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Abstract—In this paper, a combination of interval type-2
fuzzy system (IT2FS) models and simulated annealing are used
to predict the Mackey-Glass time series by searching for the
best configuration of the IT2FS. Simulated annealing is used to
optimise the parameters of the antecedent and the consequent
parts of the rules for a Mamdani model. Simulated annealing is
combined with a method to reduce the computations associated
with it using an adaptive step size. The results of the proposed
methods are compared to results of a type-1 fuzzy system.

Index Terms—Type-2-Fuzzy-Systems, Simulated-Annealing,
Time-Series-Forecasting.

I. I NTRODUCTION

ONE of the features of fuzzy systems is that they can
be hybridised with other methods such as neural net-

works, genetic algorithms and other search and optimisation
approaches. These approaches have been proposed because
generally fuzzy systems are difficult to learn from data[1].
Fuzzy systems are good at explaining how they reached
a decision but can not automatically acquire the rules or
membership functions to make a decision [2, p.2]. On the
other hand, learning methods such as neural networks can not
explain how a decision was reached but have a good learning
capability [2, p.2]. Hybridisation overcomes the limitations
of each method in an approach such as neuro-fuzzy systems
or genetic fuzzy systems.

Soft Computing is a branch of computer science described
as “a collection of methodologies aim to exploit the toler-
ance for imprecision and uncertainty to achieve tractability,
robustness and low solution cost” [3]. In this research we are
interested in the combination of fuzzy logic with simulated
annealing to design a high-level performance and low-cost
system. When designing a simple fuzzy system with few
inputs, the experts may be able to use their knowledge to pro-
vide efficient rules but as the complexity of the system grows,
the optimal rule base and membership functions become
difficult to acquire. So, researchers often use some automated
tuning and learning methods and evaluate their solutions by
some criterion [4]. From an optimisation perspective, the task
of finding a good knowledge base (KB) for a problem is
equivalent to the task of parameterising the fuzzy knowledge
base (KB) and equivalent to the task of finding the parameters
values that are optimal based on the criteria of the problem
design [1].

Simulated annealing has been used in some fuzzy systems
to learn or tune the fuzzy system. For example, see [5] [6] [4].
In addition, the combination of simulated annealing and type-
1 t Mamdani fuzzy systems exhibited a good performance
in forecasting Mackey-Glass time series as shown in [7] and
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Fig. 1. Mackey-Glass time series when Tau=17

[8]. In this paper, a forecasting method is proposed using an
interval type-2 Mamdani model optimised using simulated
annealing. The Mackey-Glass time series is a well known
bench mark which will be used here as an application of
forecasting.

The rest of the paper starts by describing the data sets in
section II followed by a review of fuzzy systems (section III)
and simulated annealing (section IV). The methodology and
the results of this paper are detailed in section V where the
conclusion is drawn in section VI.

II. M ACKEY-GLASS TIME SERIES

The Mackey-Glass Time Series is a chaotic time series
proposed by Mackey and Glass [9]. It is obtained from this
non-linear equation :

dx(t)

dt
=

a ∗ x(t − τ)

1 + xn(t − τ)
− b ∗ x(t)

Wherea, b and n are constant real numbers andt is the
current time whereτ is the difference between the current
time and the previous timet − τ . To obtain the simulated
data, the equation can be discretised using the Fourth-Order
Runge-Kutta method. In the case whereτ > 17, it is known
to exhibit chaos and has become one of the benchmark
problems in soft computing [10, p.116].

III. T YPE-2 FUZZY SYSTEMS

Type-1 fuzzy logic has been successful in many appli-
cations, However, the type-1 approach has problems when
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faced with dynamical environments that have some kinds of
uncertainties. These uncertainties exist in the majority of real
world applications and can be a result of uncertainty in in-
puts, uncertainty in outputs, uncertainty that is related to the
linguistic differences, uncertainty caused by the conditions
change in the operation and uncertainty associated with the
noisy data when training the FLC [11]. All these uncertainties
translate into uncertainties about fuzzy sets membership
functions [11]. Type-1 fuzzy Logic can not fully handle
these uncertainties because type-1 fuzzy logic membership
functions are totally precise which means that all kinds
of uncertainties will disappear as soon as type-1 fuzzy set
membership function has been used [12]. The existence
of uncertainties in the majority of real world applications
makes the use of type-1 fuzzy logic inappropriate in many
cases especially with problems related to inefficiency of
performance in fuzzy logic control [12]. Also, interval type-
2 fuzzy sets can be used to reduce computational expenses.
Type-2 fuzzy systems have, potentially, many advantages
over type-1 fuzzy systems including the ability to handle
numerical and linguistic uncertainties, allowing for a smooth
control surface and response and giving more freedom than
type-1 fuzzy sets [12]. Since last decade, type-2 fuzzy logic
is a growing research topic with much evidence of successful
applications [13].

A type-2 fuzzy set [11], denoted̃A, is characterized by
a type-2 membership functionµÃ(x, u) wherex ∈ X and
u ∈ Jx ⊆ [0, 1]. For example :

Ã = ((x, u), µÃ(x, u)) | ∀x ∈ X, ∀u ∈ Jx ⊆ [0, 1]

where0 ≤ µÃ(x, u) ≤ 1.
Set Ã also can be expressed as:

Ã =

∫
x∈X

∫
u∈Jx

µÃ(x, u)/(x, u), Jx ∈ [0, 1]

where
∫

denotes union. When universe of discourse is
discrete, SetÃ is described as :

Ã =
∑
x∈X

∑
u∈Jx

µÃ(x, u)/(x, u), Jx ∈ [0, 1]

When all the secondary gradesµÃ(x, u) equal1 then Ã is
an interval type-2 fuzzy set. Interval type-2 fuzzy sets are
easier to compute with than general type-2 fuzzy sets. See
Figure 2 for an example of an interval type-2 fuzzy set called
“About 10“. The ease of computation and representation of
interval type-2 fuzzy sets is the main reason for their wide
usage in real world applications.

Type-2 fuzzy logic systems are rule based systems that
are similar to type-1 fuzzy logic systems in terms of the
structure and components but type-2 FLS has an extra
output process component which is called the type-reducer
before defuzzification. The type-reducer reduces output
type-2 fuzzy sets to type-1 fuzzy sets then the defuzzifier
reduces it to a crisp output. The components of a type-2
fuzzy system are:

• Fuzzifier :
Fuzzifier maps crisp inputs into type-2 fuzzy sets by
evaluating the crisp inputsx = (x1, x2, . . . , xn) based
on the antecedents part of the rules and assigns each

Fig. 2. Interval type-2 fuzzy set “About 10“.

crisp input to its type-2 fuzzy set̃A(x) with its mem-
bership grade in each type-2 fuzzy set.

• Rules:
A fuzzy rule is a conditional statements in the form
of IF-THEN where it contains two parts, the IF part
called the antecedent part and the Then part called the
consequent part.

• Inference Engine:
Inference Engine maps input type-2 fuzzy sets into
output type-2 fuzzy sets by applying the consequent
part where this process of mapping from the antecedent
part into the consequent part is interpreted as a type-2
fuzzy implication which needs computations of union
and intersection of type-2 fuzzy sets and a composition
of type-2 relations by using the extended sup-star com-
position for type-2 set relations. The inference engine
in a Mamdani system maps the input fuzzy sets into the
output fuzzy sets then the defuzzifier converts them to
a crisp output. The rules in Mamdani model have fuzzy
sets in both the antecedent part and the consequent part.
For example, theith rule in a Mamdani rule base can
be described as follows:

Ri : IF x1 is Ãi
1

andx2 is Ãi
2
... andxp is Ãi

p

THEN y is B̃i

• Output Processor:
There are two stages in the output process:

– Type-Reducer:
Type-reducer reduces type-2 fuzzy sets that have
been produced by the inference engine to type-
1 fuzzy sets by performing a centroid calculation
[10].T

– Defuzzifier:
Defuzzifier maps the reduced output type-1 fuzzy
sets that have been reduced by type-reducer into
crisp values exactly as the case of defuzzification
in type-1 fuzzy logic systems.
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IV. SIMULATED ANNEALING ALGORITHM

The concept of annealing in the optimisation field was
introduced by Kirkpatricket al in 1982 [14]. Simulated
annealing uses the Metropolis algorithm to imitate metal
annealing in metallurgy where heating and controlled cooling
of materials is used to reshape metals by increasing the
temperature to the maximum values until the solids almost
melted then decreasing the temperature carefully until the
particles are arranged and the system energy becomes min-
imal. Simulated annealing is a powerful randomised local
search algorithm that has shown great success in finding
optimal or nearly optimal solutions of combinatorial prob-
lems [15]. SA is particularly useful in high dimensionality
problems as it scales so well with the increase of variable
numbers which allows SA to be a good candidate for fuzzy
systems optimisation [16]. Many comparative studies for
solving problems such as job shop scheduling and travelling
sales man suggest that SA can outperform most other local
search algorithms in terms of effectiveness [15]. In general,
SA can find good solutions for a wide range of problems but
normally with the cost of high running times [15].

We now define the simulated annealing algorithm. Lets
be the current state andN(s) be a neighbourhood ofs that
includes alternative states. By selecting one states′ ∈ N(s)
and computing the difference between the current state cost
and the selected state energy asD = f(s′) − f(s), s′ is
chosen as the current state based onMetropolis criterion in
two cases:

• If D < 0 means the new state has a smaller cost, then
s′ is chosen as the current state as downhills always
accepted.

• If D > 0 and the probability of acceptings′ is larger
than a random valueRnd such thate−D/T > Rnd
then s′ is chosen as the current state whereT is a
control parameter known asTemperaturewhich is grad-
ually decreased during the search process making the
algorithm more greedy as the probability of accepting
uphill moves decreasing over time.Rnd is a randomly
generated number where0 < Rnd < 1. Accepting
uphill moves is important for the algorithm to avoid
being stuck in a local minima.

In the last case whereD > 0 and the probability is
lower than the random valuee−d/T <= Rnd, no moves are
accepted and the current states continues to be the current
solution. In the original proposed version of simulated an-
nealing by Kirkpatrick, Gelatt and Vecchi, the probability
of accepting s′ equals 1 when f(s′) <= f(s). When
starting with a large cooling parameter, large deteriorations
are accepted. Then, as the temperature decreases, only small
deteriorations are accepted until the temperature approaches
zero when no deteriorations are accepted. Therefore, ade-
quate temperature scheduling is important to optimise the
search. Simulated annealing can be implemented to find the
optimal annealing by allowing infinite number of transitions
or can be implemented to find a closest possible optimal
value within a finite time where the cooling schedule is
specified by four components [15]:

1) Initial value of temperature.
2) A function to decrease temperature value gradually.
3) A final temperature value.

4) The length of each homogeneous Markov chains.
Markov chains is a sequence of trials where the prob-
ability of the trial outcome depends on the previous
trial outcome only and called homogeneous when the
transition probabilities do not not depend on the trial
number [17, p.98].

The choice of good SA parameters is important for the
success of SA. For example, small initial temperatures could
cause the algorithm to get stuck in local minimas as the
first stages of the search supposed to aim for exploration
of regions while large ones could cause unneeded excessive
running times. In addition, an appropriate cooling schedule
is important for the same reason as fast cooling causing
getting stuck in local minima and slow cooling causing the
algorithm to be very slow. In the fuzzy system optimisation
literature, few researchers used adaptive step sizes such as
[18] while most of the approaches reported were using small
fixed step sizes [19]. One of the methods used to determine
the initial step size was proposed by [20] which starts by
using large step sizes and decrease them gradually while one
of the methods to determine the initial temperature value
was proposed by [21] is to choose the initial temperature
value within the standard deviation of the mean cost. When
using finite Markov chains to model the simulated annealing
mathematically, the temperature is reduced once for each
Markov chain while the length of each chain should be
related to the size of the neighbourhood in the problem [15].

V. M ETHODOLOGY AND RESULTS

The experiment can be divided into three steps : generating
time series, constructing the initial fuzzy system and opti-
mising the fuzzy system parameters. Firstly, the time series
is generated with the following parameters :alpha = 0.2 ,
Beta = 0.1 , τ = 17. The input-output samples are extracted
in the form x(t − 18), x(t − 12), x(t − 6) andx(t) where
t = 118 to t = 1117 using a step size of6. Samples of the
generated data are depicted in figures 1. Then the generated
data are divided into 500 data points for training and the re-
maining 500 data points for testing. Using a step size of6, the
input values to the fuzzy system are the previous data points
x(t−18), x(t−12), x(t−12) andx(t) while the output from
the fuzzy system is the predicted valuex(t+6). Four initial
input valuesx(114) andx(115) andx(116) andx(117) are
used to predict the first four training outputs.

Two fuzzy systems have been chosen: type-1 and
type-2 FLS. The fuzzy system has four-inputs and one-
output. The fuzzy model consists of four input fuzzy sets
A1, A2A3 andA4 and one independent output fuzzy setBi

for each rule. Gaussian membership functions were chosen
to define the fuzzy sets. Any other types of membership
functions can be chosen but we are interested in reducing
the computation time as gaussain type has only two pa-
rameters instead of three in triangular type or four as the
case in trapezoidal type. The parameters of the Gaussian
membership functions are the meanm and the standard
deviationσ in type-1 FLS. For type-2 FLS, each fuzzy set is
represented by two means and one standard deviation. All the
means and standard deviations are initialised for all the input
fuzzy sets by dividing the each input space into two fuzzy
sets and enabling enough overlapping between them. The
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fuzzification process is based on the product t-norm while
the centre-of-sets has been chosen for defuzzification. Hence,
this is the same as height defuzzification method because all
sets are convex, symmetric and normal [10]. The training
procedure aims to optimise the parameters of the antecedent
parts and the consequent parts of the fuzzy system rules.
Then, the found parameters are used to predict the next 500
testing data points. By using four inputs and two fuzzy sets
for each input, we end up with 16 rules and 8 input fuzzy
sets representing all possible combinations of input values
with input fuzzy sets. While each rule in Mamdani is linked
with 1 independent output set. The total number of optimised
parameters for type-1 FLS is8 + 8 + (16 ∗ 2) = 48 while
it is 72 parameters in type-2 FLS where(8 ∗ 2) + 8 = 24
parameters in the antecedent part and(16 ∗ 2) + 16 = 48 in
the consequent part.

The optimisation process is done using simulated anneal-
ing that searches for the best configuration of the parameters
by trying to modify one parameter each time and evaluate
the cost of the new state which is measured by Root Mean
Square Error (RMSE). The simulated algorithm is initialised
with a temperature that equals to the standard deviation of
mean of RMSE’s for 500 runs for the 500 training points. The
cooling schedule is based on a cooling rate of 0.9 updated
for each Markov chain. Each Markov chains has a length
related to the number of variables in the search space. The
search ends after a finite number of Markov chains namely
400 Markov chains. The new states for a current state are
chosen from neighbouring states randomly as following:

• Adding a number to one of the antecedent parameters
or the consequent parameters. This value is related to
the maximum and minimum value for each input space
and= max-min/50 for the first iteration.

• Adapting the step size for each input at each Markov
chain by this scaling function proposed by [20]:

sn =
2s0

1 + exp
βn

nmax

Where : s0 Initial step size.n Current iteration.sn

Step size at current iteration.nmax Maximum number
of iteration (Markov chains).β Adaptation constant. a
value of 7 has been chosen.

The adaptation of the step size is proposed to reduce the
computation as the fixed small step sizes needs long time.
After that, the new state is evaluated by examining the 500
data points outputs. The experiment has been carried out
15 times and the average and the minimum RMSE of the
testing data results has been calculated. It is shown from
the results in Table I that type-2 systems outperforms type-1
system with an average RMSE of0.01383 and a minimum of
0.00898 compared to an average of0.02501 and a minimum
of 0.01335 in T1FLS. This results agree with some previous
findings about the ability of the type-2 fuzzy sets to handle
uncertain data better than type-1 fuzzy sets [11]. Note that the
fuzzy system model and structure has a great impact on the
performance of the fuzzy system and normally it is chosen
heuristically. For example, TSK might give better results than
some Mamdani models for this problem [7]. In this paper, we
chose one model which is Mamdani model with dependent
fuzzy sets for each input as our aim is to unveil the potential
for SA to be a good candidate for tuning fuzzy systems rather

TABLE I
THE FORECASTINGRESULTS FORMACKEY-GLASS T IME SERIES

Experiment System RMSEavg RMSEmin

Training Results T1 0.02536 0.01334
Training Results T2 0.0139 0.009
Testing Results T1 0.02501 0.01335
Testing Results T2 0.01383 0.00898

TABLE II
RESULTS COMPARISON FOR PREDICTINGMACKEY-GLASS TIME SERIES

Method RMSE
Wang and Mendel [22] 0.08

Lin and Lin/FALCON-ART [22] 0.04
Kim and Kim/ GA Ensemble [23] 0.026

Juang and Lin/SONFIN [24] 0.018
Lo and Yang/TSK model [25] 0.0161

Russo / GEFREX (GA + NN) [26] 0.0061
Kukolj / Fuzzy cluster + LS + WRLS [27] 0.0061

Almaraashi/ SA-TSK 0.0037
Jang / ANFIS [18] 0.0015

This Model 0.0089

than finding the best fuzzy system components. Comparing
our SA-T2FLS results with others as Table II shows, We see
that our result of (RMSE)= 0.0089 is one of the closest
result to the best result which was obtained by ANFIS
despite the general structure that our method has using a
simple combination of a general search algorithm and a
fuzzy system compared to the more complicated structures
for ANFIS and GEFREX. We believe that by investigating
more about the best formalisation of SA structure and that
suit type-2 fuzzy systems, we could have improved results.

VI. CONCLUSION

Simulated annealing is used to optimise a Mamdani fuzzy
system by searching for the best parameters of the antecedent
and the consequent parts of the fuzzy system to predict a
well known time series. Both type-1 and type-2 FLS have
been compared in their ability to handle uncertainty. The
result shows the ability for simulated annealing to be a good
candidate for type-2 systems to handle uncertain data. The
paper also describes a method to reduce the computations
associated with simulated annealing using an adaptive step
size.
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