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Optimization of Statistical Decisions
via an Invariant Embedding Technique

Nicholas A. Nechval, Maris Purgailis, Kaspars Cikste, Gundars Berzins, and Konstantin N. Nechval

framework for the wunknown demand distribution.
Abstract— In the present paper, for optimization of statistical ~Specifically, assuming that the demand distribution belongs
decisions under parametric uncertainty, a new technique of tg the family of exponential distributions, the demand process
invariant embedding of sample statistics in a performance index is characterized by the prior distribution on the unknown

is proposed. This technique represents a simple and . . . .
computationally attractive statistical method based on the parameter. Further extension of this approach is presented in

constructive use of the invariance principle in mathematical [4]. o . . N
statistics. Unlike the Bayesian approach, an invariant ~ Within the non-parametric approach, either the empirical

embedding technique is independent of the choice of priors. It distribution [2] or the bootstrapping method (e.g. see [5]) can
allows one to eliminate unknown parameters from the problem he applied with the available past data to obtain a statistical
e}nd to find the best invariant deus!op rule, wh|ch. has smaller 4. .ision rule.
risk than any Of.the well-knovyn decision rules. To llustrate the A third alternative to dealing with the unknown distribution
proposed technique, application examples are given. ) ; _ ) - .
is when the random variable is partially characterized by its
Index Terms— Optimization’ parametric uncertainty’ moments. When the unknown demand distribution is
statistical decision rule, technique of invariant embedding. characterized by the first two moments, Scarfdéftives a
robust min—max inventory control policy. Further
development and review of this model is given in [7].
. INTRODUCTION In the present paper we consider the case, where it is known
Most of the operations research and management scietit@t the true distribution function belongs to a parametric
literature assumes that the true distributions are specifiéamily of distributions. It will be noted that, in this case, most
explicitly. However, in many practical situations, the truétochastic models to solve the problems of control and
distributions are not known, and the only informatiorPptimization of system and processes are developed in the
available may be a time-series (or random sample) of the pastensive literature under the assumptions that the parameter
data. values of the underlying distributions are known with
Analysis of decision-making problems with unknowncertainty. In actual practice, such is simply not the case. When
distribution is not new. Several important papers havéese models are applied to solve real-world problems, the
appeared in the literature. When the true distribution Rarameters are estimated and then treated as if they were the
unknown, one may either use a parametric approach (wher&ie values. The risk associated with using estimates rather
is assumed that the true distribution belongs to a parametfi@n the true parameters is called estimation risk and is often
family of distributions) or a non-parametric approach (Wher@nored. When data are limited and (or) unreliable, estimation
no assumption regarding the parametric form of the unknowitsk may be significant, and failure to incorporate it into the
distribution is made). model design may lead to serious errors. Its explicit
Under the parametric approach, one may choose ¢@nsideration is important since decision rules that are
estimate the unknown parameters or choose a pri@ptima| in the absence of uncertainty need not even be
distribution for the unknown parameters and apply th@pproximately optimal in the presence of such uncertainty.
Bayesian approach to incorporating the past data availableThe problem of determining an optimal decision rule in the
Parameter estimation is first considered in §hjd recent absence of complete information about the underlying
development is reported in [2]. Scarf [3] considers a Bayesighistribution, i.e., when we specify only the functional form of
the distribution and leave some or all of its parameters
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information to another party for an unknown purpose, whes unknown but it is known th®J0. Zwill denote the set of
the loss structure is not easily discernible, or when the numigjssible values of the random variakled is called the state
of observations is large enough to support Norm@f nature, while the nonempty sBtis called the parameter
approximations and asymptotic results. Unfortunately, Wehace. The nonempty sét is called the decision space or
seldom are fortunate enough to be in asymptotic situationg+tion space. Finally,is called the loss function and to each
Small sample sizes are generally the rule when estimationéﬁe andd0¥ it assigns a real numbKd,).

system states and the small sample properties of estimators dBefinition 2 For a statistical decision proble@, (1), X

not appear to have been thoroughly investigated. Therefore, _ . . . .
the above procedures of the statistical estimation have loﬂg(nonrandomaed) decision rule is a functigfy) which to

been recognized as deficient, however, when the purposeegf:hx_m?(. assigns a membdrof - uX)=d. o
estimation is the making of a specific decision (or sequence ofP€finition 3 The risk functionr(u,8) of a decision rule
decisions) on the basis of a limited amount of information ingX) for a statistical decision problem®@l), X (the
situation where the losses are clearly asymmetric — as they &xgected loss or average loss wBesithe state of nature and
here. a decision is chosen by rul€))) is r(u,0)=E{1(u(X),0)}.

In this paper, we propose a new technique to solve This paper is concerned with the implications of group
optimization problems of statistical decisions undetheoretic structure for invariant loss functions. Our underlying
parametric uncertainty. The technique is based on tk#ucture consists of a class of probability mode{s-t, 9,
constructive use of the invariance principle for improvemert one-one mapping/ taking 22 onto an index se®, a
(or optimization) of statistical decisions. It allows one to yiel¢heasurable space of actiorig, (23), and a real-valued loss
an operational, optimal information-processing rule and maynction
be employed for finding the effective statistical decisions for

many problems of the operations research and management 1(d.0) = I"(d. X 1
science, the illustrative application examples of which are (c.6) EX{ (d )} @)
given below.

defined on® x ¥, wherel’ (d, X) is a random loss function

with a random variabl¥[1(0,) (or (—,)). We assume that
Il INVARIANT EMBEDDING TECHNIQUE a groupG of one-one></- measurable transformations acts on

This paper is concerned with the implications of groug/’and that it leaves the class of modéts €=, 9) invariant.

theoretic structure for invariant performance indexes. Wg/e further assume that homomorphic ima(‘}esandé of G

present an invariant embedding technique based on tarllce[ on® and 7, respectively. G may be induced o®

constructive use of the invariance principle for ~ )
decision-making. This technique allows one to solve mari§rough¢; G may be induced oY’ throughl). We shall say
problems of the theory of statistical inferences in a simptgatl is invariant if for every@, d) 0 © x &7
way.

The aim of the present paper is to show how the invariance I(gd,g8)=1(d,8), gOG. (2)
principle may be employed in the particular case of
improvement or optimization of statistical decisions. The |oss function,|(d,8) , can be transformed as follows:
technique used here is a special case of more general
considerations applicable whenever the statistical problem is — N
invariant under a group of transformations, which acts I(d.6) = 1(5,°d.35'0) =17 (7.V), (3)
transitively on the parameter space [8-15]

A. Preliminaries where V=V(0, 8) is a pivotal quantity whose distribution

In the general formulation of decision theory, we observedes not depend on unknown paramé&en=7(d,0) is an
random variableX (which may be multivariate) with ancillary factor;® is a maximum likelihood estimator &
distribution functionF(x|8) where a paramet® (in general, (or a sufficient statistic fd). Then the best invariant decision
vector) is unknown@®, and if we choose decisiahfrom  rule (BIDR) is given by
the set of all possible decisiofis then we suffer a lo3&,0).

A “decision rule” is a method of choosimyfrom & after uP®R =d”=p(n".0), (4)
observingx0Z; that is, a functiom(x)=d. Our average loss

(called risk) E{1(u(X),0)} is a function of both® and the where

de.cis.ion ruleu([.ﬂ, called the risk functiom(u,8), and is the 1" = arginf EV{I#(”’V)} 5)
criterion by which rules are compared. Thus, the expected n

loss (gains are negative losses) is a primary consideration in

evaluating decisions. We will now define the major quantitiegnd a risk function

just introduced.

Definition 1 A general statistical decision problem is a ru®®,0)= Eé{l(uB'DR,e)}= EV{I#(UD,V)} (6)
triplet (©,7,1) and a random variabk. The random variable
X (called the data) has a distribution functi|8) where® does not depend dh
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Consider now a situation described by one of a family of Complete InformationA standard newsboy formulation
density functionsf(x|¢,0) indexed by the vector parameter(see, e.g., Nahmias [18]) is to consider each prodicbst
0=(,0), wherey and o (>0) are respectively parameters offunction:
location and scale. For this family, invariant under the group dj
of positive linear transformations: — ax+b with a > 0, we I(d.8)= ¢1)I(OI =% )f ( |4,0)dx
shall assume that there is obtainable from some informative e
experiment (a random sample of observatéagxy, ..., X,)) o
a sufficient statistic NI,S) for (1,0) with density function + ¢2)J‘ (O —d)f (5 [4,0,)dx. (10)
h(m,gl¢, 0) of the form g

ding (10) gi
hms| 4 0) =0 h{(m-p)/ 0, sl o] (qy XPanding (10) gives

dj
such that I'(d.9)) =_9(1).[)§ f (% 14,07)dx
h(m,s|u,0) dmds h(y, v)dydy,, (8) o

whereV,;=(M-1)/ g, V,=5 a. We are thus assuming that for the
family of density functions an induced invariance holds under
the groupG of transformationsm- amtb, s— as (a>0). The
family of density functionsf(x|y,0) satisfying the above )
conditions is, of course, the limited one of normal, negative + (69 +¢?)d, (F,- @; 1y ,U,-)—ﬁ} (11)
exponential, Weibull and gamma, with known index, density G *e

functions. The structure of the problem is, however, more | ot the superscript * denote optimality. Using Leibniz's

clearly seen within the general framework. rule to obtain the first and second derivatives shows that

Below_, we give some applications of  the mvanantr(d |8,) is concave. The sufficient optimality condition is
embedding technique. i i Y

+9(2).[)§ fi O | 4,07)dx
di

the well-known fractile formula:

@
I1l. OPTIMIZATION OF STATISTICAL DECISIONS FOR Ci

O — J
NEWSBOY PROBLEM R @450, = c®+c@ (12)
The classical newsboy problem is reflective of many re:f}l follows from (12) that
life situations and is often used to aid decision-making in the
fashion and sporting industries, both at the manufacturing and c®
retail levels (Gallego and Moon [7]). The newsboy problem djD = Fj‘l(ﬁ | 1; ,aj] (13)
can also be used in managing capacity and evaluating G+ ¢

advanced booking of orders in service industries such as
airlines and hotels (Weatherford and Pfeifer [16]). A partight optimality, substituting (12) into the last (bracketed) term
review of the newsboy problem literature has been recentfy Ed. (11) gives
conducted in a textbook by Silvet al [17]. Researchers @
have followed two approaches to solving the newsboy (¢l)+q(2))de(Fj (de|,uj,gj)—hJ:O. (14)
problems. In the first approach, the expected costs of cr+c
overestimating and underestimating demand are minimized.
L o Eigence (11) reduces to
In the second approach, the expected profit is maximized.

Both approaches yield the same results. We use the first df
approach in stating the newsboy problem. 1 J& g) = Jéz) E{X}- (¢1) + 9(2)) % £ ( |y,0,)dx.
For producf, define: o
X quantity demanded during the period, a random (15)
variable,

Parametric UncertaintyLet us assume that the functional
form of the probability density functidi(x|u,q) is specified
but its paramete®=(44,4;) is not specified. LeX;=(X, ...,
o ) Xin) be a random sample of observations on a continuous
C; overage (excess) cost per unit, random variablé. We shall assume that there is obtainable
CJ(Z) underage (shortage) cost per unit, from a random sample of observatiots(Xj, ..., Xjn) a
sufficient statistic;,S) for 8=(x, ) with density function of
the form (7),

fi(x| 44, c) the probability density function o,
0,=(4,0) the parameter of(x|u,q),
Fi(xt4, ) the cumulative distribution function o,

gj inventory/order quantity, a decision variable.

The cost per period is
@ (d - X)), if X; <d, hm.s 14.9) =070 1M -4)lo;.s10,], (16)
] Ik ] I

|.°(d.’x.): (9) .
J j J {¢2)(X]_dj)i if ijdj' and with
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c®@
p(m.s 14.0) dnds= b (y, v)dydy;, (17) dj=0, 'n[“ Jm] (27)
J
whereVi=(M-)/ g, V=S/ . and
Using the above-mentioned invariant embedding . : C(Z)
technique, we transform (10) as follows: 1" (d”,0,)=cPo; In 1+T : (28)
J
'@ 8)=a (@) @;.V), (18)  respectively.
Parametric Uncertainty Consider the case when the
wherea(g)=a;, parameterg; is unknown. LetX;=(Xj;, ..., X)) be a random
I, sample of observations (each with density function (25)) on a
172) J . .
continuous random variab}. Then
f@v) = € @ ¥y -9 [(3)ds s
- S = Zx“, (29)
+ @ [(z-n%-¥)iGzuz, @9

7 V2j i

Zi=(X-1t)! g is a pivotal quantityfj(z) is defined byf;(x|¢4, 7).
ie.,

fi(z)dz =

Vi=(V4;,V) is a pivotal quantitys=(d-M;)/§ is an ancillary

fi(xle4, gp)dx;, (20)

factor. It follows from (18) that the risk associated with

u?®® (or n7;') can be expressed as

r_+ (U?IDR ’eJ) - Emj s, { |j+ (UJBIDR ’ej )}

j

=w @), {17 @7V} (21)
where
LFIDR_q M, +/71 » (22)
n' = argn;_inEvj{Ij#(ﬂj ,Vj)}, (23)
e {ira Vo= [[1a vy 90 (4 v)dyav,.

Vij V2

(24)
The fact that (24) is independent@imeans that an ancillary

factor /7?, which minimizes (24), is uniformly best invariant.

Thus, de given by (22) is the best invariant decision rule.

A. Numerical Example
Complete Information Assuming that the demand for

is a sufficient statistic fog;; § is distributed with

hes 10)=—— s™exg-—| (s,>0), (30)
N N (1)l o, !
so that
hj (V) = ()\/Q;le ?1 (v0). (31)
It follows from (21) and (26) that
; (uBIDR o )_Esj{|j+(u?|DRvUj)}
=g [ [ ), (w)dv,
0
o O 4O
-+ 32
{c (ng) -1 + (1+/7)} (32)
where
PR =S, (33)
] o c® 4 @
— H ] J
= gm"{ (o, - ”W}
C(Z) 1/(n+1)
=|1+ W -1 (34)

productj, X;, is exponentially distributed with the probability Comparison of Decision RuleBor comparison, consider

density function,

i(xla)=(La)expx/a) (x>0), (25)
it follows from (10), (13) and (15) that
@ a)=¢7¢ -0+ 6" +cp, ‘”[3_}
i
(26)
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the maximum likelihood decision rule (MLDR) that may be
obtained from (27),

c@
=g, In 1+

MLDR
u; 0 (35)

J

j ”MLDR S

where g; =S/n is the maximum likelihood estimator @f.

BIDR

Sinceu?™ and uj"*" belong to the same class

“={y:y=n9S} (36)
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it follows from the above that}"®" is inadmissible in F(v) = Pr{V< v}
relation tou®™" .
_ @ o0 = r-1 .
If, say,n=1 and G /cj =100, we have that -1( j j(_1)1[1+ vim—r + j+1)/ ]+
=J1-nr , V>0,
rel.eff. +{(ujMLDR, u?'DR, o} (rJ; (M+n-r+j+D)Mm-r +j+1)
j
M -@*y mgn @) | V<0,
=0 U0/ ", 0y) (44)
N wherem®=m(m-1) [M{m-r+1).
N 1+c?/c? WLDR 1+c¢?/c? The special case in whick1 is worth mentioning, since in
=| vy 1 (1+,7jD)n n7; Tt (1+,7jMLDR)n thi_s case (44) simplifies somewhat. We find here that we can
write
=0.838. (37) 5 [ g
1__ — 1 1
F(v) = Pr{vsv} = l9+1(z9+V] (45)

Thus, in this case, the use @}"" leads to a reduction in the g
. , e+ D' @-v)*, v<o,
risk of about 16.2 % as compared wit™™ . The absolute

risk will be proportional tag and may be considerable. whered=n/m.
Consider the ordered data given by Grubbs [21] on the
mileages at which nineteen military carriers failed. These
IV. SHORTESFLENGTHPREDICTION INTERVAL were 162, 200, 271, 302, 393, 508, 539, 629, 706, 777, 884,
Let Xy < Xz < I Xy be thek smallest observations in a1008{ 1101, 1182, 1463, 1603, 1984, 2355-, 2880, and thus
sample of sizen from the two-parameter exponentialConsmme a complete sample witn=19. We find

distribution, with density 19
. - T=Z_l: (X~ Xg ))=15869 (46)
f(x0) = —ex;{——j, X2 4, (38) B
7 7 and of courseX;=162. Suppose we wish to set up the
whereo> 0 andu are unknown parametes (4, 0). shortest-length (@a=0.95) prediction interval for the
Let Y, be therth smallest observation in a future sample o$mallest observatiory;, in a future sample of sizew>5.

sizem from the same distribution. We wish, on the basis dfonsider the invariant statistic
observedy, ..., Xy to construct prediction intervals fif,.

Let V= r(Y(l); X(l))_ (47)
S=(Yo-Hlo, S=Xay-f)lo (39)
q Then
an
Y, —X
T=T/g, (40) Pr{vl < M < vz}
where
k
T=2 (%)= X) +(n=R(Xg = Xg). (41) :Pr{X(l)+v11<Y(1)< X(1)+V21}
i=1 n n
To construct prediction intervals for(,, consider the _ .
quantity (invariant statistic) - P'{ <Yy <% } =1-a, (48)
where
V =n(S-S)/T1= n(Yy—Xw)/T. (42) z.=Xg+vTin and z,=Xgy+ v,T/n. (49)
It is well known [19] thaztnSl has a standard exponential-l-he length of the prediction interval is
distribution, that Z;~ _, and thatS, and T, are
. 1 Xz o ' D= 25~ 2= (TIN) (V2= Va). (50)
independent. Alsd is therth order statistic from a sample of _ o _
sizem from the standard exponential distribution and thus h¥€e wish to minimized, subject to
probability density function [20],
F(vo)-F(v))=1-a. (51)
f(s)= r(m](l_ g %) el (43) It can be shown that the minimum occurs when
r
flvy)=f(v2), (52)
if s> 0, and(s) =0 fors < 0. Using the technique of invariant
embedding, we find after some algebra that wherev; andv, satisfy (51).
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The shortest-length prediction interval is given by
T T
C%n(x(l)'T):[x(NVl X<1>+anj

= (1078 73662), (53)

where v, =-0.18105 and/, =

interval is A, = 736.62- 10.78 =725.84.

The equal tails prediction interval at the-d=0.95
confidence level is given by

T T
G (X0 1= (X(l)-i-v 2y X +V1—a/2?j

(576,83434), (54)

whereF(v,)=a, vg,= —0.125 ands_4,= 0.805. The length of
this interval i\, = 834.34- 57.6 = 776.74.
Comparison of Prediction Intervals The relative

efficiency of Ci(l)(x(l),T) relative to CE(D (Xg,T), taking

into accounty,, is given by

rel.eff, (c:;(l) (Xp: 1., (X )

(55)

V. SHORTESFLENGTHCONFIDENCEINTERVAL FOR SYSTEM

0.688. Thus, the length of this

(59)

_ L _ 2
X, =D Xy In, X, = X, /n,.
i=1 i=1

It is well known that 8 X, /6, and 2, X, /8, are chi-square

distributed variables withr and 2, degrees of freedom,
respectively. They are independent due to the independence
of the variablex; and X,. It follows from (58) that

A
1-A

(60)

|

Using the invariant embedding technique, we obtain from
(60) a pivotal quantity

X|

2 0
. 6,

A _
(S A=S =

><||

_(2n,X,16,) /[ 2nX,/86,
2n, n, )
(61)

which isF-distributed with (2,,2n,) degrees of freedom, and

S=X,/X,. (62)
Thus, (61) allows one to find a 106@% confidence
interval forA from

Pr{A <A<A;}=1-aq, (63)
where
__ Vi __ W
A=Trs A A= (64)

AVAILABILITY It can be shown that the shortest-length confidence interval
Consider the problem of constructing the shortest-lengtAr A is given by

confidence interval for system availability from
time-to-failure and time-to-repair test data. It is assumed that Cl=(A.A) (65)
X; (time-to-failure) andX, (time-to-repair) are stochastically
independent random variables with probability densitith
functions ) NS VL) = Ay - AL (66)

fl( >i;el) == e_X1l€1 ' % 0 (090 )v 61 > 01 (56)

6, where y andvy are a solution of

and

f5(x;:6,) = -g_ e*'%  x,0(0w), ,>0. (57) (v+ §° f(y)=(y+9*f(v) (67)

2
Availability is usually defined as the probability that a systerﬂ, is the pdf of arF-distributed rv with (2,,2n,) d.f.) and
is operating satisfactorily at any point in time. This 2o

probability can be expressed mathematically as

Py <V <v,}= P{y < F(2n,.2n)<v }=1-a. (68)

A=6,1(6,+6,), (58)
In practice, the simpler equal tails confidence interval for

where 8, is a system mean-time-to-failuré, is a system A,

mean-time-to-repair. vy
Consider a random sampl;= (X,,,...,X;,) of n =(AA)= v +S 0 +S (69)
times-to-failure and a random sample= (X, ..., Xp,,) of |
n, times-to-repair drawn from the populations described by
(56) and (57) with sample means AS v, ) =Ag - AL (70)
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is employed, where distributions and some from discrete exponential families of
distributions, (iv) the observations are from multiparametric
v, = F,,@,.2n), v,=F,,@,.2n), (71) or multidimensional distributions, (v) the observations are
and from truncated distributions, (vi) the observations are
censored, (vii) the censored observations are from truncated
Pr{F(2nz,2n;) > F2(2nz,2ny)} < 1-ar2. (72)  distributions.

Consider, for instance, the following case. A total of 400
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