
 

 
Abstract— Compressors for jet engines in operation 
experience disturbances such as variations in the 
states of the system, mass flow, and pressure. These 
disturbances sometimes result in surge and stall 
instability problems, which adversely affects its 
performance. In this work, first we modify the Moore 
and Grietzer three-state model for compressors to 
include disturbance (noise signals) and then use the 
method of integrator backstepping, coupled with 
saturation functions to develop robust controllers for 
the stabilization of the compressor. Also, we develop 
robust observers for estimating the states of the 
system in situation where there exist some states that 
cannot be measured. Implementing the developed 
controllers on the system, simulation results showed 
that stability was achieved. Also, the observer 
designed for the jet compressor was able to provide 
accurate state estimates. 

 
 

Index Terms— Integrator backstepping, observer, 
robust control, stall and surge, unmeasured states 

I. INTRODUCTION 

N the operation of jet engine compressor, there is 
the need to control surge and stall, so as to 
ensure stability; and in turn reduce machine 

damage that may arise from excessive vibrations 
and high thermal loading.  
    A number of research works with regard to 
stability analysis of jet compressor engines have 
evolved over the years. Some of these works 
looked at modeling the system while others 
considered the stability dynamics.  
    Moore and Greitzer [12] proposed a three-state 
nonlinear model that characterized the dynamics of 
the behavior of a compressor. The control of surge 
and rotating stall in compressors has been 
investigated by a number of researchers see [13, 
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 14]. Krstic et al [17] in their work, on jet engine 
compressor, used integrator backstepping to avoid 
cancellation of useful nonlinearities in the 
stabilization analysis. 
 Jan and Olgav [9] in their work used the 
backstepping method to design a closed couple 
valve for controlling surge and stall in 
compressors.  
    Feng and Shih-Chiang [3], developed an 
adaptive controller regulating for rotating stall and 
surge in Jet engines using a function approximation 
approach.  The concept of integrator backstepping 
in stability analysis is well expounded in literature 
[4, 6, 17, 18, 19]. In actual operation of Jet 
compressors, the controllers developed in these 
models do not  stabilize the system when it is 
subjected to uncertainties such as system modeling 
errors, in-service changes amongst others, and 
compressor disturbances (noise) such as speed 
fluctuations, combustion noise etc., which 
significantly reduces the efficiency of the 
compressor [10, 15, 16]. Consequently, in this 
work, the aim is to resolve these instability 
problems associated with compressors subjected to 
disturbances (noise). 
    In addressing these problems, we develop robust 
controllers for the stabilization of the compressors 
in the presence of disturbances (noise signals) 
using the integrator backstepping method, coupled 
with saturator. Also, we develop controllers for 
observer design for the compressor, in the situation 
where there is no stall, and the pressure rise is an 
unmeasured state (unmeasured state). 
 

II.    PROBLEM FORMULATION 
    We begin with the basic three state Moore and 

Grietzer model [12] representing the compressor 

dynamics for a Jet Engine. This is given as: 

 

2 2(2 )R R R                       (1) 
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2 33 1
3 3

2 2
R R                  (2) 

u                                         (3) 

where R is the normalized stall cell squared 

amplitude. 

 1    

 Where   is the mass flow 

 2co      

    is the pressure rise and 

 co is a constant. 

 u is the input or control 

The system represented by equations 1-3 does not 

have noise signals. Using Integrator backstepping, 

the stabilized system is given as: 

2 2(2 )R R R      
                    (4) 

3
3 1

1
3

2
Z C R                (5) 

.

3 2 3Z C Z                         (6) 

A.  Introduction of Disturbances (Noise 
signals) 

    In this section we modify the basic Moore and 

Greitzer model to include noise, and then develop 

stabilizing controller for it. Introducing noise as: 

1 , 2 , 3  to equations (1-3), the system is 

modified as: 

2 2
1(2 )R R R                   (7) 

2 3
2

3 1
3 3

2 2
R R               (8) 

3u                               (9) 

B. Definitions 
    The following are some definitions needed for 
the development of the results: 
Lyapunov Function [1, 5, 7, 8, 18, 19] 
A Lyapunov function is defined as follows: 

Let: : nV R R R   be a 1C  function defined 

in a domain nD R  that includes the origin. 
Then the Lyapunov function, ( , )V t x , which must 

satisfy the following conditions: 

1. V is proper at the equilibrium state ex : 

( )nx R V x             (10) 

that is, V is a compact subset of some 

neighbourhood O of ex for each  >0 

small enough. 
2. V is positive definite on O: 

( ) 0eV x  and  

( ) 0V x  , ex O x x  
               (11) 

For ex x  in O there is some time 

1 1, 0t T t  and some control 

1(0, )tu U admissible for x such that the 

trajectory ( , )x u  resulting from the 

control and this initial state,
 

( ( )) ( )V t V x  ( ( )) ( )V t V x  and

( ( )) ( )V t V x   

3. ( , )V x t  as x 
       (12)

 

    This third property is referred to as radially 
unbounded or uniformly unbounded or weakly 
coercive. 
Saturation Function 

We define saturation function ( , )i    as follows: 

( , ) sgn( ).min{ , }i i i i i i     
       (13)

 

 

Where i is the saturation level 

sgn(.)  is the signum function defined as: 

 

Proceedings of the World Congress on Engineering 2011 Vol III 
WCE 2011, July 6 - 8, 2011, London, U.K.

ISBN: 978-988-19251-5-2 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2011



 

 

1 0

sgn( ) 0 0

1 0

     

    

  

if

if

if


 




 
 

          (14) 

III. THEOREM 1 
    Given a feedback control system with 
disturbance signal at each subsystem of the form: 
 

( , , )x f x u                    (15) 

, ,n m nx R u R R    

 
Then, the existence of a controller of the form: 

( , ( , ))u k x    , where (.) is a saturation 

function such that 0
dV

dt
 or 

2dV
x

dt
   is a 

necessary and sufficient condition for the resulting 
closed loop control system to be robustly 
globally(locally) asymptotically stable. 
Proof 
The proof of the theorem requires both necessity 
and sufficiency conditions to be satisfied. Details 
of the proof of the theorem can be found in [2].  
 

A. Methodology for stabilization of the 
Compressor 

Using equation (14), we introduce saturators in to 

the system as follows: 

2 2
1 1 1(2 ) ( , )R R R               (16) 

2 3

2 2 2

3 1

2 2
     3 3 ( , )R R

   

   

   

  


                     (17) 

3 3 3( , )u                  (18) 

IV. THEOREM 2 
    For the Compressor system bombarded with 
noise signals represented by equations (7-9), 
asymptotic stabilization of the system is obtained 
with the choice of control law:  
 

 

2 3 0 1

2

1

2 2

2 2
2 1 2 2

    
2

    2

u c z k

R k R R
k

z R k Rz

k c z R k R k



  
 

  

 

   
  

  

     



 

 (19)
 

 
where 

1

2
1 1 1( , )

k
R

  


   
                         (20) 
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        (21)

 

1

2
1 1

1 2

1
2 3 3 3 2

1 1 1 2
2

1 1

2 2
1 1 1 1

2 2

1
2 2

1 2 1
2

3
3 2

2

3 1.5
     

0.75 0.75
      

0.75
     

R
k z R

R R z

R

R R R R

z

R R

 
 

  
  

   
   

 
 







     
 

 
  

 

       
   

   
 

         (22)

 

1

2
1

2 1 2

2 1
2

3 3

   1.5 1.5 1.5

k R c z
R

z
R






     
 
    
 

                 (23)

 

2 1z k  
                           (24)
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2 2
1 2 2

3 2 2
2 2 2

33
2

.

2 2 2

2 1.5

0.5 1.5 1.5

0.5 1.5 3 3

1 ( , )

c z R k R z

z kz k z
z

k k Rz kR

k

  

  

    
 
   

      
 
   

  (25)

 

and 1 2,c c  are constants with 1 2, 0c c 
 

 

A. Proof of theorem 2 

Let 

 1 1 1 1

1

2
1 1 1

, ( , )

( , )
      1 1

R

k
R

    

  


 

 
       
              (26)

 

Where 

1

2
1 1 1( , )

k
R

  


   
 

 

Therefore, substituting into equation (19) 
2

2
1 1 1

2 ( 1)

      ( 2 1) ( , )

R R R k

R k k

 

   

   

   


 

2 2

1 1 1

2 2

  2 ( , )

R k R R k R

k R R

   
    

    
  

 

2 2
1 1 1( , )R R k R         

      (27)
 

2 1 1 1( , )
k

R

  


 ; 

2
1 1 1( , )k R    

            (28)  

, 
Hence 

2
1 1 1 1 1 1( , ) ( , )R R R             

2R R R     

 1R R  
                     (29)

 

 
Using the Lyapunov function, 

2

( )  
2

R
V R                       (30) 

We have: 
( )

( ) .
V R

V R R
R





   

  . 1R R R    

=   2 1R R 
                 (31)

 

This is negative definite  1R   and 0  . 
Hence there would be Local asymptotic stability. 

But   is not the control so we introduce 2z  to 

track error. 

Set  2 1 1 1 1, ( , )z R              (32)  

 2 1 1 1 1, ( , )z R                (33) 

Substituting into equation (16), 
2

2

2
2 1 1 1

2 ( 1)

        ( 1) ( , )

R R R z k

R z k

 

   

     

   


 

2 2 2
2 2 2 2( 1) 2 2 1z k z kz z k k         

2
2

2
2 2 2

1 1 1

 (2 2 2

        2 2 1)

         ( , )

R R R z k

z kz z k k

 

  

     

     




 

2

2 2      2

R R k R R

z R k Rz

  
 

   
 


                               (34)

 

From   2 1 1 1 1, ( , )z R       

2 1z k    

Which gives:  

2z k  
 
                                        (35)  

From   
2 3

2 2 2

3 1

2 2
    3 3 ( , )R R

   

   

   

  


 

2 3
2

.

2 2 2

3 1
3

2 2

          3 ( , )

z R

R k

   

  

     

  


       (36) 

Substituting for  , we have: 

 

 

3 2
2 2 2 2

3 2 2 2
2 2 2 2 2 2

2 3 2
2 2

2 2 2 2

3
2 2 1

2

6 3 3 3 51
      

2 3 3 3 3 1

      3 1 3 ( , )

z z kz z k k

z kz z k z kz kz

z z k k k

R z k R k



  

      

     
         
     



  

 
3

2 2 2

2 2 3
2 2

2

.

2 2 2

1.5 0.5

     1.5 1.5 0.5

      1.5 3 3 1

      ( , )

z z z

kz k z k

k Rz kR

k



  

   

  
   

 



                 (37) 
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Define 
22

2
2 2( , )

2 2

zR
V R z    

2 2 2V RR Z Z     

 2
2 2

3 2
2 2 2

2 3
2 2 2

.

2 2 2

2

1.5 0.5 1.5

  1.5 0.5 1.5 3

3 1 ( , )

R R k R R z R k Rz

z z kz

z k z k k Rz

kR k

    



  

     

     
     
 
     

 

 2

2 2
2

3 2 2
2 2 2

32
2

.

2 2 2

2 1.5

0.5 1.5 1.5
  

0.5 1.5 3 3

1 ( , )

R R k R R

R k R z

z kz k z
z

k k Rz kR

k

  

  

  

   

    
 
   

      
 
   

     (38) 

Selecting the control law using  

1( )
V

g R ke
R




 
                            (39)

 

Where ( )g R = all terms in R, that are multiplied 

by 2Z  

1e = 2Z  and k  is a constant, 0k   

2 2
1 2 2

3 2 2
2 2 2

3
2

.

2 2 2

2 1.5

      0.5 1.5 1.5

      0.5 1.5 3 3

      1 ( , )

c z R k R z

z kz k z

k k Rz kR

k

  

  

   

  

   

  

       (40)
 

Substituting into equation (38), 
3 2 2 2

2 1 2V R k R R c z        

 2 2
1 21R R k c z      

2V is negative definite for 

11,  0,  0R k c    , hence there is local 

asymptotic stability. 
Substituting for  into equation (37) 

2 2
2 1 2 2Z c z R k R                              (41)  

Next we define

 3 2 2 1 1 1 2 2 2, , ( , ), ( , )z R z         , 

with  
 

 2 2 1 1 1 2 2 2

2 2
1 2 2

3 2 2
2 2 2

3
2

.

2 2 2

, , ( , ), ( , )

2 1.5

0.5 1.5 1.5
    

0.5 1.5 3 3

1 ( , )

R z

c z R k R z

z kz k z

k k Rz kR

k

      

 

  



   
 
   
     
 
   

                 (42)
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3 2
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2 3
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2

.

2 2 2

2
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3 3 1
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     (43) 
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3 2

2 1
1 2
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2
3 21

2 2 2

3

2
1 1

3 2

1 1

2 2
1 1

2

.

2 2 2

2
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R
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z z
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(44) 

3 3 3
3 2

2

3 3
1 2

1 2

    

z z z
z R z

R z

z z
k




 
 

  
  
  
 

  
 

 

 
         (45) 

3 0 1 1 2 2 2z k k R k z k                 (46) 

3 0 1 1 2 2 2z u k k R k z k                (47) 

  
where, 
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and 

1

2
1

2 1 2

2 1
2

3 3

      1.5 1.5 1.5

k R c z
R

z
R






     
 
    
 

        (50) 

Define 
222

32
3 2 3( , , )

2 2 2

zzR
V R z z         (51) 

3 2 2 3 3V RR z z z z     
                            (52)  

 

 

2

2 2

2 2

2 1 2

0 1 1

3

2 2 2

3

2

 2

R k R R
R

z R k Rz

z cz R k R

u k kR
z

k z k

V

  

 

 





  

 

     

  


  

  
  
  

 
 
  
  

  







      (53)

       
 
 

 
Using the control law in equation (39), 

2 3 0 1 1 2 2 2u c z k k R k z k        
          (54) 

Hence, 
.

3

2 3 2 2 2
2 3 1 2V c z R k R R c z          

 

.

3

2 2
2 3 1 2

2       1

V c z c z

R R k

   

  
                (55) 

3V
 
is negative definite for  

1 21,  0,  ,  0R k c c    ,  

hence there is local asymptotic stability. 
Substituting for u into equation (47) produces 

.

3 2 3z c z                                     (56) 

The resulting feedback system is: 
.

2

2 2      2

R R k R R

z R k Rz

  
 

   
               (57)

 

.
2 2

2 1 2 2z c z R k R    
         (58)

 

 
.

3 2 3z c z 
                          (59)
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V.   SIMULATION RESULTS I 

    Simulation results of the unstable system without disturbances are shown in Figs. 1-4 

 
Fig. 1. Trajectory for R (without noise) 

 
Fig. 2. Unstable trajectory for   (without noise) 

 
Fig. 3. Unstable trajectory for   (without noise) 

 
Fig. 4. Phase portrait of   against R (without noise) 
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 Simulation results of the system when subjected to disturbances are shown in Figs. 5-7. 

 
Fig. 5. Plot of R in the presence of noise (disturbances). 

 
Fig. 6. Trajectory of   in the presence of noise (disturbances). 

 
Fig. 7. Trajectory of   in the presence of noise (disturbances). 

 
    Simulation results of the stabilized system (without noise) are shown in Figs. 8-10. 

 
Fig. 8. Stabilized trajectory of R without noise (disturbance) 
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Fig. 9. Stabilized trajectory of   without noise (disturbance)  

 

 
Fig.10. Stabilized trajectory of   without noise (disturbance)  

 
    Simulation results of the stabilized system which was subjected to disturbances are shown in Figs. 11-13. 

 
Fig.11. Stable trajectory of R with noise (disturbance) using the robust controller 

 
Fig.12. Stable trajectory of   with noise (disturbance) using the robust controller  
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Fig.13. Stable trajectory of   with noise (disturbance) using the robust controller 

 
 
 

VI.   OBSERVER DESIGN                        

(INTEGRATOR BACKSTEPPING WITH AN 

UNMEASURED STATE) 

 
    In observer design the following question is 
addressed:  
Is it possible to estimate, on the basis of external 
information provided by passed input and output 
signals, the magnitude of an internal state at time, t? 

A. Problem formulation for the observer  
    Recall the compressor equations (1-3):

 2 2(2 )R R R                

2 33 1
3 3

2 2
R R                

 u               

 With regard to the Jet compressor model, let us treat 
the pressure rise  as state not measurable. This state 

could be estimated as ̂  and the state estimation 

error   which converges exponentially to zero is 

estimated from: 
ˆ     

ˆ                               (60) 

With the assumption of no stall (R= 0), the model is 

rewritten as: 
.

2 33 1

2 2
      

                         (61) 

.

u                                     (62)
 

Hence with (65), we have: 

  2 33 1
ˆ

2 2
                             (63) 

ˆ u  
                                         (64) 

   
                                  (65) 

 

B. Observer design 
    In designing the observer to estimate the  

state  , 


 is added as an observer. 

Let the error variable, 1
ˆ ( )z    

       
         (66) 

2
1

3
( )

2
   which is chosen to avoid cancellation 

of the useful nonlinearity, 31

2
  

Due to the presence of  , we introduce a nonlinear 

damping term  s    

Select   2
1s d                   (67)  

2 3
1 1

3
( )

2
d                     (68) 

2 3
1

3
ˆ 

2
z d     

                     (69)    
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or 

2 3
1

3
ˆ

2
z d    

                (70)

 
 

Substituting into (68), 

2 2 3 3
1

3 3 1

2 2 2
z d              

3 3
1

1

2
z d       

                  (71)
 

Select Lyapunov function 

  21

2
V                                              (72) 

3 3
1

1

2
V z d            

 
   

4 4
1

1

2
z d        

                (73)
 

Completing the square, 

4

2 2

2
1

1 1

1

2

     
2 2

V z

d
d d

 

 
 

  

   
     

   



 
                  (74) 

2

4

1

1

2 2
V z
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                              (75) 

         

 

Since 
2  is the error of an exponentially converging 

observer, we augment the function  V  with a 

quadratic term in   

 

             

 

1 2
1

V V
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The choice of control, 
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Completing the square yields: 
2

4 2
2

1

2 2
2 1 1

2
2

1 3

2 4

( ) ( )
  

cz
d

d z z
d




    
 

   

  
     




 

2
4 2

2
1

2 2 2
1

2
2 2 2

1 3

2 4

( )

2 4

cz
d

d z
d d d




    


   

 
     



  
 

2
4 2

2
1

2 2
1

2
2 1

1 3

2 4

( ) 3

2 4

cz
d

d z
d d




   


   

 
    



 
              (86) 

4 2 2
2 2

1 2

1 3 1 1

2 4
V cz

d d
 


 

     
 

 
        (87)

        

 

This also shows a global asymptotic stability with 2V
negative definite 
Substituting (84) into (81) yields: 
 

2

1
2

1

( )

( )
     .

z cz d z
 


  


 
      









               (88) 

Hence the resulting closed loop system is 
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  Hence we have the resulting feedback system as: 
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VII. SIMULATION RESULTS II 

  

    Using the MATLAB Simulink® software to simulate the developed Observer system, the following results shown 
in Figs. 14-17, were obtained: 

 

 
Fig. 14.Time history of   (stabilized)  

 
Fig. 15.Time history of the estimate statê  

 
Fig. 16. Time history of the tracking error  
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VIII.   DISCUSSION OF RESULTS 
    All the controllers developed for the jet engine 
compressor, were simulated using the Matlab 
Simulink® software. In developing the solutions, we 

used 1 2 1 2 1c c d d      . Figs. 1-3 show the 

trajectories for the unstable signals produced by the 
Moore-Grietzer three state model. 

    Fig. 4 shows the phase portrait of R and   in the 
Moore-Grietzer model without noise. The phase 
portrait in Fig. 4, again shows that the Moore-
Grietzer model for compressor is unstable. 
    In Figs. 5-7, it is seen that the disturbance 
introduced to the system by the white noise caused a 
significant increase (intensity) in the instability of the 
system. 
    Figs. 8-10 represent stable trajectory obtained 
without noise in the system. Implementing the robust 
controller developed on the unstable system 
subjected to noise signals, the results show clearly 
that the resulting system is stabilized as shown in 
Figs. 11-13. 
    The results for the observer developed for the 
system, are shown in Figs.14-17. From the simulation 
studies, it is seen that using the developed observer 
on the compressor, results in stability; for the 
situation where a state that cannot be measured exist, 
in addition to the absence   stall during operation. In 

this case,   is considered as the state that cannot be 
measured. The tracking error shown in Fig. 16 shows 
the error in the state estimation dropped from 0.3 to 0 
in 5s, and remained at zero as time progressed from 

5s. From Fig. 17, it is seen that  is sufficiently 

estimated by ̂ within the first 2 s then ̂ peaks 
low to a value, thereafter there is accurate state 
estimation from 8 s onwards. Thus, the observer 
provides accurate estimates of the unmeasured state
 . 

IX. CONCLUSION 
    We have developed in this work, a robust 
controller to stabilize the jet engine compressor 
system in the presence of noise (disturbances). 
Simulation studies showed that the developed 
controller was robust to handle the stabilization of 
compressor system in the presence of noise 
(disturbances) using integrator backstepping coupled 
with saturators. The saturators introduced, 
significantly reduced the effect of noise. Also, the 
observer developed, accurately estimated the 
unmeasured state of the compressor. 
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