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one may either use a parametric approach (where it is
assumed that the demand distribution belongs to a
parametric family of distributions) or a non-parametric
approach (where no assumption regarding the parametric
form of the unknown demand distribution is made).
Under the parametric approach, one may choose to
estimate the unknown parameters or choose a prior
distribution for the unknown parameters and apply the

Abstract— Most models, which are used for solving
inventory control problems, are developed in the literature
under the assumptions that the parameter values of the models
are known with certainty. When these models are applied to
solve real-world problems, the parameters are estimated and
then treated as if they were the true values. The risk associated
with using estimates rather than the true parameters is called
estimation risk and is often ignored. In this paper, we consider

stochastic inventory control problems which are invariant with
respect to a certain group of transformations. If a given
decision problem admits a sufficient statistic, it is well known

that the class of invariant rules based on the sufficient statistic

Bayesian approach to incorporating the demand data
available. Scarf [1] and Karlin [2] consider a Bayesian
framework for the unknown demand distribution.

is essentially complete (under some assumptions) in the class ofSpecifically, assuming that the demand distribution belongs

all invariant rules. If, in this case, there exists an optimal
invariant rule among invariant rules based on sufficient
statistic, it is optimal among all invariant rules. The primary

purpose of this paper is to introduce the idea of cumulative

customer demand in inventory control problems to deal with
the order statistics from the underlying distribution.

Transformations of the performance index based on pivotal
quantities and ancillary statistics allow one to eliminate
unknown parameters from the problem and to find the optimal
statistical decisions for stochastic inventory control under
parametric uncertainty. lllustrative examples are given.

Index Terms — Stochastic inventory control, uncertainty,
optimization

I. INTRODUCTION

large number of problems in production planning and

scheduling, location, transportation, finance, and
engineering design require that decisions be made in the
presence of uncertainty. Most of the inventory management
literature assumes that demand distributions are specified
explicitly. However, in many practical situations, the true
demand distributions are not known, and the only
information available may be a time-series of historic
demand data. When the demand distribution is unknown,
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to the family of exponential distributions, the demand
process is characterized by the prior distribution on the
unknown parameter. Further extension of this approach is
presented in [3]. Application of the Bayesian approach to the
censored demand case is given in [4-5]. Parameter
estimation is first considered in [6] and recent developments
are reported in [7-8]. Liyanage and Shanthikumar [9]
propose the concept of operational statistics and apply it to a
single period newsvendor inventory control problem.

Within the non-parametric approach, either the empirical
distribution or the bootstrapping method (e.g. see [10]) can
be applied with the available demand data to obtain an
inventory control policy.

In this paper we consider the case, where it is known that
the demand distribution function belongs to a parametric
family of distribution functions. However, unlike in the
Bayesian approach, we do not assume any prior knowledge
on the parameter values.

Conceptually, it is useful to distinguish between “new-
sample” inventory control, “within-sample” inventory
control, and “new-within-sample” inventory control.

For the new-sample inventory control process, the data
from a past sample of customer demand are used to make a
statistical decision on a future time period for the same
inventory control process.

For the within-sample inventory control process, the
problem is to make a statistical decision on a future time
period for the same inventory control process based on early
data from that sample of customer demand.

For the new-within-sample inventory control process, the
problem is to make a statistical decision on a future time
period for the inventory control process based on early data
from that sample of customer demand as well as on a past
data sample of customer demand from the same process.

In this paper, we obtain optimal statistical decisions under
parametric uncertainty for the within-sample inventory
control process.
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II. WITHIN — SAMPLE INVENTORY CONTROL PROCESS

A. Mathematical Preliminaries

Theorem 1. Let X; £ ... £ X be the first k ordered
observations (order statistics) in a sample of size m from a
continuous distribution with some probability density
function f5(X) and distribution function Fg(X), where @1is a
parameter (in general, vector). Then the joint  probability
density function of X; < ... < X, and the Ith order statistics X
(1 £k<l<m)is given by

Fo(Xpseees Xis X ) = Fo(Xps ey X)) T (4 | X0)s (1

where
k
fox- %0 =2 |‘1| fo ()1~ Fa(x)1™*,  (2)
1-k-1
_ (m-k)! Fo(X) = Fo(Xy)
f“’(x'lx")'(|—k—1)!(m—|)z{ 1-Fp(%) }
X[I_F9<>q>—Fg(xk>T" fo(x)
1=F5(%) 1=Fg(x)

_ (m-kr RA(TkeD)
_(I—k—l)!(m—l)!z[ ' J( D

EAN.
m-l+j
X[I_FH(XO} fo(X)
1=Fg(%) 1=F5(%)

_ (m-lr E(m=R
_(I—k—l)!(m—l)!z[ ' )( D

j=o\

x[Fe(Xi)‘Fe(Xk)T_k_Hj fo(X) 3)

1=Fg(%) 1=Fg(%)

represents the conditional probability density function of X|
given X =Xy.
Proof. The joint density of X; < ... < X and X| is given by

f - m 11
H(XI’""X"’X')_WD o (%)
X[Fa(X) = Fa(xl ™ fa ()1~ Fg(x 1™

= fo(X, - %) Fa (X [ %) “4)
It follows from (4) that

fo(Xisemor Xis X))
fo(X | Xpsoms g ) =— 20O T = £ (6 1%), (5)
fo (X, %)
i.e., the conditional distribution of X, given X;= x; for all i =
1,..., k is the same as the conditional distribution of X,

given only Xy = X, which is given by (5). This ends the
proof. [I

Corollary 1.1. The conditional probability distribution

function of X given X=X is

-y l=g-_ (M-

PAXI <% [ Xy =%} =1 (I =k=D}(m-1)!

x|—zkjl(|—lf—1j (-1)! .(1‘F5(Xl)}m+l+j
j=0 J m—|+1+JL1_F9(Xk)
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___mokt mel) o)) [Fx)=Fl) o
(=k=DIm=-D\ j JI-k+j[  1-Fg(x) '

(6)
B. Exponential Distribution

In order to use the results of Theorem 1, we consider, for
illustration, the exponential distribution with the probability
density function

1 X
fo(X)=—=exp ——= |, Xx=0, >0, 7
o(X) ] Xp( 9) (7)
and the probability distribution function
Fg(x)=1—exp(—§j, x>0, 6>0. (8)

Theorem 2. Let X; £ ... £ X be the first k ordered
observations (order statistics) in a sample of size m from the
exponential distribution (7). Then the conditional probability
density function of the Ith order statistics X; (1 < k<l <m)
given X = X, is

_ 1 & -k-1 N
9004 1%) = B ot =D > e

=\

X—exp

g

St (M
‘B(|—k,(m—|+1)jz=:‘,( i J( v

I-k-1+]
R P . Tt X~ %
X 7 {1 exp( 7 ﬂ exp( 7 j, 9

and the conditional probability distribution function of the
Ith order statistics X| given X, = X is

(_ (m-T+1+j)(% —Xk)j
g

Pa{x| <X | Xy = Xk}

L | Ikt -k -1
=1 B(I—k,(m—l+1)jzz(:)[ j J

(G . (_(m—l+1+1>m—xk)j

m—1+1+ | 7

X

MB

_ 1 S (m=1) (-]
CB(-k(m-l+D Sl | )I-k+]

22

Proof. It follows from (3) and (6), respectively. [

Theorem 3. Let X; £ ... £ X be the first k ordered
observations (order statistics) in a sample of size m from the
exponential distribution (11), where the parameter 8 is
unknown. Then the predictive probability density function of
the Ith order statistics X; (1 < k<l < m) is given by

(10)

_ k E-k-1)
g%(mxk)—B(l_k’(m_m)Z( J. j(—l)‘

j=0
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—(k+1)
—, X 2 X,

x[1+(m—|+1+j)u (11)
S

where

k
S =D X +(Mm=k) Xy

i=1

(12)

is the sufficient statistic for &, and the predictive probability
distribution function of the Ith order statistics X, is given by

Psk{xl <% | Xy =%}
- 1 X -k-1) (-1
CB(-k(m-1+) S mel+l+

-k
X{l+(m—l+l+j)u} . (13)
S

Proof. Using the technique of invariant embedding [11-
13], we reduce (9) to

)= 1 & -k-1 N
gg(mk)—B(l_k,(m_lﬂ)Z G

j=0 J

(m=1+1+ (X =% jl _
xVexp| — V|— =0g (X [ %, V),
eXp( S 5, 5 X1 Xk
(14)
where
_ S
V== (15)

is the pivotal quantity, the probability density function of
which is given by

Ik
f(v)y=——v -Vv), v=0. 16
V) X0 exp(—V) (16)
Then
gsk(xl ‘Xk): E{gsk(xl |Xk,v)}
= [0, 04 XV WAV =04 (4 1%).  (17)
0
This ends the proof. [
Corollary 3.1. If | =k + 1,
. —x —(k+1)
Os, (¥ x):k(m—k){n(m—k)—“1 k} -
s VK+HL T K Sc Se
X 2%, 1sksm-1, (18)

and

&
Xy — X
Po { X1 < %n 1 Xi =%} :1‘{1+(m‘k)—k+lsk k} ,

(19)
C. Cumulative Customer Demand

The primary purpose of this paper is to introduce the idea
of cumulative customer demand in inventory control
problems to deal with the order statistics from the underlying
distribution. It allows one to use the above results to
improve statistical decisions for inventory control problems
under parametric uncertainty.
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Assumptions. The customer demand at the ith period
represents a random variable V;, i0{1, ..., m}. It is assumed
(for the cumulative customer demand) that the random
variables

k | m
X =Y X =D Y X =) Y Xy = DY (20)
i= i=l i=1
represent the order statistics (X; < ...
exponential distribution (7).
Inferences. For the above case, we have the following
inferences.
Conditional probability density function of Y., kKO{1, ...,
m-—1}, is given by

m-Kk
9o (Vi1 1K) = F; exp(—

< Xm) from the

(m- k) Yi+
g

], Yk 20; (21)

Conditional probability distribution function of Yy,
k{1, ..., m—1}, is given by

Ge{Yk+1 | k} =1- exp(—

Conditional

7 (22)

probability density function
m . .
= ZizkﬂYi is given by

m-k-1
g@(zm | k) = (m_ k) 1 |:1 —€X _%J ex{—z_m]’

Isksm-1;

(m_ k)yk+1 j

of Zn

Y

\Y,

(23)

Conditional probability distribution function of Z,
M .
= ZizkﬂYi is given by

m-k
Gg(zm|k)=[1—exp[—%"ﬂ Clsksm-1. (24)

III. STOCHASTIC INVENTORY CONTROL
AND ITS OPTIMIZATION

This section deals with inventory items that are in stock
during a single time period. At the end of the period, leftover
units, if any, are disposed of, as in fashion items. Two
models are considered. The difference between the two
models is whether or not a setup cost is incurred for placing
an order. The symbols used in the development of the
models include:

C = setup cost per order,

¢;= holding cost per held unit during the period,

C,= penalty cost per shortage unit during the period,
0s(Yk+1/K)= conditional probability density function of
customer demand, Yy, during the (k+1)th period,

0= parameter (in general, vector),

u = order quantity,

g = inventory on hand before an order is placed.

A. No-Setup Model (Newsvendor Model)

This model is known in the literature as the newsvendor
model (the original classical name is the newsboy model). It
deals with stocking and selling newspapers and periodicals.
The assumptions of the model are:

1. Demand occurs instantaneously at the start of the
period immediately after the order is received.
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2. No setup cost is incurred.

The model determines the optimal value of u that
minimizes the sum of the expected holding and shortage
costs. Given optimal u (= U’), the inventory policy calls for
ordering U'— qif q < u’; otherwise, no order is placed.

If Yy < U, the quantity U =Y, is held during the (k+1)th
period. Otherwise, a shortage amount Yi,;— U will result if
Y>> U. Thus, the cost per the (k+1)th period is

clu%’k” if Y., <u,
cw = N (25)
c, XL if Y, >u

The expected cost for the (k+1)th period, Eg{C(u)}, is
expressed as

Eg{C(w)} = %{QI(U = Yis1) 9o (Y1 | KDYy
0

+6 [ (Vierr =W p(Yicu | k)dykﬂ]. (26)
u
The function E4{C(u)} can be shown to be convex in U,

thus having a unique minimum. Taking the first derivative of
E;z{C(u)} with respect to U and equating it to zero, we get

1 u 00
g(cl { 9o (Vieat | K)dyiar —C; j 9o (Ve | k)dykﬂ] =0 (27)

or
C Py {Yiss SUL —C (1= Pp{Yy sU}) =0 (28)
or
Py ¥ SU} =—2 (29)
1uTk+ = c +Cz .
It follows from (21), (22), (26), and (29) that
w=_9 11{1 +C—2j (30)
m-k (o
and

u]

1 u
EgCU)} = 5| :EpMeat} =@ +€2) [ Yo (Vhor [ K)ic
0

=G 1n(1+&} 31)
m-k o}

B. Parametric Uncertainty
Consider the case when the parameter & is unknown. To

find the best invariant decision rule u®! , we use the invariant
embedding technique [11-13] to transform (25) to the form,
which is depended only on the pivotal quantities V, V|, and
the ancillary factor /7. In statistics, a pivotal quantity or pivot
is a function of observations and unobservable parameters
whose probability distribution does not depend on unknown
parameters. Note that a pivotal quantity need not be a
statistic—the function and its value can depend on
parameters of the model, but its distribution must not. If it is
a statistic, then it is known as an ancillary statistic.
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Transformation of C(u) based on the pivotal quantities V, V
is given by

)= {q(nv V) if i<y, )
oM —V) if \y>7V,
where
u
n=—, (33)
S
Y =Yt~ gy 19 = (m-K)expl-(m-k
v, 20. (34)
Then E{C(l)(n)} is expressed as
co v
ElCm) = | {cl [fov=vigw kv
0 0
+6 [ =mgv | k)dw] f(v)dv. (35)
n

The function E{C"(7)} can be shown to be convex in 7,
thus having a unique minimum. Taking the first derivative of
E{C(l) (17)} with respect to /7 and equating it to zero, we get

<9 n [}

| {cl o 1odv ¢, [gv | k)dvlJf WVdv=0  (36)
0 0 w

or

[vPv, syt v / [ (vydv = ©
0 0 Cl +

(37)
2

It follows from (33), (35), and (37) that the optimum value
of 171s given by

! 1/(k+1)
n”=—[(l+ﬁj —1], (38)
m-k o

the best invariant decision rule is

. S< c 1/(k+1)
BI _ _ © _
u =79 Sk——m_k[(HClJ 1], (39)

and the expected cost, if we use U, is given by
Eg{C(U™)}
1/(k+1)
+
-ak+h [(1 +&J —1] =@, (40)
m-K o}
It will be noted that, on the other hand, the invariant

embedding technique [11-13] allows one to transform
equation (26) as follows:

1 u
Eg{C(w)} = E(QJ(U = Yis1) 9o (Y1 | KDYy
0

+ C2_[(yk+1 ~U)9o(Yis1 | k)dyk+1]
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1 ¢ 2 V('“ ()yk+1 1
— ~ Vs _k —_  7IRT _(iy +
- [Cl.([(u Yk l)V (m )GX{ ] k+1

< “K)VYpu ) 1
*+G I[(ykﬂ —uv’(m-k) ex;{— %Jg aYice J

(41)
Then it follows from (41) that

E{Ep{(CU)}} = [ EpfC()} f (v = Eg {ICP (W)}, (42)
0
where

k(¢ .
E, (€W} =;[c1j (U= Yier1) G, Vo [0
0

+ CZJ.(ka ~U)gg (Vi1 | k)dykﬂ] (43)

represents the expected prediction cost for the (k+1)th
period. It follows from (57) that the cost per the (k+1)th
period is reduced to
Clu——Yk+1 if Yk+l Su)
@) s’k
cPu)= (44)

CZKS:;l—/_ku if Yk+l>u7

and the predictive probability density function of Y,
(compatible with (26)) is given by

-(k+2)
: . 1
O, (Vi |k):(k+1)(m—k){1+(m_k) Y 1} 1
Sk S

Yia1 2 0. (45)

Minimizing the expected prediction cost for the (k+1)th
period,

E, (C? ()} %[cl [ (U= i) g3, Yot 1KY
0

+Czj()’k+1 - U)g;k (Y1 | k)dyk+l} (46)

with respect to U, we obtain u®' immediately, and

(2),BI c(k+1) %) v
Esk{C (U )} :W 1+E -1 (47)

It should be remarked that the cost per the (k+1)th period,
C(z)(u), can also be transformed to

qk(i Yk_] g Yo U
COm=l & S S
C k(YkH _iJ if Yk+1 >£

SIS S S

:{clk(n—W) if W<np 48)

KW =) if W >,
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where the probability density function of the ancillary
statistic W (compatible with (40)) is given by

g5, (W|Kk) = (k+D(m=-K)[1+(m-kw] ", w=0. (49)

Then the best invariant decision rule u®! =I7':S<,where

aninimizes

n
ECV ()} = k[cl [ =g w| kydw
0

+o, [w=mg"w k)dw} (50)
7

C. Comparison of Statistical Decision Rules

For comparison, consider the maximum likelihood
decision rule that may be obtained from (30),

ae =9 1n(1+iJ=/7jMLs<, (51)
-k o
where 8 = S, /K is the maximum likelihood estimator of &,
1/k
M= ln(l +°—2j . (52)
m-k o

Since u® and uM" belong to the same class,

€ ={U:u=nS4, (53)

it follows from the above that uM' is inadmissible in
relation to uB! . If, say, k=1 and ¢, /¢, =100, we have that

Rel.eff. {uM", u®', &

= E,{CuBh}/E{CuMh)} = 0.838. (54)

Thus, in this case, the use of u®! leads to a reduction in the

expected cost of about 16.2 % as compared with u™M" . The
absolute expected cost will be proportional to 8 and may be
considerable.

D. Setup Model (s-SPalicy)

The present model differs from the one in Section C in
that a setup cost C is incurred. Using the same notation, the
total expected cost per the (k+1)th period is

Eg{C(u)} = c+E4{C(u)}
zc+l clr(u—yk )96 (Va1 | K)dYysy
9 ) +1 +1 +

6 [ Verr =W o (Vicwr Wi | (55)

As shown in Section C, the optimum value u” must satisfy
(29). Because c is constant, the minimum value of E, {C(u)}

must also occur at u'. In Fig. 1,
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E,{C(u)}

Eg {C(u)}
Ey{C(9)} ===

Ep{C(S)} ==

Order

Fig. 1. (s-5) optimal ordering policy in a single-period model
with setup cost.

S = U, and the value of s (< S) is determined from the
equation

Eg{C(9)} = Eo{C(S)} =c+E4{C(S)}, s<S.  (56)

The equation yields another value s (> S), which is
discarded. Assume that g is the amount on hand before an
order is placed. How much should be ordered? This
question is answered under three conditions: 1) <§; 2) S<

q=S§3)gq>S
Case 1 (g < 9). Because ( is already on hand, its
equivalent cost is given by Ep{C(q)}.If any additional
amount U — ¢ (U > () is ordered, the corresponding cost
given Uis Ey {C(u)}, which includes the setup cost c. From

Fig. 1, we have
min E{C (W)} = Ep(C(9)} <EsiC@3.  (57)

Thus, the optimal inventory policy in this case is to order S—
qd units.
Case 2 (s g<YS). From Fig. 1, we have

Ep{C(} smin By {C(W} =Ep{C(9)}.  (58)

Thus, it is not advantageous to order in this case and u’ = g
Case 3 (9> 9). From Fig. 1, we have for u> q,

Eg{C(Q)} < Eg{C(u)}. (59)

This condition indicates that, as in case (2), is not
advantageous to place an order — that is, U' = q.

The optimal inventory policy, frequently referred to as the
s— Spolicy, is summarized as

If X< S, order S—X,

(60)
If X = s, do not order.

The optimality of the S — Spolicy is guaranteed because the
associated cost function is convex.

E. Parametric Uncertainty
In the case when the parameter 8 is unknown, the total
expected prediction cost for the (k+1)th period,
E, {CV(W}=c+Eg {CV(u)}

k[ T .
=C+— CIJ‘(U - yk+1)gsk (Vi1 | k)dyk+l
% o
€ [ (Ve =W G5, Vi 1K)y | (61)
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is considered in the same manner as above.

IV. CONCLUSION

In this paper, we develop a new frequentist approach to
improve predictive statistical decisions for inventory control
problems under parametric uncertainty of the underlying
distributions for the cumulative customer demand.
Frequentist probability interpretations of the methods
considered are clear. Bayesian methods are not considered
here. We note, however, that, although subjective Bayesian
prediction has a clear personal probability interpretation, it
is not generally clear how this should be applied to non-
personal prediction or decisions. Objective Bayesian
methods, on the other hand, do not have clear probability
interpretations in finite samples. For constructing the
improved statistical decisions, a new technique of invariant
embedding of sample statistics in a performance index is
proposed. This technique represents a simple and
computationally attractive statistical method based on the
constructive use of the invariance principle in mathematical
statistics.
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