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Abstract—In this paper we deal with the notion of
regulated functions with values in a Banach algebra
A, we prove some results and present examples us-
ing quaternions. The physical meanning of this kind
of functions is introduced and some particular results
are presented. We consider then, the Dushnik inte-
gral for these functions and we construct a correspon-
dent linear integral functional on the Banach algebra
of all regulated functions G([a, b],A).

Keywords: Regulated function, Banach Algebras,

Quaternions.

1 Introduction

Sometimes to describe physical events we need a model
that has, besides the basic operations of linear spaces
and the notion of size of their elements, an internal mul-
tiplication completely compatible with the normed linear
space structure. These spaces are known as Banach alge-
bras, subject that was treated by J. von Neumann, I. M.
Gelfand and M. A. Naimark, among others, in the years
1930-60. For details see ([2]) Our interest here is to study
the set of all well-behaved funtions f : I = [a, b] ⊂ R →
A, i. e., the set of all functions that have the lateral limits
f(t−) and f(t+), known as regulated functions, for every
t ∈]a, b[ ( f(b−) = f(b) and f(a+) = f(a) ) when A is a
Banach algebra. The definition of regulated function first
appears in Dieudonne’s book [1]. The space of regulated
functions was approached by several authors in the last
years, see for example, ([3] [4] [8]) The classical notation
for this set of functions is G([a, b],A) and it is a Banach
space with the uniform convergence norm. In Section
2 we present the notions of regulated functions, Dush-
nik integral and Banach algebras, and we present proofs
of some results to guarantee that G([a, b],A) inherits the
structure of A, in other words, it is also a Banach algebra.
Section 3 describes the set of Quaternions and recalls how
the elements of this set can be used to represent rotations
of bodies in three dimensions. Finally, in Section 4, the
notions and results are then applied in the special case
when I = [0, T ] and A = Quat, the set of quaternions.
This set has the structure of non-commutative Banach
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algebra and has been used in graphic computation and
modeling 3D rotations, and we will discuss the behavior
of functions with values in Banach algebra.

2 Regulated Functions Banach Algebra
Valued

Roughly speaking, algebras are simultaneously normed
linear spaces and rings. They are structures with an ad-
dition, a scalar multiplication, an internal multiplication
and a norm, all completly compatible. Formally we have
that

Definition 1 A Banach algebra A over the complex
number field C is a structure (A,+, ·,×, ‖ · ‖) such that

a. (A,+, ·, ‖ · ‖) is a Banach normed complex linear
space;

b. (A,+, ·,×) is a algebra;

c. it is satisfied the submultiplicity condition

‖x× y‖ ≤ ‖x‖ ‖y‖, ∀x, y ∈ A.

While the condition [c.] ensures that the internal mul-
tiplication is a continuous operation, the condition [b.]
says that it is associative, that is, for all x, y, z ∈ A

x× (y × z) = (x× y)× z ,

and that are obeyed all the compatibility conditions:

. (x+y)×z = x×z+y×z and x×(y+z) = x×y+x×z

. λ · (x× y) = (λ · x)× y = x× (λ · y)

If A contains an element e such that e × x = x × e = x,
for every x ∈ A, and ‖e‖ = 1, we say that A is a Banach
algebra with unit. When x×y = y×x, for every x, y ∈ A,
we say that A is a commutative Banach algebra.
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Definition 2 We say that f : [a, b] → X is a regulated
function if for every t ∈ [a, b] there exist both one-sided
limits f(t+) and f(t−) with the convention f(a−) = f(a)
and f(b+) = f(b).

We denote by G([a, b], X) the Banach space of all X-
valued regulated functions on [a, b], with the uniform con-
vergence norm ‖f‖∞ = sup{‖f(t)‖A , t ∈ [a, b]}. We be-
gin proving that multiplication of X induces an internal
multiplication in G([a, b], X).

Lemma 1 Let f and g be two regulated functions on
[a, b] with values in a Banach algebra A. Then the point-
wise multiplication [f × g](t) = f(t) ×

A
g(t), t ∈ [a, b] is

a regulated function on [a, b].

Proof: Since every regulated function is a bounded func-
tion, if f and g are regulated functions on [a, b], there
are real numbers M and N such that ‖f(t)‖ ≤ M and
‖g(t)‖ ≤ N , for all t ∈ [a, b]. Let L be the real num-
ber L = max{M,N}. Moreover, for every ε > 0 there
are partitions R : a = r0 < r1 < .. < rm = b and
S : a = s0 < s1 < .. < sn = b of [a, b] such that for
all rj−1 < ξ < η < rj ( j = 1, 2, ..,m ) and for all
sk−1 < ξ < η < sk ( k = 1, 2, .., n ), we have

‖f(ξ)− f(η)‖ <
ε

2 L
and ‖g(ξ)− g(η)‖ <

ε

2 L
.

We consider now the partition T = R ∪ S, T : a = t0 <
t1 < .. < tl = b, and ξ, η ∈]ti−1, ti[, i = 1, 2, .., l. Then

‖[f × g](ξ)− [f × g](η)‖ = ‖f(ξ) g(ξ)− f(η) g(η)‖
= ‖f(ξ) g(ξ)− f(ξ) g(η) + f(ξ) g(η)− f(η) g(η)‖
= ‖f(ξ) [g(ξ)− g(η)] + g(η) [f(ξ)− f(η)] ‖
≤ ‖f(ξ)‖‖g(ξ)− g(η)‖+ ‖g(η)‖‖f(ξ)− f(η)‖ < ε

and so f × g is a regulated function.

As a consequence we have that the structure of Banach
algebra is transferred to the space of regulated functions.

Theorem 1 Suppose that A is a real Banach algebra
with multiplication x × y. Then G([a, b], A) with multi-
plication [f × g](t) = f(t)× g(t) is a real Banach algebra
too.

Proof: It is known that G([a, b], A) is a Banach space
with the norm of uniform convergence (see [4]). Moreover
its unit element is the function e(t) = e

A
, t ∈ [a, b], and if

f, g ∈ G([a, b], A) they are bounded functions, and so F =
‖f‖([a, b]) = {‖f(t)‖ : t ∈ [a, b]} and G = ‖g‖([a, b]) =
{‖g(t)‖ : t ∈ [a, b]} are bounded subsets of positive
numbers of R. The set

F G = ‖f‖([a, b]) ‖g‖([a, b]) = {‖f(t) g(t)‖ , t ∈ [a, b]}

is a bounded set and sup(F G) = sup(F ) sup(G). So we
have

‖f × g‖∞ = sup{‖f(t) g(t)‖, t ∈ [a, b]}
= sup{‖f(t)‖, t ∈ [a, b]} sup{‖g(t)‖, t ∈ [a, b]}
= ‖f‖∞‖g‖∞

and then ‖f × g‖∞ ≤ ‖f‖∞‖g‖∞
We note that if A is commutative Banach algebra, then
G([a, b], A) is also commutative.

Let A,B be two Banach algebras with multiplications
×

A
and ×

B
respectively. We consider the complex linear

space

L(A,B) = {T : A → B : T is a bounded linear operator},

with the usual norm

‖T‖ = sup {‖T (x)‖
B

: x ∈ A, ‖x‖
A
≤ 1} , (1)

and, if T, S ∈ L(A,B), we define the multiplication as

[T · S](x) = T (x)×
B
S(x) (2)

We have that for evey T, S, F ∈ L(A,B), λ ∈ C and
x ∈ A,

[T ·(S·F )](x) = T (x)×B
(S·F )(x) = T (x)×

B
[S(x)×

B
F (x)]

= [T (x)×
B
S(x)]×

B
F (x)

= [T · S)](x)×
B
F (x) = [(T · S) · F ](x) ,

[(T+S)·F ](x) = (T+S)(x)×
B
F (x) = [T (x)+S(x)]×

B
F (x)

= T (x)×
B
F (x) + S(x)×

B
F (x)

= [T ·F ](x)+[S ·F ](x) = [T ·F +S ·F ](x) ,
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[λ (T · S)](x) = λ (T · S)(x) = λ [T (x)×
B
S(x)]

= [λ T (x)]×
B
S(x) = [λ T ](x)×

B
S(x)

= [(λ T ) · S](x) ,

[(λ T ) · S](x) = (λ T )(x)×
B
S(x) = λ T (x)×

B
S(x)

= T (x)×
B
λ S(x) = T (x)×

B
(λ S)(x)

= [T · (λ S)](x) .

So we have that

• T · (S · F ) = (T · S) · F :

• (T+S)·F = T ·F+S ·F and T ·(S+F ) = T ·S+T ·F :

• λ(T · S) = (λT ) · S = T · (λS):

Moreover, ‖T · S‖ ≤ ‖T‖‖S‖, for all T, S ∈ L(A,B).
Indeed, since B is a Banach algebra, ‖T (x)×

B
S(x)‖

B
≤

‖T (x)‖
B
‖S(x)‖

B
, for all x ∈ A, and so, if

C = {‖T (x)‖
B
: x ∈ A, ‖x‖

A
≤ 1}

and

D = {‖S(x)‖
B
: x ∈ A, ‖x‖

A
≤ 1},

then C D = {‖T (x)‖
B
‖S(x)‖

B
: x ∈ A, ‖x‖

A
≤ 1} and

supC D = supC supD,

‖T · S‖ = sup {‖[T · S](x)‖
B
: x ∈ A, ‖x‖

A
≤ 1}

= sup {‖T (x)×
B
S(x)‖

B
: x ∈ A, ‖x‖

A
≤ 1}

≤ sup {‖T (x)‖
B
‖S(x)‖

B
: x ∈ A, ‖x‖

A
≤ 1}

= supC D = supC supD = ‖T‖‖S‖

The unit element of L(A,B) is the operator 1L(A)
: A →

B such that 1L(A)
(x) = 1

B
, for every x ∈ A. Of course,

‖1L(A)
‖ = 1.

We summaryze this in

Lemma 2 If A,B are two Banach algebras, then
L(A,B) with the usual norm and the multiplication (2)
is a Banach algebra. If B is a commutative algebra, so
L(A,B).

Besides, when B = A the composition of operators T ◦ S
is the natural multiplication on L(A). In this case, [T ◦
S](x) = T (S(x)),

‖T◦S‖ = sup {‖[T ◦ S](x)‖ : x ∈ A, ‖x‖ ≤ 1} ≤ ‖T‖‖S‖

and we recall that if dimA > 1, then L(A) is non-
commutative algebra.

We present now the notion of integral (in sense of Dush-
nik) that we use to decribe a perfomance criterion on
the Banach algebra of regulated function. This kind of
Stieltjes integral, finest than the Riemann-Stieltjes inte-
gral, is a convenient choice because, when the integrand
function belongs to G([a, b], A) and the integrator func-
tion is of bounded semivariation, the integral there exists.
The original definition of the Riemann integral has been
modified in several different extensions. T. J. Stieltjes
generalized the Riemann integral defining an integration
of a continuous integrand with respect a bounded varia-
tion integrator, instead of the variable of integration. B.
Dushnik in turn considered a integrand modification that
consists in restricting integrand values only to the open
segments of corresponding partitions of the interval [a, b].
This is a special case of the weighted refinement integral.

Let A,B be two Banach algebras with multiplica-
tions ×

A
and ×

B
respectively and suppose that α ∈

SV ([a, b],L(A,B)), the Banach space of all bounded
semivariation functions α : [a, b] → L(A,B), and f ∈
G([a, b], A). Then there exists the Dushnik integral (see
[4] for details)

Fα(f) =

∫ b

a

· d α(t) ·f(t) = lim
d∈D

|d|∑
i=1

[α(ti)−α(ti−1)] ·f(ξ·i),

where ξ·i ∈]ti−1, ti[. Here the limit is take over the set of
all partitions of the interval [a, b], denoted by D

[a,b]
.

Note that Fα : G([a, b], A) → B is a linear map between
the Banach algebras G([a, b], A) and B. Moreover have
sense write and to ask about

Fα(f)×B
Fα(g) =

∫ b

a

· d α(t) ·f(t)×
B

∫ b

a

· d α(t) ·g(t) ∈ B.

Fα(f ×
G
g) =

∫ b

a

· d α(t) · [f ×
G
g] (t)
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Note that

Fα(f)×B
Fα(g) 
= Fα(f ×

G
g)

we have that Fα is not a homomorphism of Banach alge-
bras. Another special case is when B = G([a, b], A) and
Fα(f) ∈ G([a, b], A),

[Fα(f)](s) =

∫ s

a

· d α(t) · f(t) ∈ A , s ∈ [a, b] .

The special case G([a, b], Quat) will be considered in the
next sections.

3 Quaternions

As an example, we consider the finite dimensional Banach
algebra of quaternions Quat with the usual norm (the ab-
solut value) and the multiplication defined below. This
structure was introduced by W. R. Hamilton in 1843,
historically is the first example of a non-commutative al-
gebra, and is used in representation of 3D rotations and
in graphic computation. A quaterniom is an element of
the form

p = r + rx�i+ ry�j + rz�k

where r, rx, ry, rz are real numbers. The number r is

called the real part of the quaternion p and rx�i+ry�j+rz�k

is its imaginary part. Moreover �i × �j = −�j × �i = �k,
�k × �i = −�i × �k = �j, �j × �k = −�k × �j = �i and
�i2 = �j2 = �k2 = −1

We can define in Quat three operations: the addition,
multiplication by scalar and internal multiplication. For
this, we consider the quaternions p = r+ rx�i+ ry�j + rz�k

and q = s+ sx�i+ sy�j + sz�k, the scalar λ ∈ R and define

p+ q = r + s+ (rx + sx) �i+ (ry + sy) �j + (rz + sz) �k

λ p = λ r + λ rx �i+ λ ry �j + λ rz �k

p× q = r s− (rx sx + ry sy + rz sz)

+(r sx + rx s+ ry sz − rz sy) �i

+(r sy − rx sz + ry s+ rz sx) �j

+(r sz + rx sy − ry sx + rz s) �k.

Then e = (1, 0, 0, 0) is the unit element of Quat, the
inverse of the quaternion p is the quaternion p−1 such that
p × p−1 = e = p−1 × p, its conjugated is the quaternion
p̄ = r − rx�i− ry�j − rz�k, and the norm of p is defined as

‖p‖ =
√
r2 + r2y + r2y + r2z .

When ‖p‖ = 1, we say that p is an unitary quater-
nion, and in this case, it is easy to see that p̄ = p−1.
The vectorial notation p = (r, �u), where r ∈ R and
�u = (rx, ry, rz) ∈ V 3 (here we use that Quat = R⊕ V 3),
simplifies significantly the notation. Of course, p + q =
(r, �u)+(s,�v) = (r+s, �u+�v) and λ p = λ (r, �u) = (λ r, λ �u).
If �u ·�v and �u∧�v are respectively the scalar and vectorial
product in V 3, then the multiplication can be expressed
as

p× q = (r, �u)× (s,�v) = (r s− �u · �v, r �v + s �u+ �u ∧ �v)

Moreover, ‖p‖ =
√

r2 + ‖�u‖2 and p̄ = (r,−�u).

We now describe how the quaternions can be used to
represent rotations. First suppose that q = (s,�v) is an
unitary quaternion, i. e., ‖q‖ =

√
s2 + ‖�v‖2 = 1 and

q q̄ = 1. Then there exists a angle θ such that s = cos θ
and ‖�v‖ = θ. So, if ‖�n‖ = 1, we can to write

q = (s,�v) = (cos θ, sin θ �n). (3)

Let P = (rx, ry, rz) be a point. If we denote by �r =
(rx, ry, rz), we can associate to P the quaternion p =
(0, �r). A rotation in the anti-clockwise direction at this
point around the axis determined by the unitary vector
�n can be represented as

Rq(p) = q p q−1 (4)

Since q−1 = q̄, we have that

Rq(p) =
(
0, s2�r − (�v · �v)�r + 2(�v · �r)�v + 2s�v ∧ �r

)
(5)

We use now (3) to conclude that

Rq(p) =
(
0, s2 �r − (cos 2θ) �r + (1− cos 2θ) (�n · �r)�n

+sin 2θ �n ∧ �r ) (6)

As an example we take a body in the position r =
(rx, ry, rz) = (1, 2, 1), and so p = (0, 1, 2, 1), and apply
a rotation of angle θ = π/3 around the axis determined
by �n = 1/2(1, 1,

√
2). Then s = cosπ/6 =

√
3/2,

q = (s,�v) = (cosπ/6, sinπ/6 �n)

=
(√

3/2, (1/4)(1, 1,
√
2)) = (

√
3/2, (1/4, 1/4,

√
2/4)

)
.

We found

(�n · �r)�n = ([3 +
√
2]/4)(1, 1,

√
2)
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and

�n ∧ �r = (1/2)(1−√
2,
√
2− 1, 1/2) ,

and, by (6)

Rq(p) =

(
0, 1− (3−√

2)
√
3

8
,

1

2
+

3
√
2

4
− (3−√

2)
√
3

8
,
(2−√

3)(3
√
2 + 2)

8

)

4 Functions Quat-valued and Integrals

Here we start the application of the notions and results of
the previous sections in the special case when I = [0, T ]
and A = Quat. Let p : [0, T ] → Quat be a function.
Then, for t ∈ [0, T ],

p(t) = r(t) + rx(t)�i+ ry(t)�j + rz(t)�k,

where r, rx, ry, rz are real functions on [0, T ]. We think
these kind of functions as a strategies, over time, of rigid
motions (translations and rotations) of bodies. We recall
first that dim(Quat) = 4 and so, if p ∈ G([0, T ], Quat)
then p is differentiable a.e. . In vectorial notation we
have

p(t) = (r(t), �u(t)),

�u(t) = (rx(t), ry(t), rz(t)) ∈ V 3. Suppose that p, q :
[0, T ] → Quat are two regulated functions. Then by
Lemma 1 we have that p × q is a regulated function,
that is, p×q ∈ G([0, T ], Quat). In vectorial form we have
p(t) = (r(t), �u(t)) and q(t) = (s(t), �v(t)), where �u(t) =
(rx(t), ry(t), rz(t)) ∈ V 3, �v(t) = (sx(t), sy(t), sz(t)) ∈ V 3

and r, s : [0, T ] → R,

[p× q](t) = (r(t), �u(t))× (s(t), �v(t))

= (r(t) s(t)− �u(t) ·�v(t), r(t) �v(t)+ s(t) �u(t)+ �u(t)∧�v(t))

We observe that

‖p‖∞ = sup{‖p(t)‖ : t ∈ [a, b]}

= sup{‖
√

r2(t) + ‖�u(t)‖2 : t ∈ [0, T ]},

denote the multiplicative inverse of p ∈ G([0, T ], Quat)
by 1/p,

(
1

p
)(t) =

1

p(t)
, p(t) 
= 0 , t ∈ [0, T ] ,

and define

p̄(t) = (r(t),−�u(t))

Example 1 If p(t) = (0, �u(t)) for example, we back to
Section 3 and think p(t) as a position of a body in space,
at each time t. When ‖�u‖ = 1 then p(t) describe points
belong to the unitary sphere and p̄(t) is the antipode
point of p(t).

Example 2 We fix c, d ∈]0, T [ and q ∈ Quat. Define
p : [0, T ] → Quat, as

p(t) =

⎧⎨
⎩

q, , t ∈ [c, d[ , ,

0 , otherwise.

Then

‖p‖∞ = ‖q‖.

Example 3We fix q ∈ Quat such that ‖q‖ = 1. Consider
a function p ∈ G([0, T ], Quat) and define Rq : [0, T ] →
Quat as

[Rqp](t) = [q p q̄](t).

Suppose that p ∈ G([0, T ], Quat) satisfy some restriction,
a differential equation a. e. or an integral equation, for
example. We can define a performance criterion using a
functional defined on the set of such regulated functions.
Formally we take F : p ∈ G([0, T ], Quat) → F (p) ∈ R.
For example, F (p) = p(T ) or F (p) = ‖p‖

Q
. A special

case for us is when F is a linear functional. Then we a
representation of F in an integral (in sense of Dushnik of
Section 2) form.

Fβ(p) =

∫ T

0

· d β(η) · p(η)

Moreover, in examples above we have

|Fβ(p)| ≤ BV [β] ‖p‖∞ ,

where BV [β] is the bounded variation of β. Recalling
that Quat = R⊕ V 3 ≈ R

4, we consider a regulated func-
tion p : [0, T ] → R⊕V 3 and a bounded variation function
β : [0, T ] → L(R⊕ V

3,R). If we use matricial notation,
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β(t) =

⎛
⎝ γ(t) γx(t) γy(t) γz(t)

⎞
⎠ , p(t) =

⎛
⎜⎝

r(t)
rx(t)
ry(t)
rz(t)

⎞
⎟⎠

and

β(t)·p(t) = γ(t) r(t)+γx(t) rx(t)+γy(t) ry(t)+γz(t) rz(t)

We suppose in the next that there exists the integrals.
Then (cf. [8], section 1.2)

∫ T

0

· d β(η) · p(η) =
∫ T

0

· d γ(η) r(η) +

∫ T

0

· d γx(η) rx(η)

+

∫ T

0

· d γy(η) ry(η) +

∫ T

0

· d γz(η) rz(η)

For example, recalling that the unit element of
G([0, T ], Quat) is the function e(t) = e

Q
, where e

Q
=

(1, 0, 0, 0). then

∫ T

0

· d β(η) · e(η) =
∫ T

0

· d γ(η) 1 = γ(T )− γ(0)

We take for illustration the integrator function β :
[0, T ] → L(Quat,R) given by

β(t) =

⎧⎨
⎩

F, , t ∈ [0, T [ , ,

0 , t = T.

where F is a bounded linear functional on Quat. Then

∫ T

0

· d β(η) · p(η) = p(T−)− p(0+).

Here

p(T−) = lim
t↑T

p(t) and p(0+) = lim
t↓0

p(t).

5 Conclusions and Future Work

This paper is part of an effort to find examples of regu-
lated functions with values on Banach algebras. In the
future we hope will be the conection of this subject with
3D-rotations.
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[1] Dieudonné, J. (1969), Foundations of Modern Anal-
ysis, Academic Press.

[2] Douglas, R. G. (1998). Banach Algebra Techniques
in Operator Theory, Springer.
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