
 

 
Abstract—In this work a boundary element 

formulation for the analysis of plate-beam interaction is used 
in the analysis of practical building slabs and waffle slab. This 
formulation uses a boundary element with three degrees of 
freedom per node and the beam element is replaced by their 
actions on the plate, that is, a distributed load and end of 
element forces. From the solution of the differential equation of 
a beam with linearly distributed load the plate-beam 
interaction tractions can be written as a function of the nodal 
values of the beam. With this transformation a final system of 
equation in the nodal values of displacements of plate 
boundary and beam nodes is obtained and from it, all 
unknowns of the plate-beam system are obtained. The results 
show an excellent agreement with those from the a finite 
element analysis. 
 

Index Terms—Boundary element method,  plates in bending, 
beams, stiffners 
 

I. INTRODUCTION 

HE boundary element method was first applied to the 
analysis of buildings slabs by  BÉZINE [1]) that 
analyzed the problem of plates with internal support 

that could be used to simulate a  plate supported on rigid 
columns. Since then, several authors have developed 
formulations for the analysis of buildings slabs via the 
Boundary Element Method, BEM, [2,3,4,5,6,7]. In the usual 
formulation of the boundary element method for plates in 
bending the nodal parameters of the boundary elements are 

the displacements w and its derivative 
w

n




. As each beam’s 

node has three nodal parameters the compatibility of 
displacements and rotations of nodes belonging to the beam 
and the boundary of the plate are hard to manage, requiring 
a re-organization of the final matrix of the system of 
equations generating special lines at the end of this system 
for the nodal parameters that do not coincide with those of 
the contour of the plate. 
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To solve this problem a BEM formulation with 
three nodal parameters was proposed,[8,9] but keeping 
Kirchhoff’s thin plates hypothesis [10]. With this 
formulation coupling the plate with beams and columns is 
much simpler. However in this case the connection of the 
plate with the beam is made exclusively by means of 
vertical forces at the nodes of the finite elements. Due to 
this punctual forces the bending moments at internal 
connecting plate-beam nodes are infinite, represented the 
solution of the differential equation of plates. 

In this work, a new boundary element formulation 
for the analysis of the plate-beam interaction is presented, in 
which the plate is modeled by the formulation referred to 
above and the beam is replaced by its actions on the plate, a 
distributed load and forces at its ends [11,12]. 

In this formulation each beam element has three 
nodes, each with two nodal values, w and ∂w/∂sb, and the 
transverse displacement of the beam is approximated by a 
fifth degree polynomial that represents the analytical 
differential equation solution for a beam under transverse 
loading with linear variation.  As the interaction forces 
between the beam and the plate can be written as a function 
of transverse displacement and as it is written as a function 
of the nodal parameters, integral equations for the plate-
beam coupling can be written in terms of the nodal 
displacements of the plate and the beam. By imposing the 
boundary conditions and solving the system of equations, 
the displacements and tractions on the beams and plate can 
readily be calculated. 

This formulation was then used in the analysis of 
basic plates stiffened with beams and the results were 
excellent. However the formulation needed to be tested for 
more complex problems, such as plates with beams not 
parallel to its sides and  also in usual building structures, 
such as waffle slabs. 

This work presents the integral equations for the 
plate and the solution of the beam and its coupling and then 
show results obtained in the analysis of plates with non-
parallel beams and also for a typical building floor designed 
as waffle slab. The results are compared with those obtained 
by the finite element method demonstrating excellent 
agreement and confirmed that this tool can be effectively 
used in the analysis of building floors slabs. 

  
II. INTEGRAL EQUATIONS 

 

For a plate in bending with concentric beams, 
Figure 1, the following boundary integral equations can be 
written, employing the alternative formulation of Boundary 
Element Method (BEM) with three nodal displacement 
parameters [8,9] in which the beam is replaced by the plate-
beam interaction tractions(Fig. 1 (II)):     
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 Fig. 1. Plate and beam: coordinate systems and 
interface tractions 
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where w, mn and Vn are, respectively, the transverse 
displacement, the bending moment and the equivalent shear 
force along the boundary; g(q) and Ωg are the transverse 
load and the surface where it is applied; p3(q), Vi, Vk, Mi and 
Mk are tractions at the plate-beam interface and Sb is the 
coordinate along each beam element axis. The symbol * is 
used here to indicate fundamental solution.  

From equation (1) the integral representation of the 
derivative of the displacement with respect to a direction ms, 
of a system of coordinates (ms,us), can be derived as 
follows:  
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…(2) 
in above equations, 

K(s) = 1  for internal points  s; 

K(S) = /2  for a point  S  at a boundary 
corner, with internal angle  ; 

K(S) = ½  for a point  S  on a smooth boundary; 
  nsnsci mmR  is the corner reaction; 

 1
1

K (S) s i n 2 s i n 2
2 8

  
         

             …(3) 

 2
1

K (S) cos 2 cos 2
8

 
      

                     …(4) 

where    is the angle between the coordinate systems (n,s), 
at the displacement points, and (ms,us), at the source points 
(Figure 1). 

The integral equations [1,2] are now written to 
boundary points and the plate-beam internal connecting 
points. Thus, the boundary of the plate is divided into 
segments called boundary element with nodes at their ends. 
The rotation ∂w/∂n and the bending moment mn are 
approximated in each boundary element by linear functions, 
and the equivalent shear force, Vn, is approximated by 
concentrated reactions Rk applied to the element nodes, as 
described previously in [13].  As the corner reactions act on 
the same nodes, their values are also represented by the 
reactions Rk. The transverse displacement in each boundary 

element is approximated by a cubic polynomial () and 

written as a function of the nodal parameters, w and w/s, 
at the end nodes of the element. Thus, the transverse 
displacement and its directional derivative can be expressed: 

 
 

1 2 3 4w( ) = [       ]{ }b
e        

' ' ' '
1 2 3 4( )= [      ]{ }b

e
b

w

s
     


                         …(5)                    

where: 
 
1() = (2 - 3 + 3)/4   
’

1() = (-3 + 32)/4 
2() = (1 -  - 2 + 3)L/8   
’

2() = (-1 - 2 + 32)L/8 
3() = (2 + 3 - 3)/4   
’

3() = (3 - 32)/4                    
4() = (-1 -  + 2 + 3)L/8  
’

4() = (-1 + 2 + 32)L/8                                             …(6) 
 

where L is the length of the boundary element 
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III. BEAM REPRESENTATION 
 

The beam element adopted in this formulation is subjected 
to a transverse loading linearly distributed along its length, 
as shown in Figure 1. The differential equation which 
represents the displacement field of this element is: 

4

3 4
b

d w
p EI

ds
                                              …(7)                                   

The beam element have a node at each end and one 
at the midpoint (see Fig. 1 (II)). At this stage of the analysis, 
beam torsion has not been included, and thus only nodal 
parameters related to bending are used: the vertical 
displacement and its directional derivative along the beam 

axis (w and w/sb). 
The solution of this differential equation is a fifth 

degree polynomial, as follows: 
5 4 3 2w( ) = [s s  s  s  s 1]{ }i                               …(8)                                                                

 where { }i  is a vector of generalized constants. With the 

imposition of boundary conditions  e ( )i i
b

w
w

s




 at the 

nodes of the element the solution of the differential equation 
(7) can be obtained as a function of the nodal parameters: 
 

b
1 2 3 4 5 6 ew( ) = [ ( ) ( ) ( ) ( ) ( ) ( )]{ }                    ...(9)                                               

 

Where { }b
e is the vector of nodal variables of the 

beam: 

 { } [      ] 
jb T i k

e i j k
b b b

dwdw dw
w w w

ds ds ds
                     ...(10)                                                               

The shape functions ( )i  are given by: 
5 4 3 2

1( ) 24 68 66 23 1           
5 4 3 2

2 ( ) (4 12 13 6 )bL            
4 3 2

3 ( ) 16 32 16                                                                                  
5 4 3 2

4 ( ) (16 40 32 8 )bL          
5 4 3 2

5 ( ) 24 52 34 7           
5 4 3 2

6 ( ) (4 8 5 )bL                                    ...(11) 

  
In these expressions, Lb is the length of the beam 

element and ξ=Sb/Lb is a dimensionless coordinate along the 
beam axis (S), with origin at node i. 

From the differential equation solution of the beam can 
be obtained tractions and moments at the interface between 
the plate and beam, viz. the distributed load, p3(q), and the 
tractions on the ends, Vi, Vk, Mi and Mk.  

The distributed load at the plate-beam interface is 
obtained by substituting the shape functions for w (9) in the 
equation (7) resulting in: 

 
b
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...(12) 
 
where: 
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6 3
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b
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The bending moments and shear forces at the initial (i) 

and terminal (k) nodes are obtained from the expressions 
2
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ds
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1   respectively: 

2 2 2
b bb b

46 12EI 32 16 -14EI 2EI
[           ]{ }

L LL L
b

i e
bb

EI EI EI
M

LL


  

2 2 2
b bb b

14 -2EI 32 16 46EI -12EI
[           ]{ }

L LL L
b

k e
bb

EI EI EI
M

LL
  

  

3 2 3 2 3 2
b b b b

396 -78EI 192 192 -204EI 30EI
[           ]{ }

L L L L
b

i e
b b

EI EI EI
V

L L
 

                        

3 2 3 2 3 2
b b b b

204 -30EI 192 192 396EI 78EI
[           ]{ }

L L L L
b

k e
b b

EI EI EI
V

L L
  

 .(14) 

 
Substituting these expressions for the plate-beam 

interface tractions, in terms of the displacements of the 
beam nodes, into equation (1) and (2) gives integral 
equations written in terms of the displacements and tractions 
at the plate boundary nodes and the beam element nodes 
displacements. 

 
IV PLATE-BEAM COUPLING SYSTEM OF 

EQUATIONS 
 

By writing the boundary equations for the 
displacements and their derivatives in the normal and 
tangential directions for all nodes on the boundary and by 
performing numerically all the integrations, the following 
set of linear equations can be obtained: 

  {p}+ }V[G]{=
w

w
      H    H   


















                   ...(15)                   

where {wΩ} contains the displacements and their derivatives 
for all beam nodes in the plate domain. This new set of 
linear equations has more unknowns than equations and 
thus, to balance the unknowns and equations, further 
boundary equations are written for the displacements and 
their derivatives at all beam nodes in the domain of the 
plate, resulting in the following set of linear equations: 
 

  }p{+ }V]{G[=
w

w
      H    H   ****



















           ...(16)  

Equations (14) and (15) can be combined to give: 
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                          ...(17)                                                           

 
After applying the boundary conditions, equation (17) 
becomes: 

} B { = } X {]  A [                                                     ...(18)                                                                                                

 
in which {X} is a vector composed of the unknowns. After 
solving this system of equations (18), displacements and 
curvatures at any point on the plate can be computed from 
equation (1), with K(S) = 1.  

 
V NUMERICAL RESULTS 

 

The first example to show the performance of the 
formulation on slabs analysis with parallel beams is the 
building floor sketched in Figure 2 with a constant thickness 
of 10cm, supported at its corners  and subjected to a 
uniform loading of 6.8kN/m2. For the concrete used, 
Young´s modulus E = 2000kN/cm2 and Poisson´s ratio  = 
0.2. 

 

 
 

Fig. 2. Building floor supported at six points on 
the boundary 

 
 In this analysis slab boundary was divided into 24 

elements, the horizontal beams into 4 elements and the 
vertical into 2 elements. In Finite Element analysis the slab  
was meshed with 876 DKT  finite elements [14]. Figure 3 
shows the vertical displacement along the axis of symmetry 
(x) and  both, BEM and FEM results are the same. 
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Fig. 3. Vertical displacement along the axis of 
symmetry (x). 

 

Figures 4 and 5 show the displacements along the beams 
B2 and B4.Once again, the agreement between the two sets 
of results is excellent. 
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Fig. 4. Transverse displacement at points along 
beam     B2.  
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Fig. 5. Transverse displacement at points along 
beam      B4. 

 
The next example is the slab with beams inclined with 

respect to their edges shown in Figure 6. Loading data, 
supports and dimensions are the same as the previous 
example.  
 

 
Fig. 6. Slab with inclined beams 

 
The plate boundary was divided into 48 boundary elements 
and 24 beam elements; the internal beams into 4 elements 
each. Figure 7 show the vertical displacement along the 
inclined beam obtained with the proposed formulation and 
the finite element method. Both results are practically the 
same.  
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Fig. 7. Vertical displacement along beam B6 
 
Figure 8 show the vertical displacement along beam B7 and 
Figure 9 show the results along coordinate s. These results 
show an excellent concordance among BEM a FEM 
analysis. 
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Fig. 8. Vertical displacement along beam B6 
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Fig. 9.  Vertical displacement along S2 

 
Te next example is a waffle slab supported at the four 

corners, as presented in figure 9. The plate has a constant 
thickness of 5 cm, and is subjected to a uniform load of 
7.5kN / m². The boundary beams (B1) cross section is 
20cmx60cm and the internal beams (B2) cross section is 
8cmx40cm. In the numerical analysis the concrete data 

assumed are: Young's modulus E = 2380kN/cm2 and 
Poisson's ratio = 0.2.  

 

 
Fig. 10.  Waffle slab 

 
 
Table 1 shows the results obtained in the analysis of this 

slab with the proposed formulation and those obtained with 
finite element method. For the BEM analysis a mesh with 
40 boundary elements, 60 beam elements and 100 nodes 
were used. For the FEM analysis were adopted two meshes, 
one of 400 and another of 1600 finite elements. These 
results show excellent agreement among both formulations. 

 
 

TABLE I 
WAFFLE SLAB ANALYSIS RESULTS 

nodes
Coordinates Displacements w(cm) 

x y BEM FEM 400 FEM 1600

1 300 0 0.2682 0.26478 0.26815 

2 300 60 0.5416 0.54084 0.54159 

3 300 120 0.7674 0.76508 0.76684 

4 300 180 0.9565 0.95421 0.95607 

5 300 240 1.0640 1.0610 1.0636 

6 300 300 1.1111 1.1079 1.1102 

7 240 0 0.2554 0.25513 0.25528 

8 240 60 0.5118 0.51039 0.5114 

9 240 120 0.7389 0.73663 0.73832 

10 240 180 0.9153 0.91237 0.91455 

11 240 240 1.0260 1.0231 1.0256 

12 240 300 1.0640 1.0610 1.0636 

13 120 0 0.1585 0.1584 0.15849 

14 120 60 0.3526 0.35155 0.35229 

15 120 120 0.5235 0.52191 0.52311 

16 120 180 0.6559 0.65387 0.65539 

17 120 240 0.7389 0.73663 0.73832 
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18 120 300 0.7674 0.76508 0.76684 

19 0 0 0 0 0 

20 0 60 0.08351 0.08342 0.08347 

21 0 120 0.1586 0.1584 0.15849 

22 0 180 0.2176 0.21737 0.21749 

23 0 240 0.2554 0.25513 0.25528 

24 0 300 0.2683 0.268 0.26815 
  

VI CONCLUSION 

In this work practical examples of building floors are 
analyzed with a combination boundary element method, to 
represent the plate, with the solution of the differential 
equation of beams to represent the interaction tractions 
among these two structural elements. Adopting a linear 
distribution for the traction between plate and beam the 
solution of the differential equation is a fifth degree 
polynomial which is then written as a function of the nodal 
parameters adopted for the beam. So the integral equations 
for the plate are written exclusively in function of the nodal 
displacements of the boundary of the plate and beams. The 
results were compared with those of the finite element 
method showing excellent agreement. 
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