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Abstract—In this paper, a combination of interval type-2 14 "G Trme Sevios

fuzzy system (IT2FS) models and simulated annealing are used

to predict the Mackey-Glass time series by searching for the 13 r 7
best configuration of the IT2FS. Simulated annealing is used to

optimise the parameters of the antecedent and the consequent 12 7
parts of the rules for a Mamdani model. Simulated annealing is

combined with a method to reduce the computations associated 11 7
with it using an adaptive step size. The results of the proposed

methods are compared to results of a type-1 fuzzy system. ir T

Index Terms—Type-2-Fuzzy-Systems, Simulated-Annealing, 09 |

Time-Series-Forecasting.
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I. INTRODUCTION

NE of the features of fuzzy systems is that they can
be hybridised with other methods such as neural net- 06
works, genetic algorithms and other search and optimisation o5
approaches. These approaches have been proposed because
generally fuzzy systems are difficult to learn from data[1]. 04 w w w w w w w w w
Fuzzy systems are good at explaining how they reached 0 100 200 300 400 500 600 700 800 900 1000
a decision but can not automatically acquire the rules or poinis
membership functions to make a decision [2, p.2]. On th&y. 1. Mackey-Glass time series when Tau=17
other hand, learning methods such as neural networks can not
explain how a decision was reached but have a good learning
capability [2, p.2]. Hybridisation overcomes the limitation$8]. In this paper, a forecasting method is proposed using an
of each method in an approach such as neuro-fuzzy systentsrval type-2 Mamdani model optimised using simulated
or genetic fuzzy systems. annealing. The Mackey-Glass time series is a well known
Soft Computing is a branch of computer science describbdnch mark which will be used here as an application of
as “a collection of methodologies aim to exploit the tolerforecasting.
ance for imprecision and uncertainty to achieve tractability, The rest of the paper starts by describing the data sets in
robustness and low solution cost” [3]. In this research we asection Il followed by a review of fuzzy systems (section I11)
interested in the combination of fuzzy logic with simulateénd simulated annealing (section 1V). The methodology and
annealing to design a high-level performance and low-cdbie results of this paper are detailed in section V where the
system. When designing a simple fuzzy system with femonclusion is drawn in section VI.
inputs, the experts may be able to use their knowledge to pro-
vide efficient rules but as the complexity of the system grows, 1. MACKEY-GLASS TIME SERIES
the optimal rule base and membership functions becom
difficult to acquire. So, researchers often use some automaE{?

0.7

he Mackey-Glass Time Series is a chaotic time series
posed by Mackey and Glass [9]. It is obtained from this

tuning and learning methods and evaluate their solutions ¥n-linear equation :

some criterion [4]. From an optimisation perspective, the tas
of finding a good knowledge base (KB) for a problem is dz(t)  axax(t—71) bt

equivalent to the task of parameterising the fuzzy knowledge d  1+an(t—r1)

base (KB) and equivalent to the task of finding the parametequherea’ b andn are constant real numbers ands the

values that are optimal based on the criteria of the probleq)rent time where- is the difference between the current
design [1]. time and the previous time — 7. To obtain the simulated

Simulated annealing has been used in some fuzzy systeiag, the equation can be discretised using the Fourth-Order
to learn or tune the fuzzy system. For example, see [5] [6] [‘Heunge-Kutta method. In the case where 17, it is known

In addition, the combination of simulated annealing and typg; oxhibit chaos and has become one of the benchmark
1 t Mamdani fuzzy systems exhibited a good performani:fleomemS in soft computing [10, p.116].

in forecasting Mackey-Glass time series as shown in [7] and
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faced with dynamical environments that have some kinds g#. 2.

uncertainties. These uncertainties exist in the majority of re
world applications and can be a result of uncertainty in ir
puts, uncertainty in outputs, uncertainty that is related to tl
linguistic differences, uncertainty caused by the conditior
change in the operation and uncertainty associated with 1
noisy data when training the FLC [11]. All these uncertaintie
translate into uncertainties about fuzzy sets memberst
functions [11]. Type-1 fuzzy Logic can not fully handle
these uncertainties because type-1 fuzzy logic members
functions are totally precise which means that all kind
of uncertainties will disappear as soon as type-1 fuzzy s
membership function has been used [12]. The existen
of uncertainties in the majority of real world application:
makes the use of type-1 fuzzy logic inappropriate in mar
cases especially with problems related to inefficiency ¢
performance in fuzzy logic control [12]. Also, interval type-
2 fuzzy sets can be used to reduce computational expen:
Type-2 fuzzy systems have, potentially, many advantag

over type-1 fuzzy systems including the ability to handle
numerical and linguistic uncertainties, allowing for a smooth
control surface and response and giving more freedom than
type-1 fuzzy sets [12]. Since last decade, type-2 fuzzy logic
is a growing research topic with much evidence of successful

applications [13].

A type-2 fuzzy set [11], denoted, is characterized by
a type-2 membership functiop;(x, ) wherex € X and
u € J, C[0,1]. For example :

A= ((z,u), pz(z,u) | Ve € X,Yu € J, C[0,1]

where0 < pilx,u) <1
Set A also can be expressed as:

i N / IRZCROCRIRA (R

where | denotes union. When universe of discourse is

discrete, Setd is described as :

A= Z Z MA(‘T’“)/(I’“)’JI € [0,1]

rzeX ued,

When all the secondary gradgs; (z,«) equall then A is

an interval type-2 fuzzy set. Interval type-2 fuzzy sets are
easier to compute with than general type-2 fuzzy sets. See
Figure 2 for an example of an interval type-2 fuzzy set called
“About 10“. The ease of computation and representation of
interval type-2 fuzzy sets is the main reason for their wide

usage in real world applications.

Type-2 fuzzy logic systems are rule based systems that
are similar to type-1 fuzzy logic systems in terms of the
structure and components but type-2 FLS has an extra
output process component which is called the type-reducer
before defuzzification. The type-reducer reduces output
type-2 fuzzy sets to type-1 fuzzy sets then the defuzzifier
reduces it to a crisp output. The components of a type-2

fuzzy system are:

o Fuzzifier :

Fuzzifier maps crisp inputs into type-2 fuzzy sets by
evaluating the crisp inputs = (z1,22,...,zn) based
on the antecedents part of the rules and assigns each
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ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

Interval type-2 fuzzy set “About 10

crisp input to its type-2 fuzzy sel(x) with its mem-
bership grade in each type-2 fuzzy set.

Rules:

A fuzzy rule is a conditional statements in the form
of IF-THEN where it contains two parts, the IF part
called the antecedent part and the Then part called the
consequent part.

Inference Engine:

Inference Engine maps input type-2 fuzzy sets into
output type-2 fuzzy sets by applying the consequent
part where this process of mapping from the antecedent
part into the consequent part is interpreted as a type-2
fuzzy implication which needs computations of union
and intersection of type-2 fuzzy sets and a compaosition
of type-2 relations by using the extended sup-star com-
position for type-2 set relations. The inference engine
in a Mamdani system maps the input fuzzy sets into the
output fuzzy sets then the defuzzifier converts them to
a crisp output. The rules in Mamdani model have fuzzy
sets in both the antecedent part and the consequent part.
For example, theth rule in a Mamdani rule base can
be described as follows:

R': IF z; is /ﬁ andas is Ag... andx, is /[;')

THEN y is B

Output Processor:
There are two stages in the output process:

— Type-Reducer:
Type-reducer reduces type-2 fuzzy sets that have
been produced by the inference engine to type-
1 fuzzy sets by performing a centroid calculation
[10].T

— Defuzzifier:
Defuzzifier maps the reduced output type-1 fuzzy
sets that have been reduced by type-reducer into
crisp values exactly as the case of defuzzification
in type-1 fuzzy logic systems.
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V. SIMULATED ANNEALING ALGORITHM 4) The length of each homogeneous Markov chains.
Markov chains is a sequence of trials where the prob-
ability of the trial outcome depends on the previous
trial outcome only and called homogeneous when the

The concept of annealing in the optimisation field was
introduced by Kirkpatricket al in 1982 [14]. Simulated
annealing uses the Metropolis algorithm to imitate metal " .
annealing in metallurgy where heating and controlled cooling fransition probabilities do not not depend on the trial
of materials is used to reshape metals by increasing the nhumber [17, p.98].
temperature to the maximum values until the solids almostThe choice of good SA parameters is important for the
melted then decreasing the temperature carefully until teccess of SA. For example, small initial temperatures could
particles are arranged and the system energy becomes rfHse the algorithm to get stuck in local minimas as the
imal. Simulated annealing is a powerful randomised locIst stages of the search supposed to aim for exploration
search algorithm that has shown great success in findidgregions while large ones could cause unneeded excessive
optimal or nearly optimal solutions of combinatorial probtunning times. In addition, an appropriate cooling schedule
lems [15]. SA is particularly useful in high dimensionalityiS important for the same reason as fast cooling causing
problems as it scales so well with the increase of variab#€tting stuck in local minima and slow cooling causing the
numbers which allows SA to be a good candidate for fuzAjgorithm to be very slow. In the fuzzy system optimisation
systems optimisation [16]. Many comparative studies fdierature, few researchers used adaptive step sizes such as
solving problems such as job shop scheduling and travellifB] While most of the approaches reported were using small
sales man suggest that SA can outperform most other lofi¥ed step sizes [19]. One of the methods used to determine
search algorithms in terms of effectiveness [15]. In generdne initial step size was proposed by [20] which starts by
SA can find good solutions for a wide range of problems biing large step sizes and decrease them gradually while one
normally with the cost of high running times [15]. of the methods to determine the initial temperature value

We now define the simulated annealing algorithm. ket Was proposed by [21] is to choose the initial temperature
be the current state andi(s) be a neighbourhood of that value within the standard deviation of the mean cost. When
includes alternative states. By selecting one state N (s) using finite Markov chains to model the simulated annealing

and computing the difference between the current state cBithematically, the temperature is reduced once for each
and the selected state energy Bs= f(s') — f(s), &' is Markov chain while the length of each chain should be

chosen as the current state basedvietropolis criterionin ~ felated to the size of the neighbourhood in the problem [15].
two cases:
o If D < 0 means the new state has a smaller cost, then V. METHODOLOGY AND RESULTS
s’ is chosen as the current state as downhills always
accepted.
« If D > 0 and the probability of accepting is larger

The experiment can be divided into three steps : generating
time series, constructing the initial fuzzy system and opti-
mising the fuzzy system parameters. Firstly, the time series
—-D/T ) . .

than a random valugind such thate > Bnd 5 ganerated with the following parameteralpha — 0.2 ,

. )
ther: SI 'S chosten kas thea_current tstateh_wr:l_d'r‘els g Beta = 0.1, 7 = 17. The input-output samples are extracted
contro’ parameter known agmperaturaviich 1S grad- -, e form x(t — 18),x(t — 12),z(t — 6) andx(t) where

ually decreased during the search process making the

lqorith d h bability of ' 7= 118 to t = 1117 using a step size af. Samples of the
agqut m maore greedy as the Probabl ity o accept'ngenerated data are depicted in figures 1. Then the generated
uphill moves decreasing over tim&nd is a randomly

. data are divided into 500 data points for training and the re-
gengrated ”“T“b.er whe@ < Rnd < 1'_ Acceptlng. maining 500 data points for testing. Using a step sizg tfie
UD.h'” MOVes 1S |mporta_nt_ for the algorithm to aVo'dinput values to the fuzzy system are the previous data points

being stuck in a local minima. x(t—18),z(t—12), x(t—12) andz(t) while the output from

In the last case wher& > 0 and the probability is the fuzzy system is the predicted valu@ + 6). Four initial
lower than the random value /" <= Rnd, no moves are input valuesz(114) andz(115) andz(116) and=(117) are
accepted and the current stateontinues to be the currentysed to predict the first four training outputs.
solution. In the original proposed version of simulated an- Two fuzzy systems have been chosen: type-1 and
nealing by Kirkpatrick, Gelatt and Vecchi, the prObablllthpe_z FLS. The fuzzy system has four-inputs and one-
of acceptings’ equals1 when f(s') <= f(s). When oytput. The fuzzy model consists of four input fuzzy sets
starting with a large cooling parameter, large deteriorations 4, 4, and A, and one independent output fuzzy &t
are accepted. Then, as the temperature decreases, only sfgalkach rule. Gaussian membership functions were chosen
deteriorations are accepted until the temperature approachegiefine the fuzzy sets. Any other types of membership
zero when no deteriorations are accepted. Therefore, aflgictions can be chosen but we are interested in reducing
quate temperature scheduling is important to optimise thes computation time as gaussain type has only two pa-
search. Simulated annealing can be implemented to find f3gneters instead of three in triangular type or four as the
optimal annealing by allowing infinite number of transitiongase in trapezoidal type. The parameters of the Gaussian
or can be implemented to find a closest possible optim@embership functions are the meam and the standard
value within a finite time where the cooling schedule igeviationo in type-1 FLS. For type-2 FLS, each fuzzy set is

specified by four components [15]: represented by two means and one standard deviation. All the
1) Initial value of temperature. means and standard deviations are initialised for all the input
2) A function to decrease temperature value gradually.fuzzy sets by dividing the each input space into two fuzzy
3) A final temperature value. sets and enabling enough overlapping between them. The
ISBN: 978-988-19251-4-5 WCE 2011
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TABLE |

fuzzification process is based on the prOdUC_t.t'nprm While T1g ForeCASTINGRESULTS FORMACKEY-GLASS TIME SERIES
the centre-of-sets has been chosen for defuzzification. Hence, —eriment | Sysem [ BATSEavy | RS Emin
this is the same as height defuzzification method because all [Training Results| 71 0.02536 0.01334
sets are convex, symmetric and normal [10]. The training TTfa"t],lng Sesulltts E 00-0021535?1 0062(?),25

. T esting RrResults . .
procedure aims to optimise the parameters of the antecedent Testing Results| T2 001383 0.00898
parts and the consequent parts of the fuzzy system rules.
Then, the found parameters are used to predict the next 500 TABLE Il

teSting data pOintS' By USing -fOUr inDUtS and tWO fUZZy Se§§ESULTSCOMPARISON FOR PREDICTINGMIACKEY-GLASS TIME SERIES
for each input, we end up with 16 rules and 8 input fuzzy

) . o X Method RMSE
sets representing all possible combinations of input values Wang and Mendel [22] 0.08
with input fuzzy sets. While each rule in Mamdani is linked Lin an(éI Lin/l/:ALCON-ARkTJI[Z[Z] | 0.04
i i i Kim and Kim/ GA Ensemble [23 0.026
with 1 independent output se_t. The total number of opt_lmlsed Juang and Li/SONFIN [24] 0.018
parameters for type-1 FLS B+ 8 + (16 x 2) = 48 while Lo and Yang/TSK model [25] 0.0161
it is 72 parameters in type-2 FLS whe(8 x 2) + 8 = 24 Russo / GEFREX (GA + NN) [26] 0.0061
i _ ; Kukolj / Fuzzy cluster + LS + WRLS [27]] 0.0061
parameters in the antecedent part &b@l« 2) + 16 = 48 in Alraraashil SA.TSK 0.0037
the consequent part. Jang / ANFIS [18] 0.0015
The optimisation process is done using simulated anneal- This Model 0.0089

ing that searches for the best configuration of the parameters
by trying to modify one parameter each time and evaluate

the cost of the new state which is measured by Root Mes.pan finding the best fuzzy system components. Comparing

Square Error (RMSE). The simulated algorithm is ini;ial_ise r SA-T2FLS results with others as Table Il shows, We see
with a temperature that equals to the stan_dz_slrd de_V|at|ontHLtt our result of (RMSEF 0.0089 is one of the closest
mean of RMSE'’s for 500 runs for the 500 training points. Thlee

? hedule is based ' £ 0.9 und gult to the best result which was obtained by ANFIS
cooling schedule Is based on a cooling rate of 0.9 upda spite the general structure that our method has using a
for each Markov chain. Each Markov chains has a leng

lated h ber of variables in th h Ti ple combination of a general search algorithm and a
related to the number of variables in the search space. g Ezy system compared to the more complicated structures

search ends after a finite number of Markov chains namely. ANFIS and GEEREX. We believe that by investigating
400 Markov chains. The new states for a current state 4ffore about the best formalisation of SA structure and that

chosen from neighbouring states randomly as following: ;s type-2 fuzzy systems, we could have improved results.
« Adding a number to one of the antecedent parameters

or the consequent parameters. This value is related to

) L : VI. CONCLUSION
the maximum and minimum value for each input space

and = max-miry50 for the first iteration. Simulated annealing is used to optimise a Mamdani fuzzy
« Adapting the step size for each input at each Markaystem by searching for the best parameters of the antecedent
chain by this scaling function proposed by [20]: and the consequent parts of the fuzzy system to predict a
250 well known time series. Both type-1 and type-2 FLS have
Sy = ————— been compared in their ability to handle uncertainty. The
1 + expmmasz result shows the ability for simulated annealing to be a good

Where : so Initial step size.n Current iteration.s, candidate for type-2 systems to handle uncertain data. The
Step size at current iteration,,., Maximum number paper also describes a method to reduce the computations
of iteration (Markov chains)s Adaptation constant. a associated with simulated annealing using an adaptive step
value of 7 has been chosen. size.

The adaptation of the step size is proposed to reduce the
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