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Robust Stabilization of Jet Engine Compressor
IN the Presence of Noise and Unmeasured States

John A. Akpobi, Member, IAENG and Aloagbaye . Momodu

Abstract— Compressors for jet engines in operation
experience disturbances such as variations in the
states of the system, mass flow, and pressure. These
disturbances sometimes result in surge and stall
instability problems, which adversely affects its
performance. In this work, first we modify the Moore
and Grietzer three-state model for compressors to
include disturbance (noise signals) and then use the
method of integrator backstepping, coupled with
saturation functions to develop robust controllers for
the stabilization of the compressor. Also, we develop
robust observers for estimating the states of the
system in situation where there exist some states that
cannot be measured. Implementing the developed
controllers on the system, simulation results showed
that stability was achieved. Also, the observer
designed for the jet compressor was able to provide
accurate state estimates.

Index Terms— Integrator backstepping, observer,
robust control, stall and surge, unmeasured states

. INTRODUCTION

N the operation of jet engine compressor, there is

the need to control surge and stall, so as to

ensure stability; and in turn reduce machine
damage that may arise from excessive vibrations
and high thermal loading.

A number of research works with regard to
stability analysis of jet compressor engines have
evolved over the years. Some of these works
looked at modeling the system while others
considered the stability dynamics.

Moore and Greitzer [12] proposed a three-state
nonlinear model that characterized the dynamics of
the behavior of a compressor. The control of surge
and rotating stall in compressors has been
investigated by a number of researchers see [13,
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14]. Krstic et al [17] in their work, on jet engine
compressor, used integrator backstepping to avoid
cancellation of wuseful nonlinearities in the
stabilization analysis.

Jan and Olgav [9] in their work used the
backstepping method to design a closed couple
valve for controlling surge and stall in
COMpressors.

Feng and Shih-Chiang [3], developed an
adaptive controller regulating for rotating stall and
surge in Jet engines using a function approximation
approach. The concept of integrator backstepping
in stability analysis is well expounded in literature
[4, 6, 17, 18, 19]. In actual operation of Jet
compressors, the controllers developed in these
models do not stabilize the system when it is
subjected to uncertainties such as system modeling
errors, in-service changes amongst others, and
compressor disturbances (noise) such as speed
fluctuations, combustion noise etc.,, which
significantly reduces the efficiency of the
compressor [10, 15, 16]. Consequently, in this
work, the aim is to resolve these instability
problems associated with compressors subjected to
disturbances (noise).

In addressing these problems, we develop robust
controllers for the stabilization of the compressors
in the presence of disturbances (noise signals)
using the integrator backstepping method, coupled
with saturator. Also, we develop controllers for
observer design for the compressor, in the situation
where there is no stall, and the pressure rise is an
unmeasured state (unmeasured state).

Il. PROBLEM FORMULATION
We begin with the basic three state Moore and

Grietzer model [12] representing the compressor

dynamics for a Jet Engine. This is given as:

R=-0R*-oR(2¢+¢%) 1)
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3, 1.,
=y - 24 = _3Rp-3R 2
p=-y 2¢ 2¢ ¢ @)

Y =-u (3)
where Ris the normalized stall cell squared

amplitude.
s=p-1
Where (D is the mass flow
V= l// - l//co -2
l// is the pressure rise and

W/, is a constant.

U is the input or control
The system represented by equations 1-3 does not
have noise signals. Using Integrator backstepping,

the stabilized system is given as:

R=-0R?-oR(2¢+¢%)

4)
. 1,
¢=_ZS_C1¢_§¢ —3R¢ ®)
Z,=¢-C,Z, (6)

A. Introduction of Disturbances (Noise
signals)
In this section we modify the basic Moore and

Greitzer model to include noise, and then develop

stabilizing controller for it. Introducing noise as:
0,,0,,0, to equations (1-3), the system is
modified as:

R=-0R?~oR(2¢+¢°)+6, @)

¢=—w—§¢2—%¢3—3R¢—3R+92 @
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y=-Uu+6, 9)

B. Definitions

The following are some definitions needed for
the development of the results:
Lyapunov Function [1, 5, 7, 8, 18, 19]
A Lyapunov function is defined as follows:

Let: V:R*xR" — Rbe a C' function defined
in a domain D < R" that includes the origin.
Then the Lyapunov function,V (t, X), which must
satisfy the following conditions:

1. Vs proper at the equilibrium state X, :

xeR"V(X)<eg (10)

that is, V is a compact subset of some
neighbourhood O of X, for each &£>0

small enough.
2. Vs positive definite on O:

V(x,) =0and

V(x)>0VxeO,Xx#X, 11)

For X#X, in O there is some time
t eT,t, >0and some control

u e U %) admissible for x such that the
trajectory & = ¢(X, U) resulting from the
control and this initial state,

V(&) <V () V(¢(t)) <V (x)and
V(E) <V (x)

3. V(xt) > oas x| oo (12)

This third property is referred to as radially
unbounded or uniformly unbounded or weakly
coercive.

Saturation Function

We define saturation function ¢(6,, 1) as follows:
402 =s@)mingal. A}

Where A, is the saturation level
sgn(.) is the signum function defined as:
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1if >0 U= CypZ; + Kot
sgn(@)=4 0if =0 (14) -oR*-koR+0oR
: +k;
-1if <0 ~2,06R-2koRz, (19)
+k, (6,2, + oR* + 2koR? )+ K — i
Il. THEOREM 1
Given a feedback control system with
disturbance signal at each subsystem of the form: where
1
) :(meyﬂl)jz
x=f(x
(x,u,6) (15) oR (20)
xeR",ueR",0eR"
s 3 1 1
5 1
Then, the existence of a controller of the form: 3 R 15 R |2
u=Kk(x,4(6,4)) where ¢(.)is a saturation K = o o
1 0 -_
dv dv H
function such that E< Oor E< —||X||2 is a ' =
necessary and sufficient condition for the resulting 0,75(”1 ?
closed loop control system to be robustly oR 1.5z,
globally(locally) asymptotically stable. u oR
Proof 1 (21)
The proof of the theorem requires both necessity % %
and sufficiency conditions to be satisfied. Details 0.75| £ |° 0.752.2| A
of the proof of the theorem can be found in [2]. + O'R + >\ oR
A 3 R
A. Methodology for stabilization of the k =3z, +20R+="%
Compressor o
Using equation (14), we introduce saturators in to (R3lulgj 1542,
the system as follows: o oR’
B 1 (22)
S o2 2 075;11(#1 2 0.754 (|2
‘ 3 2 1 3 1
= — —_—— —_—— 2 [—
p=-y 5 ¢ 5 ¢ (17) _O.75,FL:1222 (%] 2
o o
—3R¢-3R+1,(6,,4,) 1
W =-U+ (6 4) (18) k,=3R-c, +3z, Y
R
IV. THEOREM 2 +1.52,° +1.5(iJ +1.5 @)
For the Compressor system bombarded with oR
noise signals represented by equations (7-9), z,=¢p—k+1
asymptotic stabilization of the system is obtained 2 (24)
with the choice of control law:
ISBN: 978-988-19251-5-2 WCE 2011
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'y —c,z,+0R?+2koR? +1.52, |
+0.5z,° +1.5kz,? +1.5k*z,
+0.5k* —1.5k + 3Rz, + 3kR

. (25)
| Hl-p, (0,,4,) +k

andC,,C, are constants with C;,C, >0

A. Proof of theorem 2

¢:71(R1M(H1721))=

Let (Mj;_l =k-1

oR (26)

Where K = (MJZ
oR

Therefore, substituting into equation (19)
R=-0R?*-20R(k-1)
—oR(K* =2k +1) + 14,(6,, &)
=—-oR*-2koR+20R-k’cR
+2koR—-oR+ 14,(6,, 1)
=-0R*+oR-k*0R+ (6,4, @7

o0, )
oR

~kPoR=14(0,2,) (28)

i—lence
R = —GRZ +O'R—/11(911/11)+/LL_L(91’/11)
R=-0R?+0oR

=—oR(R-1) 9

Using the Lyapunov function,
RZ
V(R)= > (30)

We have:
V(R) =L(R)_R
OR

=R.(-oR(R-1))

ISBN: 978-988-19251-5-2
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:(—O‘RZ(R—].)) 1)

This is negative definiteVR>1 ando >0.
Hence there would be Local asymptotic stability.

But ¢ is not the control so we introduce Z, to
track error.

set 2, =¢— 7, (R 4(6, 4)) (32)

¢:Zz+71(Ruu1(91’/11)) (33)
Substituting into equation (16),

~R=-0R?-20R(z,+k-1)
—oR(z, +k -1)* +1(60, 4)

(z, +k-1)% =12, +2kz, -2z, +k* -k +1

.. R=-0R*-oR(2z, +2k -2
+2,+2kz, -2z, +k* —k +1)
+1(6, 4)

R=-0R’-koR+0oR

~2,0R-2koRz, (34)

From 2, =¢—7,(R,1(6,4))
z,=¢g-k+1

Which gives:

2, =¢—K (35)

b=y -S4 -2
—3Rg—3R + 1, (6,, 4,)
L=y =S -2 3R

From

(36)

_3R+,u2(92122)_k
Substituting for ¢ , we have:

2, =—1//—g(223 +2a, ~22,+k* —k+1)
1(2,' -6k, ~3z," +3z, +3,” -5k,
2\ +32,2+3z, +K° -3 +3Kk -1
~3R(z,+k-1)-3R+4(6, 4) K
2,=-y-15z,-052,°

—1.5kz,? —1.5k?z, — 0.5k
+1.5k —3Rz, —3kR -1 37)

+ 14,(0,, 2,) —k
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2 2 Rl z ] 9 ] l 0 11 =
Define VZ(R,ZZ)ZR—+ZL e! (_ 2 i (0, 4), 14, (6, 2)) ]
, , S22 ¢z, —oR?*—2koR? —1.5,
Vo =RR+ 2,2, ~0.52,° ~1.5kz,? ~1.5kz, (42)
= R(—GR2 —koR+oR- ZZGR—ZkO'RZZ) ~0.5k® +1.5k —3Rz, — 3kR
—y-1.52,-0.52,° —1.5kz,” |14 11,(0,,4,) K

+2,| —-1.5k’z, —0.5k* +1.5k —3Rz - .
2 2 2 w —C,z, +oR* + 2koR?
—3kR-1+44,(6,,4,)—k +1.5z, +0.5z,° +1.5kz,*
=R(-oR*-koR+0R) =] HLEKZ 10818k |
—oR? - 2koR? —y —152, +3Rz, +3kR +1
-0.5z,° —1.5kz,” —1.5k’z, (38) | —1,(6,, 4,) +k
" %2| _0.5k® +1.5k — 3Rz, - 3kR i ]
- - R?+2| £
1+ 41,6, ) K VoanTom T ( - ]
Selecting the control law using 1
v < g(R)+ke, +1.52, +0.52,° +1.5(ij2 2,2
OR (39) oR
3
Where g(R) = all terms in R, that are multiplied 7, = +1_5(ij 2, +O.5(i 2 (44)
oR oR
by Z, 1 1
2 2
—1.5(ij +3R22+3(LR]
e =Z, and K is a constant, kK >0 oR o
1- k
v <0z, —oR? — 2koR? 152, 100 %)+
-0.5z,° —1.5kz,? —1.5k?z, i |
—0.5k® +1.5k —3Rz, —3kR (40) oz, . 01,5 01, ,
- TV TR G
=1+ 14,(6,,4,) -k v 2 (45)
Sybstitutingainto equaztion (382), , +%ﬂ1 +%/12 K
V, <-oR’-koR*+0R" -z, o, o,
=-oR*(R+k-1)-¢,z, 2, =y +Kop, +kR+Ky2, — 1, +K (46)
V, is negative definite for 2, =—U+ko iy +kR+K2, — i, +K  (47)
R+k>1 o>0, ¢ >0, hence there is local
asymptotic stability. where,
Substituting for i into equation (37)
Z,=-Cz,+0R*+2koR? (41)
Next we define
2, =y 7, (R 2, 14(60, 4), 1,6, 4,)),
with
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s 3 1 1
> 1
o[ o)
k, = o + =
H H
( j 1 52 48)
H
1 1
0. 75(”1) 0.752, ( o ]2
R o
+ +
oR
k,=3z,+20R +3ﬁ(R—’ulJ2
(o2 (o2

lo oR?

1
L3R ( R’ J"z 1542,

1 (49)
0 751 (ij 0. 75#1( ]
o-RZ R oR?* oR
_0-75,%22 (ﬂj
oR? R
and
k, =3R—¢, +32, (ij
oR (50)
+1.52,2 +1.5(ij+1 5
oR
R? z? 2.7
Define V,(R,Z,,2,) = —+ 2+ = 51
efine V;(R, z,,2,) > 5 5 (51)
V, =RR+12,7, + 7,1, (52)
o —oR —koR+0R
—zzaR—ZkoF?z2
\/3 = +zz(—(:1z2 +oR +2koR2)
—u+k it +kR (53)
+Z, 3}
+k222 —pz +k
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Using the control law in equation (39),
u S[c223+k0/{1+k1R+kzz'2—,az+l'<] (54)

Hence,
, 2 3 2 2 2
.V, £-¢,2;° —oR*—koR*+oR" -z,
; 2 2
~V, £-¢,2," —CZ, (55)
—oR? (R +k —l)
V, is negative definite for
R+k>1 0>0,¢c,c,>0,
hence there is local asymptotic stability.
Substituting for u into equation (47) produces
z, =—C,2, (56)
The resulting feedback system is:
R=-0R?-koR+0oR
—7,0R—2koRz, ®7)
z, =2, + oR? + 2koR? (58)
23 =—Cy17, (59)
WCE 2011
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V. SIMULATION RESULTSI
Simulation results of the unstable system without disturbances are shown in Figs. 1-4
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Fig. 3. Unstable trajectory for {7 (without noise)
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Fig. 4. Phase portrait of ¢ against R (without noise)
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Simulation results of the system when subjected to disturbances are shown in Figs. 5-7.

Time(s)
Fig. 5. Plot of R in the presence of noise (disturbances).

30
Time(s)

Fig. 6. Trajectory of ¢ in the presence of noise (disturbances).

Time(s)
Fig. 7. Trajectory of i in the presence of noise (disturbances).

Simulation results of the stabilized system (without noise) are shown in Figs. 8-10.
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Fig. 8. Stabilized trajectory of R without noise (disturbance)
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Fig. 9. Stabilized trajectory of ¢ without noise (disturbance)
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Fig.10. Stabilized trajectory of y without noise (disturbance)

Simulation results of the stabilized system which was subjected to disturbances are shown in Figs. 11-13.
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Fig.11. Stable trajectory of R with noise (disturbance) using the robust controller
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Fig.12. Stable trajectory of ¢ with noise (disturbance) using the robust controller

ISBN: 978-988-19251-5-2 WCE 2011
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)



Proceedings of the World Congress on Engineering 2011 Vol III

WCE 2011, July 6 - &, 2011, London, U.K.

1

08
06
>

0.4

0.2

I |
e |

|
|

0 .

0 5 10

N
o
N
al

30

Fig.13. Stable trajectory of ¥ with noise (disturbance) using the robust controller

VI. OBSERVER DESIGN
(INTEGRATOR BACKSTEPPING WITH AN
UNMEASURED STATE)

In observer design the following question is
addressed:
Is it possible to estimate, on the basis of external
information provided by passed input and output
signals, the magnitude of an internal state at time, t?

A. Problem formulation for the observer
Recall the compressor equations (1-3):

R=-0R’-oR(2¢+¢°)

3., 1,
§=—y—¢" ¢ ~3R-3R

v =-u

With regard to the Jet compressor model, let us treat
the pressure rise i as state not measurable. This state
could be estimated as 7 and the state estimation
error 17 which converges exponentially to zero is
estimated from:

y=y-y

y=y+y (60)

With the assumption of no stall (R=0), the model is
rewritten as:

: 3 1
b=y -1y
2 2 (61)

ISBN: 978-988-19251-5-2
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y=-u (62)
Hence with (65), we have:
- A oy 3, 1,
=— ——¢°—— 63
¢=—(y+y) 50 50 (63)
y=-u (64)
lﬂ = _V7 (65)

B. Observer design
In designing the observer to estimate the

state ¥V s added as an observer.

Let the error variable, Z = — ¢, (#) (66)

3
a,(9) = E¢2 which is chosen to avoid cancellation

1
of the useful nonlinearity, _E¢3

Due to the presence of 7, we introduce a nonlinear
damping term —S (¢) @

Select —s(¢) =—d,¢” (67)
3
o, (4) = 5¢2 ~d,¢’ (68)
L2=p-Sfrdg
2 (69)
WCE 2011
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or

- 3
V= Z+E¢2 _d1¢3

(70)
Substituting into (68),
7 3 2 3 2 1 3 3 ~
=—/ —— —_ —_—— —d —_
p=-1 2¢+2¢ 2¢ =
:_Z_%¢3_d1¢3_ y
(71)
Select Lyapunov function
1
V(g)=5¢ (72)
; ; 1 ~
Y =¢¢=¢[—z—5¢3 ~dyg’ —wj
1 -
=—p1-=¢'—dig' gy
(73)
Completing the square,
. 1.,
V =—g7-=
p2-29
o \2 o\ (74)
_dl ¢2+ !// + l//
2d,¢) "\ 2d,¢
_ \2
v
V < ¢Z——¢ +[ ]
2d,¢ (75)

Since 1/72 is the error of an exponentially converging
observer, we augment the function V (¢) with a

quadratic term in 7

Vi(4.57)=V (9)+=2—

ISBN: 978-988-19251-5-2
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4%
V.=V +--
g
) ,/72
Vi=V -

2 ~2

N
V, < g2 ——¢

4dl¢ l¢2 (78)
~2
- ¢_4d1¢

(79)
Hence, there would be global asymptotic stability

forz=0

Recall, Z =y —a, (#) (80)
1=y —dy(g)

8a1(¢)

o ¢

_ g 92@) (3. 15 -

T o '(2’15 2! ‘”j
(30{1(¢) ~ (81)
L) v

=—U-

~2

Let V, (6,2,57) =V, (¢, y7)+%22+2[//—dz

~2

=Vl(¢,y7)+zi—‘/;— (82)

2
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~2

Vs

80’1(@[ 2 13 AJ

Y A |

. op \2 2 A

60!1(¢) ~ d,
a¢ v

i _4d1¢

_¢_u_
+2| 0oy () E 2_1 3~
o8 -(2¢ 2¢ wj

_7 ooy (@) - _ZZ
op " d,

The choice of control,

9a,(¢) 3, 1., .
o¢ '[2¢ 2! ‘”j

_dzz(aal(@j
o¢

yields
V-2t

(83)

Uu=cz—¢-

(84)

~2

4d1¢

1(¢) E z_l 3_ -
29 (2¢ 2¢ "’j

z 2
oa,(¢) | oau(@)(3 2 1 3
+dJ[ o9 ] o (2¢ 2 Wj
_Zaal—w N_y;_z
o T d,
Completing the square yields:
Ll s
- ¢ 4d,¢°
_dzzz(aal(mf_Zaa1(¢)¢_u7_2
0¢ o¢ d,
Ll W
=37 4d, ¢ “

~2 ~2
T (P Co 20 B VA /A
¢ 2d,) d, 4d,

CZ+¢+

(85)

—cz?
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£¢4 31/72 ZZ
2" 4dg’
) (86)
day(p) v ) 3
d,| z
o¢  2d, 4d
V, < —£¢4 —cz’ —E( ! . +i}/72
4\ d, ) (87)

This also shows a global asymptotic stability with V,

negative definite
Substituting (84) into (81) yields:

1=—Cl+¢+ dzz(aal(('ﬁ)j
o

@) (88)
0oy (9) -
o8 7
Hence the resulting closed loop system is
G=-2-24 -dg -y
(89)
2
z= —cz+¢+dzz(aa1(¢)j
o¢
ooy (9) -
-, 90
o6 7 (90)
v=-y (91)
LA C)
where al¢ =3¢~ 3d1¢

Hence we have the resulting feedback system as:

b=-2-Z4 -4 -y

(92)
2=—cz+¢+d,2(3¢-3d¢°)
(93)
~(3p-3d,4” )47
‘/7 = _‘/7 (94)
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VII. SIMULATION RESULTS 11

Using the MATLAB Simulink® software to simulate the developed Observer system, the following results shown
in Figs. 14-17, were obtained:

O e e e e

Time(s)

Fig. 14.Time history of ¢ (stabilized)

A~ | | |
(// ****** [ [ [
| | |
| | |
777777 i
| | |
1 1 1
15 20 25 30
Time(s)

Fig. 15.Time history of the estimate state {

15 20 25 30
Time(s)

Fig. 16. Time history of the tracking error i/

—— Pressure Rise,

<>

Pressure Rise Estimate,

| | |
- T T T
| | | |
- |———--- o= I——==-=--A
| | | |
I I I I
10 15 20 25 30

Time(s)

Fig. 17. Comparing i and l/;
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VIII. DISCUSSION OF RESULTS

All the controllers developed for the jet engine
compressor, were simulated using the Matlab
Simulink® software. In developing the solutions, we

usedo =C, =C, =d, =d, =1. Figs. 1-3 show the

trajectories for the unstable signals produced by the
Moore-Grietzer three state model.

Fig. 4 shows the phase portrait of R and ¢ in the
Moore-Grietzer model without noise. The phase
portrait in Fig. 4, again shows that the Moore-
Grietzer model for compressor is unstable.

In Figs. 5-7, it is seen that the disturbance
introduced to the system by the white noise caused a
significant increase (intensity) in the instability of the
system.

Figs. 8-10 represent stable trajectory obtained
without noise in the system. Implementing the robust
controller developed on the unstable system
subjected to noise signals, the results show clearly
that the resulting system is stabilized as shown in
Figs. 11-13.

The results for the observer developed for the
system, are shown in Figs.14-17. From the simulation
studies, it is seen that using the developed observer
on the compressor, results in stability; for the
situation where a state that cannot be measured exist,
in addition to the absence stall during operation. In

this case, ¥ is considered as the state that cannot be
measured. The tracking error shown in Fig. 16 shows
the error in the state estimation dropped from 0.3 to 0
in 5s, and remained at zero as time progressed from

5s. From Fig. 17, it is seen that Vois sufficiently

estimated by Y within the first 2 s then ¥ peaks
low to a value, thereafter there is accurate state
estimation from 8 s onwards. Thus, the observer
provides accurate estimates of the unmeasured state
174

IX. CONCLUSION

We have developed in this work, a robust
controller to stabilize the jet engine compressor
system in the presence of noise (disturbances).
Simulation studies showed that the developed
controller was robust to handle the stabilization of
compressor system in the presence of noise
(disturbances) using integrator backstepping coupled
with  saturators. The saturators introduced,
significantly reduced the effect of noise. Also, the
observer developed, accurately estimated the
unmeasured state of the compressor.
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