 
 

),( j
#

jjl Vη ∫
+

∞−

−+=
jjj VV

jjjjjjjj dzzfzVVc
12

)()( 12
)1(

η

η  

 

 ( ) ,)(
12

12
)2(

∫
∞

+

−−+
jjj VV

jjjjjjjj dzzfVVzc
η

η  (19) 

 
Zj=(Xj-µj)/σj is a pivotal quantity, fj(zj) is defined by fj(xj|µj,σj), 
i.e., 
 

  fj(zj)dzj = fj(xj|µj,σj)dxj, (20) 
 
V j=(V1j,V2j) is a pivotal quantity, ηj=(dj-Mj)/Sj is an ancillary 
factor. It follows from (18) that the risk associated with 

BIDR
ju (or ∗

jη ) can be expressed as 

 

{ })( )( BIDR
,

BIDR
jjjsmjjj ulEur

jj
θθθθθθθθ ,=, ++  

 

  { },),( )( #
jjjjj lE

j
Vv

∗= ησω  (21) 

where 
 

,BIDR
jjjjj SMdu ∗∗ +=≡ η  (22) 

 

 { }),( minarg #
jjjj lE

j
j

Vv ηη
η

=∗ , (23) 

 

{ } ∫∫ •=
jj

j

vv

jjjjjjjjjjjj dvdvvvhvvllE
21 ,

212121
## .) ,(),;(),( ηη Vv  

 

(24) 
 

The fact that (24) is independent of θθθθj means that an ancillary 

factor ∗
jη , which minimizes (24), is uniformly best invariant. 

Thus, ∗
jd  given by (22) is the best invariant decision rule. 

A. Numerical Example 

Complete Information. Assuming that the demand for 
product j, Xj, is exponentially distributed with the probability 
density function, 
 

    fj(xj|σj)=(1/σj)exp(−xj/σj)  (xj>0), (25) 
 
it follows from (10), (13) and (15) that 
 

,exp)()(),( )2()1()1(














−++−=+

j

j
jjjjjjjjj

d
ccdcdl

σ
σσσ  
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+=∗
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)2(

1ln
j

j
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c
d σ , (27) 
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+=∗+

j

j
jjjjj c

c
cdl σσ    (28) 

 

respectively. 
Parametric Uncertainty. Consider the case when the 

parameter σj is unknown. Let X j=(Xj1, …, Xjn) be a random 
sample of observations (each with density function (25)) on a 
continuous random variable Xj. Then 
 

,
1
∑

=

=
n

i
jij XS  (29) 

 

is a sufficient statistic for σj; Sj is distributed with 
 

)|( jjj sh σ ),0(     exp
)(

1 1 >
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Γ
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j
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s
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 (30) 

 

so that 

jvn
jjj ev

n
vh 21

22 )(

1
)(

−−
• Γ

=    (v2j>0).  (31) 

 
It follows from (21) and (26) that 
 

{ }),( ),( BIDRBIDR
jjjsjjj ulEur

j
σσ ++ =  

 

∫
∞

•
∗=

0

222
# )(),( jjjjjjj dvvhvl ησ  

 













+
+

+−= ∗
∗

n
j

jj
jjj

cc
nc

)1(
)1(

)2()1(
)1(

η
ησ ,   (32) 

 

where 

 ,BIDR
jjj Su ∗= η   (33) 
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Comparison of Decision Rules. For comparison, consider 
the maximum likelihood decision rule (MLDR) that may be 
obtained from (27), 
 

jj
j

j
jj S

c

c
u MLDR

)1(

)2(
MLDR 1ln ησ =














+= )

,   (35) 

 
where jσ) =Sj/n is the maximum likelihood estimator of σj. 

Since BIDR
ju and MLDR

ju  belong to the same class 
 

},:{ jjjj Suu η==C  (36) 
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it follows from the above that MLDR
ju  is inadmissible in 

relation to BIDR
ju .  

If, say, n=1 and )1()2( / jj cc =100, we have that  
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=0.838.    (37) 

 

Thus, in this case, the use of BIDR
ju leads to a reduction in the 

risk of about 16.2 % as compared with MLDR
ju . The absolute 

risk will be proportional to σj and may be considerable. 
 

IV.  SHORTEST-LENGTH PREDICTION INTERVAL 

Let X(1) ≤ X(2) ≤ ⋅⋅⋅ ≤ X(k) be the k smallest observations in a 
sample of size n from the two-parameter exponential 
distribution, with density 
 

,exp
1

);( 






 −−=
σ

µ
σ

x
xf θθθθ    x ≥ µ, (38) 

 
 

where σ > 0 and µ are unknown parameters, θθθθ=(µ,σ).  
Let Y(r) be the rth smallest observation in a future sample of 

size m from the same distribution. We wish, on the basis of 
observed X(1), …, X(k) to construct prediction intervals for Y(r). 
Let  
 

  Sr=(Y(r)−µ)/σ,   S1=(X(1)−µ)/σ (39) 
 

and  
 T1=T/σ, (40) 

 

where 

   ∑
=

−−+−=
k

i
ki XXknXXT

1
)1()()1()( ).)(()(  (41) 

 
To construct prediction intervals for Y(r), consider the 

quantity (invariant statistic) 
 
  

 V = n(Sr−S1)/T1= n(Y(r)−X(1))/T. (42) 
 
 

It is well known [19] that nS1 has a standard exponential 

distribution, that 2T1~
2

22 −kχ  and that S1 and T1 are 

independent. Also, Sr is the rth order statistic from a sample of 
size m from the standard exponential distribution and thus has 
probability density function [20], 
 

,)1()( )1(1 +−−−−−







= rmsrs

r
rr ee

r

m
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if sr > 0, and f(sr) =0 for sr ≤ 0. Using the technique of invariant 
embedding, we find after some algebra that 

F(v) = Pr{V ≤ v} 
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(44) 
 

where m(r)=m(m−1) ⋅⋅⋅ (m−r+1). 
The special case in which r=1 is worth mentioning, since in 

this case (44) simplifies somewhat. We find here that we can 
write 
 

   F(v) = Pr{V≤v}
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where ϑ=n/m. 
Consider the ordered data given by Grubbs [21] on the 

mileages at which nineteen military carriers failed. These 
were 162, 200, 271, 302, 393, 508, 539, 629, 706, 777, 884, 
1008, 1101, 1182, 1463, 1603, 1984, 2355, 2880, and thus 
constitute a complete sample with k=n=19. We find 
 

15869))(
19

1
1()( =−=∑

=i
i XXT  (46) 

 
 

and of course X(1)=162. Suppose we wish to set up the 
shortest-length (1−α=0.95) prediction interval for the 
smallest observation Y(1) in a future sample of size m=5. 
Consider the invariant statistic 
 

  .
)( )1()1(
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=  (47) 

 

Then 
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T
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{ } ,1 Pr )1( α−=<<= UL zYz   (48) 
 

where  
 

 zL = X(1) + v1T/n   and   zU = X(1) + v2T/n. (49) 
 
 

The length of the prediction interval is  
 

∆z = zU − zL = (T/n)(v2 − v1). (50) 
 

We wish to minimize ∆z subject to 
 

F(v2)−F(v1)=1−α. (51) 
 

It can be shown that the minimum occurs when 
 

   f(v1)=f(v2), (52) 
 
where v1 and v2 satisfy (51).  
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The shortest-length prediction interval is given by 
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where ∗
1v = −0.18105  and ∗

2v = 0.688. Thus, the length of this 

interval is ∗∆ z = 736.62 − 10.78 =725.84. 

The equal tails prediction interval at the 1−α=0.95 
confidence level is given by 
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where F(vα)=α, vα/2= −0.125 and v1-α/2= 0.805. The length of 

this interval is o

z∆ = 834.34 − 57.6 = 776.74. 

Comparison of Prediction Intervals. The relative 

efficiency of ),( )1()1(
TXCY

o  relative to ),,( )1()1(
TXCY

∗ taking 

into account ∆z, is given by 
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V. SHORTEST-LENGTH CONFIDENCE INTERVAL FOR SYSTEM 

AVAILABILITY  

Consider the problem of constructing the shortest-length 
confidence interval for system availability from 
time-to-failure and time-to-repair test data. It is assumed that 
X1 (time-to-failure) and X2 (time-to-repair) are stochastically 
independent random variables with probability density 
functions 
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222
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θ

θ θ xexf x   (57) 

Availability is usually defined as the probability that a system 
is operating satisfactorily at any point in time. This 
probability can be expressed mathematically as 
 

 ),/( 211 θθθ +=A  (58) 

 
where θ1 is a system mean-time-to-failure, θ2 is a system 
mean-time-to-repair. 

Consider a random sample X1= ), ... ,(
1111 nXX of n1 

times-to-failure and a random sample X2= ), ... ,(
2221 nXX of 

n2 times-to-repair drawn from the populations described by 
(56) and (57) with sample means 
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It is well known that 2n1 11 /θX  and 2n2 22 /θX  are chi-square 

distributed variables with 2n1 and 2n2  degrees of freedom, 
respectively. They are independent due to the independence 
of the variables X1 and  X2. It follows from (58) that 
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Using the invariant embedding technique, we obtain from 
(60) a pivotal quantity 
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(61) 
 

which is F-distributed with (2n2,2n1) degrees of freedom, and  

 
  ./ 12 XXS=  (62) 

 
Thus, (61) allows one to find a 100(1−α)% confidence 
interval for A from 
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It can be shown that the shortest-length confidence interval 
for A is given by 
 
 

),( UL AACA =∗  (65) 
 

with 
 

∆*(S, vL, vU) = AU − AL,  (66) 
 
where vL and vU are a solution of 
 
 

  )()()()( U
2
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L vfSvvfSv +=+  (67) 

 
(f is the pdf of an F-distributed rv with (2n2,2n1) d.f.) and 
 

 { }ULPr vVv << = { } .1)2,2(Pr U12L α−=<< vnnFv  (68) 

 
In practice, the simpler equal tails confidence interval for 

A, 
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with 
 

   ∆(S, vL, vU) = AU − AL, (70) 
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is employed, where 
 

),2,2( 122/L nnFv α=    ),2,2( 122/1U nnFv α−=  (71) 
 

and 
 
 

Pr{F(2n2,2n1) > Fα/2(2n2,2n1)} ≤ 1−α/2. (72) 
 

 

Consider, for instance, the following case. A total of 400 
hours of operating time with 2 failures, which required an 
average of 20 hours of repair time, were observed for aircraft 
air-conditioning equipment. What is the confidence interval 
for the inherent availability of this equipment at the 90% 
confidence level? 

The point estimate of the inherent availability is 

,909.0)20200/(200 =+=A
)

 and the confidence interval for 

the inherent availability, at the 90% confidence level, is found 
as follows. 

From (69), the simpler equal tails confidence interval is 
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i.e., 
 

   ∆(S, vL, vU) = AU − AL= 0.375. (74) 
 

From (65), the shortest-length confidence interval is 
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where vL and vU are a solution of (67) and (68). Thus,  
 

∆*(S, vL, vU) = AU − AL = 0.291.  (76) 
 

Comparison of Confidence Intervals for Availability. The 

relative efficiency of CA relative to ∗
AC  is given by 
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VI.  CONCLUSIONS AND DIRECTIONS FOR FUTURE RESEARCH 

In this paper, we propose a new technique to improve or 
optimize statistical decisions under parametric uncertainty. 
The method used is that of the invariant embedding of sample 
statistics in a performance index in order to form pivotal 
quantities, which make it possible to eliminate unknown 
parameters (i.e., parametric uncertainty) from the problem. It 
is especially efficient when we deal with asymmetric 
performance indexes and small data samples. 

More work is needed, however, to obtain improved or 
optimal decision rules for the problems of unconstrained and 
constrained optimization under parameter uncertainty when: 
(i) the observations are from general continuous exponential 
families of distributions, (ii) the observations are from 
discrete exponential families of distributions, (iii) some of the 
observations are from continuous exponential families of 

distributions and some from discrete exponential families of 
distributions, (iv) the observations are from multiparametric 
or multidimensional distributions, (v) the observations are 
from truncated distributions, (vi) the observations are 
censored, (vii) the censored observations are from truncated 
distributions. 
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