
 

  
Abstract— Most models, which are used for solving 

inventory control problems, are developed in the literature 
under the assumptions that the parameter values of the models 
are known with certainty. When these models are applied to 
solve real-world problems, the parameters are estimated and 
then treated as if they were the true values. The risk associated 
with using estimates rather than the true parameters is called 
estimation risk and is often ignored. In this paper, we consider 
stochastic inventory control problems which are invariant with 
respect to a certain group of transformations. If a given 
decision problem admits a sufficient statistic, it is well known 
that the class of invariant rules based on the sufficient statistic 
is essentially complete (under some assumptions) in the class of 
all invariant rules. If, in this case, there exists an optimal 
invariant rule among invariant rules based on sufficient 
statistic, it is optimal among all invariant rules. The primary 
purpose of this paper is to introduce the idea of cumulative 
customer demand in inventory control problems to deal with 
the order statistics from the underlying distribution. 
Transformations of the performance index based on pivotal 
quantities and ancillary statistics allow one to eliminate 
unknown parameters from the problem and to find the optimal 
statistical decisions for stochastic inventory control under 
parametric uncertainty. Illustrative examples are given.  
 

Index Terms — Stochastic inventory control, uncertainty, 
optimization 
 

I. INTRODUCTION 
large number of problems in production planning and 
scheduling, location, transportation, finance, and 

engineering design require that decisions be made in the 
presence of uncertainty. Most of the inventory management 
literature assumes that demand distributions are specified 
explicitly. However, in many practical situations, the true 
demand distributions are not known, and the only 
information available may be a time-series of historic 
demand data. When the demand distribution is unknown, 
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one may either use a parametric approach (where it is 
assumed that the demand distribution belongs to a  
parametric family  of  distributions)  or  a  non-parametric  
approach  (where  no assumption  regarding  the  parametric 
form  of  the unknown  demand  distribution  is made). 

Under the parametric approach, one may choose to 
estimate the unknown parameters or choose a prior 
distribution for the unknown parameters and apply the 
Bayesian approach to incorporating the demand data 
available. Scarf [1] and Karlin [2] consider a Bayesian 
framework for the unknown demand distribution. 
Specifically, assuming that the demand distribution belongs 
to the family of exponential distributions, the demand 
process is characterized by the prior distribution on the 
unknown parameter. Further extension of this approach is 
presented in [3]. Application of the Bayesian approach to the 
censored demand case is given in [4-5]. Parameter 
estimation is first considered in [6] and recent developments 
are reported in [7-8]. Liyanage and Shanthikumar [9] 
propose the concept of operational statistics and apply it to a 
single period newsvendor inventory control problem. 

Within the non-parametric approach, either the empirical 
distribution or the bootstrapping method (e.g. see [10]) can 
be applied with the available demand data to obtain an 
inventory control policy. 

In this paper we consider the case, where it is known that 
the demand distribution function belongs to a parametric 
family of distribution functions. However, unlike in the 
Bayesian approach, we do not assume any prior knowledge 
on the parameter values. 

Conceptually, it is useful to distinguish between “new-
sample” inventory control, “within-sample” inventory 
control, and “new-within-sample” inventory control.  

For the new-sample inventory control process, the data 
from a past sample of customer demand are used to make a 
statistical decision on a future time period for the same 
inventory control process.  

For the within-sample inventory control process, the 
problem is to make a statistical decision on a future time 
period for the same inventory control process based on early 
data from that sample of customer demand.  

For the new-within-sample inventory control process, the 
problem is to make a statistical decision on a future time 
period for the inventory control process based on early data 
from that sample of customer demand as well as on a past 
data sample of customer demand from the same process. 

In this paper, we obtain optimal statistical decisions under 
parametric uncertainty for the within-sample inventory 
control process. 
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II. WITHIN − SAMPLE INVENTORY CONTROL PROCESS 

A. Mathematical Preliminaries 

Theorem 1. Let X1 ≤ ... ≤ Xk be the first k ordered 
observations (order statistics) in a sample of size m from a 
continuous distribution with some probability density 
function fθ (x) and distribution function Fθ (x), where θ is a 
parameter (in general, vector). Then the joint    probability 
density function of X1 ≤ ... ≤ Xk and the lth order statistics Xl 
(1 ≤ k < l ≤ m) is given by  
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(3) 

 

represents the conditional probability density function of Xl 
given Xk=xk. 

Proof. The joint density of X1 ≤ ... ≤ Xk and Xl is given by 
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It follows from (4) that 
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i.e., the conditional distribution of Xl, given Xi = xi for all i = 
1,…, k, is the same as the conditional distribution of Xl, 
given only Xk = xk, which is given by (5). This ends the 
proof.   � 

Corollary 1.1. The conditional probability distribution 
function of Xl given Xk=xk is 
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B. Exponential Distribution 

In order to use the results of Theorem 1, we consider, for 
illustration, the exponential distribution with the probability 
density function  
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and the probability distribution function  
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Theorem 2. Let X1 ≤ ... ≤ Xk be the first k ordered 
observations (order statistics) in a sample of size m from the 
exponential distribution (7). Then the conditional probability 
density function of the lth order statistics Xl (1 ≤ k < l ≤ m) 
given Xk = xk is 
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and the conditional probability distribution function of the 
lth order statistics Xl given Xk = xk is 
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Proof. It follows from (3) and (6), respectively.   � 
Theorem 3. Let X1 ≤ ... ≤ Xk be the first k ordered 

observations (order statistics) in a sample of size m from the 
exponential distribution (11), where the parameter θ  is 
unknown. Then the predictive probability density function of 
the lth order statistics Xl (1 ≤ k < l ≤ m) is given by 
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is the sufficient statistic for θ, and the predictive probability 
distribution function of the lth order statistics Xl is given by 
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Proof. Using the technique of invariant embedding [11-
13], we reduce (9) to
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is the pivotal quantity, the probability density function of 
which is given by 
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This ends the proof.   �  
Corollary 3.1. If l = k + 1,  
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C. Cumulative Customer Demand 

The primary purpose of this paper is to introduce the idea 
of cumulative customer demand in inventory control 
problems to deal with the order statistics from the underlying 
distribution.  It allows one to use the above results to 
improve statistical decisions for inventory control problems 
under parametric uncertainty. 

Assumptions. The customer demand at the ith period 
represents a random variable Yi, i∈{1, …, m}. It is assumed 
(for the cumulative customer demand) that the random 
variables 
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represent the order statistics (X1 ≤ … ≤ Xm) from the 
exponential distribution (7).  

Inferences. For the above case, we have the following 
inferences. 

Conditional probability density function of Yk+1, k∈{1, …, 
m −1}, is given by  
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Conditional probability distribution function of Yk+1, 
k∈{1, …, m −1}, is given by 
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Conditional probability density function of Zm 
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III. STOCHASTIC INVENTORY CONTROL                                  
AND ITS OPTIMIZATION 

This section deals with inventory items that are in stock 
during a single time period. At the end of the period, leftover 
units, if any, are disposed of, as in fashion items. Two 
models are considered. The difference   between the two 
models is whether or not a setup cost is incurred for placing 
an order. The symbols used in the development of the 
models include: 
c = setup cost per order, 
c1= holding cost per held unit during the period, 
c2= penalty cost per shortage unit during the period, 
gθ (yk+1|k) = conditional probability density function of 
customer demand, Yk+1, during the (k+1)th period, 
θ = parameter (in general, vector), 
u = order quantity, 
q = inventory on hand before an order is placed. 

A. No-Setup Model (Newsvendor Model) 

This model is known in the literature as the newsvendor 
model (the original classical name is the newsboy model). It 
deals with stocking and selling newspapers and periodicals. 
The assumptions of the model are: 

1. Demand occurs instantaneously at the start of the 
period immediately after the order is received. 
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2.  No setup cost is incurred. 
The model determines the optimal value of u that 

minimizes the sum of the expected holding and shortage 
costs. Given optimal u (= u*), the inventory policy calls for 
ordering u*− q if q < u*; otherwise, no order is placed. 

If Yk+1≤ u, the quantity u −Yk+1 is held during the (k+1)th 
period. Otherwise, a shortage amount Yk+1− u will result if 
Yk+1> u. Thus, the cost per the (k+1)th period is 
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The expected cost for the (k+1)th period, Eθ{C(u)}, is 
expressed as 
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The function )}({ uCEθ can be shown to be convex in u, 
thus having a unique minimum. Taking the first derivative of 

)}({ uCEθ  with respect to u and equating it to zero, we get 
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It follows from (21), (22), (26), and (29) that  
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B. Parametric Uncertainty 

Consider the case when the parameter θ  is unknown. To 
find the best invariant decision rule BIu , we use the invariant 
embedding technique [11-13] to transform (25) to the form, 
which is depended only on the pivotal quantities V, V1, and 
the ancillary factor η. In statistics, a pivotal quantity or pivot 
is a function of observations and unobservable parameters 
whose probability distribution does not depend on unknown 
parameters. Note that a pivotal quantity need not be a 
statistic—the function and its value can depend on 
parameters of the model, but its distribution must not. If it is 
a statistic, then it is known as an ancillary statistic.  

Transformation of C(u) based on the pivotal quantities V, V1 
is given by 
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The function )}({ )1( ηCE  can be shown to be convex in η, 
thus having a unique minimum. Taking the first derivative of 

)}({ )1( ηCE  with respect to η and equating it to zero, we get 
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It follows from (33), (35), and (37) that the optimum value 
of η is given by 
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the best invariant decision rule is 
 

  

,11
)1/(1

1

2BI














−








+

−
==

+
∗

k
k

k c

c

km

S
Su η

 

(39) 

 

and the expected cost, if we use uBI, is given by  
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It will be noted that, on the other hand, the invariant 
embedding technique [11-13] allows one to transform 
equation (26) as follows: 
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Then it follows from (41) that 
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represents the expected prediction cost for the (k+1)th 
period. It follows from (57) that the cost per the (k+1)th 
period is reduced to 
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and the predictive probability density function of Yk+1 
(compatible with (26)) is given by 
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Minimizing the expected prediction cost for the (k+1)th 
period, 
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with respect to u, we obtain uBI immediately, and 
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It should be remarked that the cost per the (k+1)th period, 
),()2( uC  can also be transformed to 
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where the probability density function of the ancillary 
statistic W (compatible with (40)) is given by 
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Then the best invariant decision rule ,BI

kSu ∗= η where 
∗η minimizes 
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C. Comparison of Statistical Decision Rules 

For comparison, consider the maximum likelihood 
decision rule that may be obtained from (30), 
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where kSk /=θ
)

 is the maximum likelihood estimator of θ, 
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Since BIu and MLu  belong to the same class, 
 
 

     },:{ kSuu η==C  (53) 
 

it follows from the above that MLu  is inadmissible in 
relation to BIu . If, say, k=1 and 12 / cc =100, we have that 
  

Rel.eff.{uML, uBI, θ} 
 

  .838.0)}({)}({ = MLBI =uCEuCE θθ  (54) 
 

Thus, in this case, the use of BIu leads to a reduction in the 
expected cost of about 16.2 % as compared with MLu . The 
absolute expected cost will be proportional to θ  and may be 
considerable. 

D. Setup Model (s−S Policy) 

The present model differs from the one in Section C in 
that a setup cost c is incurred. Using the same notation, the 
total expected cost per the (k+1)th  period is 
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As shown in Section C, the optimum value u* must satisfy 
(29). Because c is constant, the minimum value of )}({ uCEθ  
must also occur at u*. In Fig. 1, 
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Fig. 1. (s−S) optimal ordering policy in a single-period model  
with setup cost. 

 

S = u*, and the value of s (< S) is determined from the 
equation 

 

  .   )},({)}({)}({ SsSCEcSCEsCE <+== θθθ   (56) 
 

The equation yields another value s1 (> S), which is 
discarded. Assume that q is the amount on hand before an 
order is placed. How much should be ordered?  This 
question is answered under three conditions: 1) q < s; 2) s ≤ 
q ≤ S; 3) q > S. 

Case 1 (q < s). Because q is already on hand, its 
equivalent cost is given by )}.({ qCEθ If any additional 
amount u − q (u > q) is ordered, the corresponding cost 
given u is )}({ uCEθ , which includes the setup cost c. From 
Fig. 1, we have  

 
)}.({)}({)}({min

  
qCESCEuCE

qu
θθθ <=

>   
(57) 

Thus, the optimal inventory policy in this case is to order S − 
q units. 

Case 2 (s ≤ q ≤ S). From Fig. 1, we have 
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Thus, it is not advantageous to order in this case and u* = q. 
Case 3 (q > S). From Fig. 1, we have for u > q, 
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This condition indicates that, as in case (2), is not 
advantageous to place an order − that is, u* = q. 

The optimal inventory policy, frequently referred to as the 
s − S policy, is summarized as 
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The optimality of the s − S policy is guaranteed because the 
associated cost function is convex. 

E. Parametric Uncertainty 

In the case when the parameter θ  is unknown, the total 
expected prediction cost for the (k+1)th period, 
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is considered in the same manner as above. 

IV. CONCLUSION 
In this paper, we develop a new frequentist approach to 

improve predictive statistical decisions for inventory control 
problems under parametric uncertainty of the underlying 
distributions for the cumulative customer demand. 
Frequentist probability interpretations of the methods 
considered are clear. Bayesian methods are not considered 
here. We note, however, that, although subjective Bayesian 
prediction has a clear personal probability interpretation, it 
is not generally clear how this should be applied to non-
personal prediction or decisions. Objective Bayesian 
methods, on the other hand, do not have clear probability 
interpretations in finite samples. For constructing the 
improved statistical decisions, a new technique of invariant 
embedding of sample statistics in a performance index is 
proposed. This technique represents a simple and 
computationally attractive statistical method based on the 
constructive use of the invariance principle in mathematical 
statistics. 
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