
 

 
Abstract— knowing the time of a process change would 

simplify the search, identification, and removal of the special 
causes that disturbed the process. Since, in many real world 
manufacturing systems, the production of goods comprises 
several autocorrelated stages; in this paper, the problem of the 
change point estimation for such processes is addressed. 

A first order autoregressive model (AR(1)) is used to model 
a multistage process observations, where a X -chart is 
established for monitoring its mean. A step change is assumed 
for the location parameter of the model. After receiving an out-
of-control signal, in order to determine the stage and the 
sample that caused the change (hence finding the time of the 
step change), two maximum likelihood estimators are 
proposed. At the end, the applicability of the proposed 
estimators is demonstrated by a numerical example. 

 
Index Terms— Statistical Process Control, Change Point, 

Multistage Quality Control, Maximum Likelihood Function, 
AR(1). 

 
I. INTRODUCTION AND LITERATURE REVIEW  
The definition of multistage processes can be 

found in many research works ( e.g., [1], [2] and [3]). 
According to [3], multistage manufacturing processes 

(MMPs) are the processes in which multiple stations are set 
up to manufacture a specific product. Examples of MMPs 
are: (1) an automotive body assembly that has multiple parts 
assembled at multiple stations; (2) an engine head 
production that involves multiple machining operations of a 
single part at multiple stations; (3) a transfer or progressive 
stamping process that involves multiple die stations to form 
a part; and (4) semiconductor manufacturing processes in 
which a silicon wafer develops in several stages with several 
layers to form a chip.  

Several methods have been developed in literature to 
model the MMPs. [4, 5] proposed the regression adjustment 
approach to monitor multistage processes. [6], [7], [8], [9], 
[10], and [11] developed multistage engineering models 
with linear state space structure to describe quantitative data 
of a multistage process. Some other research works have 
used autocorrelated AR(1) model to detect shifts in various 
multistage processes (e.g., [12], [1] and [13]). [14] and [15] 
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employed a Bayesian approach to model short run 
processes. 

When an out-of-control signal is received by a control 
chart, the exact time at which the process went out of 
control is usually not the time of the signal. Quality and 
process engineers desire to have a good estimate of the exact 
time (the change point) to search for special causes that 
disturbed the process. This problem is so called the change 
point estimation. So far, few studies have been conducted 
with the aim of process monitoring and change point 
detection in multistage processes, in which most of them 
have been performed using the linear state space model to 
describe multistage processes.  

In the current work, a multistage production process is 
first modeled by a first-order autoregressive model (AR(1)), 
and then a maximum likelihood change point estimation 
method is proposed to determine the time of a step-change 
in the location parameter by identifying both the stages and 
the samples of an out-of-control process. The remainder of 
the paper is organized as follows. 

In the next section, the required background of this 
research is briefly introduced. In section III, the 
autocorrelated multistage process is described. In addition, 
the likelihood function is derived and maximized to 
determine the time of the step-change in the location 
parameter. A numerical example is used in section IV to 
illustrate the applications of the proposed estimators. 
Conclusion and recommendations for future study are 
presented in section V.  

II. BACKGROUND 

Xiang and Tsung [16] used a linear state space model 
given in (1) for monitoring a multistage process. 
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Where 
jky ,
 is the quality characteristic of the 

thj  product 

in stage k  of the process,  2
, ,0~  Njk

, and 

 2
, ,0~ kjk N  . Further, A  and C  are the data matrices 

of the process, and the model parameters that need to be 
estimated are (2). 

 2 2 2 2
1 2, , , ,

T

N          (2) 

Since the likelihood function is too complex to be 
maximized, they used the EM algorithm with a Kalman 
filter. Then they proposed a group exponential weighted 
moving average chart (GEWMA) to monitor the mean of the 
process. 

Assuming known process parameters, [11] used the 
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model of [16] to describe multistage processes. They 
developed a directional multivariate exponential weighted 
moving average chart (DEWMA) to monitor the mean of a 
multistage process by the use of extended maximum 
likeliness ratio. They showed the performance of their 
proposed DEWMA chart to be superior to GEWMA chart. 
Moreover, they developed maximum likelihood estimators 
for estimating out-of-control stage and product (sample) 
when a signal was received from the proposed DEWMA 
control chart. 

III. AUTOCORRELATED MULTISTAGE PROCESSES 

Consider a process including M stages, where in each 
stage an equal number of characteristics are measured. 
Every characteristic is correlated with its corresponding 
characteristic in previous stages. Such a process is called an 
autocorrelated multistage process (AMP). One of the main 
assumptions of AMP is that the samples are independent. 
For each sample, there are p quality characteristics that 

must be measured and controlled. Each sample passes all 
stages of production process and all characteristics in 
various steps are to be measured. Fig. 1 shows the passing of 
one sample through all the stages of an AMP [13]. 

 
Fig. 1. The Pass of a sample through all the stages of an autocorrelated 
process 

Let 
tjix ,,
 be 

thi  measured characteristic of 
thj  sample in 

tht  stage, in which pi ,,1 , nj ,,1  and 

Mt ,,1 . Assuming n  to be the sample number based 

on which the control chart signals an out-of-control 
condition, the aim is to identify both the stage and the 
sample at which the out-of-control has been initiated. The 
knowledge of the change point can greatly aid process 
engineers in identifying special causes and running suitable 
correction action. 

IV. PROCESS MODELING 

[17] used AR(1) time series to model processes with 
autocorrelated observation. We use the same concept to 
model the autocorrelated multistage process with the 
difference that stages have replaced observations and despite 
the original model, samples or observations that are taken 
from the process are independent from each other. Then, 
Equation (3) can describe an AMP. 

tjtjtj xx ,1,,   
 (3) 

Where   is the location parameter, 
tjx ,
 is the measured 

qualitative characteristic of 
thj  sample in 

tht  stage,   is 

the autocorrelation coefficient, and 
tj ,  are independent 

random variables following a normal distribution with mean 
zero and variance 2 , i.e.,  2,0 N . Now if the samples 

pass through Q  stages to exit the process, the probability 

density function of the 
thj  sample is given in (4) ([17, 18]).  
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(4) 

Where 
jX  is the characteristic vector of 

thj  sample at 

thQ  stage. 

A. Change in Location Parameter 

Assume a multistage process starts with an initial value of 

0 . When a step change occurs in the process, the value of 

0  becomes  d 01
. This change happens in 

th  

sample of stage r . The control chart detects this change in 

thn  sample and 
thk  stage with a delay. Therefore, the point 

of receiving signal differs from the actual change time. (see 
Fig. 2 in which ; 1, 2,...,iS i M denotes the thi  stage). 

 
Fig. 2. Signal time of control chart differs from the actual change time 

B. Likelihood Function Derivation 

The likelihood function of the process is derived by 
multiplication of the probability density functions (pdf) of 
all taken samples, where the pdf of each sample is given in 
(4). In the likelihood function derivation process two points 
should be taken into account. First, one notices that for each 
sample the probability density function in (4) comprises of 
two parts. The first part corresponds to the first stage and the 
second part relates to the rest of the stages. However, the 
location parameter exists in both parts causing the form of 
pdf to depend on the stage in which the change has 
happened. In other words, the shape of pdf will be different 
if the change happens in the first stage compared to the 
condition that the change happens during one of the next 
stages. The second important point is the time of receiving 
signal and the question is whether this time corresponds to 
the stage in which the change has happened on in other 
stages. If the control chart signals at the same stage, the 
shape of likelihood function will be different from Fig. 2. 
Nonetheless, the derivation of the likelihood function 
depends on these conditions.  

If the change happens in any other stages than the first 
and the control chart signals in the next stage(s), the 
logarithm of likelihood function is expressed in(5). 
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(5) 

However, if the change happens in the first stage and the 
control chart signals during the next stage(s), the logarithm 
likelihood function becomes (6). 
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(6) 

Moreover, if the change happens in a stage other than the 
first stage and the control chart signals during the same 
stage the change has happened, the logarithm of likelihood 
function can be expressed as (7). 
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(7) 

Finally, if the change happens in the first stage and the 
control chart signals in the same stage, the logarithm of 
likelihood function can be derived as (8).  
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(8) 

 

C. The Proposed Change Point Estimators 
As previously mentioned the form of the likelihood 

function depends both on the stage in which the change 
happens and on the signaling sample; implying four separate 
estimations. We note that the stage and the out-of-control 
sample are discrete variables with known limits. Therefore, 
in the estimation process the partial deviations of the 
logarithm of the likelihood function with respect to the 
location parameter should be obtained. The MLE of   and 
r  is the value of the estimated stage and the out-of-control 
sample that maximize the likelihood function or 
equivalently its logarithm.  

1) Change Point Estimator for the Location Parameter 
The estimator of the location parameter is different for 

various combinations of   and r because of different 
likelihood functions derived in section 3.2. If the change 
happens at a stage other than the first stage and an out-of-
control signal is given in the samples after the change, the 
location parameter estimator is obtained by (9). 
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(9) 

If the change happens at the first stage and out-of-control 
signal comes in the next stages, then (10) expresses the 
estimation of the location parameter. Note that the stage is 
known in this situation.  
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(10) 

If the change occurs at a stage other than the first and out-
of-control signal comes on the same stage, the location 
parameter estimation is given in (11). 
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Finally, if the change happens at the first stage and the 
receiving signal is in the stage in which the change has 
occurred the estimation of the location parameter is stated in 
(12). 
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2) Estimating the out-of-control stage and sample 
In order to estimate the out-of-control stage and the 

sample simultaneously, the log likelihood function for each 
combination of   and r  with corresponding estimated 
location parameter should be evaluated. The combination set 
of   and r  that provides a maximum of the log likelihood 
function is the estimator denoted by ̂  and r̂ , respectively. 
They are given in Error! Reference source not found.. 
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V. NUMERICAL EXAMPLE 

In this section, the application of the proposed MLE 
estimators for the location parameter, the out-of-control 
sample, and the out-of-control stage is illustrated. Consider 
an AMP with a single quality characteristic at four stages. 
Fifteen samples, each containing 4 observations, are 
generated for a process with 5.0 , 0.1  and 

5.20  . The subsequent samples are observed from a 

similar AMP with 250.31  . The X  chart is used for 

monitoring purposes. This chart signals in sample 18 of 
stage 3. Table I shows the estimates of the location 
parameter, the out-of-control sample, and the out-of-control 
stage. In addition, the samples obtained in each stage, the 
log likelihood values, and the estimation of the location 
parameter for every sample at each stage is shown in this 
table. It can be seen that sample 16 in stage 2 is the 
simultaneous estimate of the out-of-control sample and 
stage, respectively.  

Table 1. Estimating the location parameter, the out-of-control sample, and 
the out-of-control stage 

 

Observed quality characteristic Estimated Location Parameter Log Likelihood Functions 

sa
m

p
le

 

sta
ge

 1
 

stag
e 2

 

stag
e 3

 

stag
e 4

 

1,1̂ 1,2̂ 1,3̂ 1,4̂ log L1 log L2 log L3 log L4

1 4.22 3.89 5.20 4.84 2.62 2.64 2.64 2.64 -79.03 -78.75 -78.84 -78.80

2 5.65 5.06 5.03 4.43 2.64 2.64 2.64 2.65 -78.80 -78.86 -78.85 -78.75

3 4.50 5.26 4.38 4.90 2.65 2.66 2.67 2.67 -78.75 -78.67 -78.53 -78.55

4 4.78 4.54 4.35 4.11 2.67 2.69 2.69 2.70 -78.55 -78.37 -78.27 -78.14

5 5.21 6.27 6.39 4.88 2.70 2.69 2.69 2.70 -78.14 -78.35 -78.48 -78.30

6 6.19 5.85 5.92 5.00 2.70 2.68 2.68 2.69 -78.30 -78.62 -78.69 -78.59

7 3.99 5.38 5.60 4.84 2.69 2.71 2.70 2.71 -78.59 -78.39 -78.46 -78.34

8 4.99 5.16 5.53 5.16 2.71 2.73 2.72 2.73 -78.34 -78.28 -78.35 -78.30

9 5.06 5.48 5.06 6.15 2.73 2.73 2.74 2.72 -78.30 -78.32 -78.25 -78.48

10 5.46 5.24 4.68 5.39 2.72 2.73 2.74 2.74 -78.48 -78.54 -78.41 -78.51

11 5.10 5.11 5.11 5.22 2.74 2.75 2.76 2.76 -78.51 -78.44 -78.42 -78.43

12 5.10 4.77 5.33 5.62 2.76 2.79 2.79 2.78 -78.43 -78.25 -78.33 -78.42

13 5.11 4.37 4.88 4.69 2.78 2.84 2.84 2.86 -78.42 -78.07 -78.07 -77.92

14 4.64 4.81 4.82 3.80 2.86 2.94 2.96 3.03 -77.92 -77.39 -77.25 -76.57

15 5.18 5.33 5.37 5.78 3.03 3.12 3.14 3.14 -76.57 -76.21 -76.14 -76.32

16 5.30 5.38 6.00 6.11 3.14 3.29 3.29 3.30 -76.32 -75.78 -76.11 -76.28

17 6.42 6.41 6.81 6.73 3.30 3.36 3.31 3.31 -76.28 -77.26 -77.83 -78.17

18 6.38 6.55 6.91 -- 3.31 3.63 -- -- -78.17 -79.18 -- -- 
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VI. CONCLUSION 

In this study, an autocorrelated multistage process was 
first introduced. For such a process, there are usually some 
quality characteristics at each stage that should be 
monitored. The quality characteristics of any stage are 
autocorrelated with the corresponding ones of the previous 
stage(s). Then, we considered an autocorrelated multistage 
process of a single quality characteristic at each stage. Next, 
the process was modeled and for an out-of-control signal 
obtained by an X-bar control chart, the likelihood function 
to estimate the location parameter, the out-of-control 
sample, and the out-of-control stage was derived. Finally, a 
numerical example was given to demonstrate the 
applicability of the proposed estimators.  
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