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Abstract—In this study we develop high order numerical
methods to capture the spatiotemporal dynamics of a gener-
alized Kolmogorov-Petrovskii-Piskunov (KPP) equation char-
acterized by density dependent non-linear diffusion. Towards
this direction we consider third order Strong Stability Pre-
serving Runge-Kutta (SSPRK) temporal discretization schemes
coupled with the fourth order Hermite cubic Collocation (HC)
spatial discretization method. We numerically investigate their
convergence properties to reveal efficient HC-RK pairs for
the numerical treatment of the generalized KPP equation.
The Hadamard product is used to characterize the colloca-
tion discretized non-linear equation terms. Several numerical
experiments are included to demonstrate the performance of
the methods.

Index Terms—Generalized Kolmogorov-Petrovskii-Piskunov
Equation, Hermite Collocation, Strong Stability Preserving
Runge-Kutta, Hadamard product.

I. INTRODUCTION

To incorporate density-dependent active motility to, for in-
stance, biological migration models, described by the Fisher
( [1]) or the KPP ( [2]) classical equations, is by considering
a density-dependent diffusion coefficient D(u) (cf. [3], [4],
[5] and the references therein). Assuming that D(u) depends
linearly in u, that is D(u) = λ0u + λ1 (cf. [6]), the
generalized KPP equation we consider here takes the form:

ut = L[u] := [(λ1u+ λ0)ux]x +
M∑
k=1

λk+1u
k , (1)

where u ≡ u(x, t) and λi ∈ R, for all i = 0, . . . ,M . For
the corresponding Cauchy problem we also assume an initial
density distribution u(x, 0) = f(x), while for its numerical
treatment we also impose Neumann boundary conditions

ux(a, t) = 0 and ux(b, t) = 0 (2)

away enough form the wave front.
We point out that, the classical KPP problem has been

extensively investigated in the literature (see for example
[7] - [14] and the references therein) as its contribution
to model development in mathematical biology, chemistry,
genetics and many, many more important scientific areas, is
fundamental.

Manuscript received March 10, 2015; revised April 6, 2015.
This work was supported by the ESF and Greek national funds through

the operational program Education and Lifelong Learning of the National
Strategic Reference Framework (NSRF) THALES (Grant number: MIS-
379416).

All authors are with the Applied Math & Computers Lab, Technical
University of Crete, 73100 Chania, Crete, Greece

Email of the corresponding author : y.saridakis@amcl.tuc.gr

Aiming at the development of high order numerical
schemes for the investigation of the spatiotemporal dynamics
of the generalized KPP equation (1), and encouraged of our
earlier results presented in [15] for the generalized Fisher
equation, in Section 2 we adapt the Hermite Collocation
(HC) method, a fourth order scheme, to discretize in space.
In Section 3, explicit (to avoid solving nonlinear systems)
third order Strong Stability Preserving (SSP) Runge-Kutta
time discretization schemes are coupled with the HC method.
Their efficiency and convergence properties are numerically
investigated in Section 4.

II. HERMITE COLLOCATION (HC) SPATIAL
DISCRETIZATION METHOD

Assuming sufficiently smooth solutions of equation (1), a
uniform partition of [a, b] into N subintervals, with spacing
h = (b− a)/N and nodes xj := a+ jh , j = 1, . . . , N + 1,
the Hermite Collocation method seeks O(h4) approximations
in the form:

U(x, t) =
N+1∑
j=1

[α2j−1(t)φ2j−1(x) + α2j(t)φ2j(x)] (3)

where φ2j−1(x) and φ2j(x) are the Hermite cubic nodal
basis functions centered over node xj , described by

φ2j−1(x) =


φ
(
xj−x
h

)
, x ∈ Ij−1

φ
(
x−xj

h

)
, x ∈ Ij

0 , otherwise

,

φ2j(x) =


−hψ

(
xj−x
h

)
, x ∈ Ij−1

hψ
(
x−xj

h

)
, x ∈ Ij

0 , otherwise

(4)

with φ(s) = (1 − s)2(1 + 2s) , ψ(s) = s(1 − s)2 for
s ∈ [0, 1].

Equations (3) and (4) directly imply that each Hermite basis
function (except the boundary ones) is supported only over
two consecutive elements. Hence, over each element Ij =
[xj , xj+1] , j = 1, . . . , N , there are only 4 non-zero basis
functions, and therefore Ij is an element of 4 degrees of
freedom (d.o.f.). As an immediate consequence, for x̄ ∈ Ij ,
we may write

U(x̄, t) =

2j+2∑
`=2j−1

α`(t)φ`(x̄)
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which combined with equation (4) yields the well celebrated
Hermite interpolation properties described by

α2j−1(t) = U(x2j−1, t) , α2j(t) = Ux(x2j−1, t) . (5)

Substitution of the approximate solution (3) into equations
(1) and (2) yields the residuals

R(x, t) := Ut(x, t)− L [U(x, t)] (6)
B(x, t) := Ux(x, t) . (7)

For the evaluation of the unknown parameters αi ≡
αi(t) , i = 1, . . . , 2(N+1) the Collocation method produces
a system of ordinary differential equations (ODEs) by forcing
the residual R(x, t) to vanish at 2N interior collocation
points and the boundary residual B(x, t) at 2 boundary
collocation points, namely

R(σi, t) = 0 , i = 1, . . . , 2N (8)
B(a, t) = 0 and B(b, t) = 0 . (9)

Collocation at the Gauss points (cf. [16]) adopts the two
roots of the Legendre polynomial of degree 2 in each element
Ij , j = 1, . . . , N to produce the needed interior collocation
points. Namely, the 2N interior Gaussian collocation points
for the element Ij , j = 1, . . . , N are given by

σ2j−1 = xj +
h

2

(
1− 1√

3

)
and σ2j = xj +

h

2

(
1 +

1√
3

)
.

(10)
Combination, now, of equations (6), (8) and (10) yields the
two elemental collocation equations in the from

Ut(σi, t) = L [U(σi, t)] , i = 2j − 1, 2j (11)

or, equivalently, by using (5) and expanding,

2j+2∑
`=2j−1

α̇`(t)φ`(σi) =

λ0 + λ1

2j+2∑
`=2j−1

α`(t)φ`(σi)


·

2j+2∑
`=2j−1

α`(t)φ
′′
` (σi)

+ λ1

 2j+2∑
`=2j−1

α`(t)φ
′
`(σi)

2

(12)

+
M∑
k=1

λk+1

 2j+2∑
`=2j−1

α`(t)φ`(σi)

k

where, of course, α̇`(t) =
d

dt
α`(t) and φ′`(x) =

d

dx
φ`(x).

To express, now, the above elemental equations (12) in
matrix form, and avoid lengthy algebraic manipulations, let
us first observe that

2j+2∑
`=2j−1

α`(t)φ
(m)
` (σi) |i=2j−1,2j = C

(m)
j αααj , (13)

where

C
(m)
j =

[
A

(m)
j B

(m)
j

]
, m = 0, 1, 2 (14)

αααj =
[
α2j−1(t) α2j(t) α2j+1(t) α2j+2(t)

]T
(15)

with

A
(m)
j =

[
φ
(m)
2j−1(σ2j−1) φ

(m)
2j (σ2j−1)

φ
(m)
2j−1(σ2j) φ

(m)
2j (σ2j)

]

=
1

hm



[
s
(m)
1 hs

(m)
2

s
(m)
3 −hs(m)

4

]
, m = 0, 2

[
s
(m)
1 hs

(m)
2

s
(m)
1 hs

(m)
4

]
, m = 1

(16)

B
(m)
j =

[
φ
(m)
2j+1(σ2j−1) φ

(m)
2j+2(σ2j−1)

φ
(m)
2j+1(σ2j) φ

(m)
2j+2(σ2j)

]

=
1

hm



[
s
(m)
3 hs

(m)
4

s
(m)
1 −hs(m)

2

]
, m = 0, 2

[
s
(m)
3 hs

(m)
4

s
(m)
3 hs

(m)
2

]
, m = 1

(17)

and

m = 0 m = 1 m = 2

s
(m)
1

9+4
√
3

18 −1 −2
√

3

s
(m)
2

3+
√
3

36

√
3
6 −1−

√
3

s
(m)
3

9−4
√
3

18 1 2
√

3

s
(m)
4 − 3−

√
3

36 −
√
3
6 −1 +

√
3

.

Using, now, the symbol ◦ to denote the Hadamard matrix
product, it may easily verified, after some algebraic manip-
ulations, that the matrix form of the elemental equations in
(12) may be written as

C
(0)
j α̇ααj = λ0C

(2)
j αααj + λ1

(
C

(0)
j αααj

)
◦
(
C

(2)
j αααj

)
+ λ1

(
C

(1)
j αααj

)
◦
(
C

(1)
j αααj

)
+

M∑
k=1

λk+1

(
C

(0)
j αααj

)◦k
. (18)

Moreover, recall the relations in (5) and observe that

α2(t) = Ux(x1, t) ≡ Ux(a, t)

and
α2N+2(t) = Ux(xN+1, t) ≡ Ux(b, t) ,

which, combined with the boundary residual equations in (7)
and (9), yield

α2(t) = α2N+2(t) = 0 , (19)

hence, also,
α̇2(t) = α̇2N+2(t) = 0 . (20)

A careful assembly of all elemental and boundary col-
location equations, described above, leads to the non-linear
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Collocation system of ODEs, described by

C0α̇αα = λ0C2ααα

+ λ1 (C1ααα ◦ C1ααα+ C0ααα ◦ C2ααα)

+
M∑
k=1

λk+1 (C0ααα)
◦k

(21)

where the 2N ×2N matrices Cm, m = 0, 1, 2 are described
by

Cm =



Ã
(m)
1 B

(m)
1

A
(m)
2 B

(m)
2

. . . . . .

A
(m)
N−1 B

(m)
N−1

A
(m)
N B̃

(m)
N


while the 2N × 1 vectors ααα ≡ ααα(t) and α̇αα ≡ α̇αα(t) are
described by

ααα =
[
α1(t) α3(t) α4(t) · · · α2N (t) α2N+1(t)

]T
α̇αα =

[
α̇1(t) α̇3(t) α̇4(t) · · · α̇2N (t) α̇2N+1(t)

]T
.

The 2×2 matrices Ã(k)
1 and B̃(k)

N are obtained by omitting the
second column of the matrices A(k)

1 and B(k)
N respectively, as

the vanishing parameters α2 and α2N+2 have been omitted.
Concluding this section we point out that the linear inde-

pendence of the Hermite cubic basic functions yields the non-
singularity of the coefficient matrix C0 of the Collocation
ODE system in (21) implying the unique solution of the
system for any fixed t = tn and the existence, of course, of
the inverse C−10 .

III. STRONG STABILITY PRESERVING RUNGE-KUTTA
TIME DISCRETIZATION SCHEMES

High order strong stability preserving (SSP) Runge-Kutta
methods were developed (cf. [17], [18], [19]) for the time
discretization of the semi-discrete system obtained from the
spatial discretization of PDEs by a finite difference or finite
element method.

The SSPRK methods were originally developed for the
solution of the semi-discrete ODE system

vvvt = F (vvv) ,

arising from the hyperbolic equation

vt + f(v)x = 0 ,

and aimed to the preservation of the Total Variation Dimin-
ishing (TVD) property satisfied by an appropriately cho-
sen spatial discretization coupled with forward Euler (FE)
integration. The essence of the SSPRK time discretization
methods lies on their ability to maintain strong stability
while increasing the order of accuracy, under the hypothesis
that forward Euler is strongly stable and providing suitable
restrictions of the time stepping. Namely, assuming that, for
any given norm, semi-norm or convex functional || · ||, the
FE satisfies the strong stability requirement

||vvvnFE + ∆tF (vvvnFE)|| ≤ ||vvvnFE || ,

with vvvnFE := vvvFE(tn) and tn := n∆t , n = 1, 2 . . .
for sufficiently small ∆t ≤ ∆tFE , the SSP discretization
satisfies

||vvvn+1|| ≤ ||vvvn|| for ∆t ≤ c∆tFE .

Adapting the SSPRK class of time discretization methods
for the solution of parabolic problems is not always efficient.
The stiffness of the some parabolic operators, even when the
hyperbolic part dominates, may affect the stability region
hence, also, the effectiveness of the methods. However,
the simplicity, the effectiveness and the explicit nature of
the SSP class of methods should not be over passed with
ease, especially for parabolic operators with mild stiffness
problems.

In this work, for the solution the semi-discrete non-linear
Collocation system of ODEs in (21), which is rewritten for
the needs of this section as

α̇αα = C(ααα) (22)

where, of course,

C(ααα) := λ0C
−1
0 C2ααα

+ λ1C
−1
0 (C1ααα ◦ C1ααα+ C0ααα ◦ C2ααα)

+
M∑
k=1

λk+1C
−1
0

(
C(0)ααα

)◦k
,

(23)

we consider two optimal (cf. [20], [21]) third order stage
three and stage four SSP schemes, which are denoted by
SSP(3,3) and SSP(4,3) and they are written in the form:

SSP (3, 3)

ααα(1) = αααn + ∆tC(αααn)

ααα(2) = 3
4ααα

n + 1
4ααα

(1) + 1
4∆tC(ααα(1))

αααn+1 = 1
3ααα

n + 2
3ααα

(2) + 2
3∆tC(ααα(2))

and

SSP (4, 3)

ααα(1) = αααn + 1
2∆tC(αααn)

ααα(2) = ααα(1) + 1
2∆tC(ααα(1))

ααα(3) = 2
3ααα

n + 1
3ααα

(2) + 1
6∆tC(ααα(2))

αααn+1 = ααα(3) + 1
2∆tC(ααα(3))

Once the initial vector ααα0 has been determined, we can
compute the solutions at the required time steps of the above
equations. The initial vector ααα0 can be easily determined
by making use of the basic Hermite interpolation properties,
described in (5), and the initial condition u(x, 0) = f(x). In
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doing so one may obtain

ααα0 =



α1(0)

α3(0)

α4(0)

...
α2N−1(0)

α2N (0)

α2N+1(0)


=



U(x1, 0)

U(x2, 0)

Ux(x2, 0)

...
U(xN−1, 0)

Ux(xN−1, 0)

U(xN , 0)


=



f(x1)

f(x2)

f ′(x2)

...
f(xN−1)

f ′(xN−1)

f(xN )


(24)

IV. NUMERICAL RESULTS

Several different model problems are used in this section
for the assessment of the HC-SSPRK schemes. The spatial
absolute error

En := ||U(x, tn)− u(x, tn)||2
is used in all experiments to measure the accuracy of the
numerical approximations in each time step t = tn, while
their infinity norm over all time steps

E∞ = max
n
{En}

is adapted to evaluate the overall accuracy of the numerical
space-time integration. The order of convergence (O.o.C) of
the Collocation method, as well as the computational time
needed to reach time level t = 2, are also used to demonstrate
the preservation of the expected accuracy and the efficiency
of the methods.

Model Problem I
The first model problem, used to investigate the perfor-

mance of the HC-RK methods, is described by

ut = [(1− 2u)ux]x +
1

2
u− u2

ux(−π, t) = 0, ux(π, t) = 0

u(x, 0) =
1

2
− 1

6

(
1 + sin

x

2

)
and admits the exact solution (cf. [6])

u(x, t) =
1

2
− 1

3

(
1 + sin

x

2

)(
1 + e

t
2

)−1
.

3

2.5

t

2

1.5

1

0.5

0-3
-2

-1

x

0
1

2
3

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

u
(x

;t
)

Fig. 1: Plot of the exact/numerical solution

The results obtained from all experiments for this model
problem, are reported my means of Table I and Figure 2 that
follow.

TABLE I Computational Performance of HC-RK schemes
Error Norm Collocation’s Time (sec) needed

E∞ O.o.C. to reach t = 2

h SSP(4,3)/(3,3) SSP(4,3)/(3,3) SSP(4,3) SSP(3,3)
1/4 2.91e-07 - 0.07 0.21
1/8 1.97e-08 3.88 0.26 0.76

1/16 1.28e-09 3.94 1.19 3.37
1/32 8.01e-11 3.99 5.22 15.74
1/64 5.05e-12 3.98 28.38 88.38

Elements N
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Fig. 2: Time comparison in seconds between SSPRK(4,3)-
(3,3) and RK4.

The CFL conditions, imposed on time stepping, are numer-
ically found to satisfy

∆t ≤ 1

5
h2 for SSPRK(4,3)

∆t ≤ 1

10
h2 for SSPRK(3,3)

and, apparently, favor the SSPRK(4,3) scheme. Under these
restrictions both time discretization schemes remain strongly
stable, as it is depicted in Figure 3 for SSPRK(4,3), and at
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Fig. 3: Spatial absolute error as a function of time for the
HC-SSPRK(4,3)

the same time, produce identical high accuracy error results
while preserving the O(h4) order of convergence of the HC
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method (see Table I). However, due to the CFL condition,
the SSPRK(4,3) outperforms HC-SSRK(3,3) (see Table I and
Figure 2) method despite the fact that it needs the calculation
of an extra stage.

Model Problem II
The second model problem, used to investigate the perfor-

mance of the HC-RK methods, is described by

ut = 1
100uxx + 1

4u
(
1− u3

)
ux(−10, t) = 0, ux(5, t) = 0

u(x, 0) = 1 + (23/2 − 1)e(−15σ1x)
−2/3

and admits the exact solution (cf. [11])

u(x, t) = 1 + (23/2 − 1)e(−
3
2σ1(10x+2λ1t))

−2/3

where σ1 = λ−
√
λ2 − 1

4 and λ = 7
√
2

16
√
5

.
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Fig. 4: Plot of the exact/numerical solution

The results obtained from all experiments for this model
problem, are reported my means of Table II and Figure 5
that follow.

TABLE II Computational Performance of HC-RK schemes
Error Norm Collocation’s Time (sec) needed

E∞ O.o.C. to reach t = 2

h SSP(4,3)/(3,3) SSP(4,3)/(3,3) SSP(4,3) SSP(3,3)
1/4 2.17e-04 - 0.10 0.17
1/8 1.42e-05 3.93 0.51 0.83

1/16 8.84e-07 4.00 2.85 4.57
1/32 5.52e-08 4.00 18.60 29.48
1/64 3.45e-09 4.00 134.71 208.29

The CFL conditions, imposed on time stepping, are numer-
ically found to satisfy

∆t ≤ 1

8
h2 for SSPRK(4,3)

∆t ≤ 1

16
h2 for SSPRK(3,3)

and, apparently, favor the SSPRK(4,3) scheme. Under these
restrictions both time discretization schemes remain stable,
as it is depicted in Figure 6 for SSPRK(4,3), and at the
same time, produce identical high accuracy error results
while preserving the O(h4) order of convergence of the HC
method (see Table II). However, due to the CFL condition,
the SSPRK(4,3) outperforms HC-SSRK(3,3) (see Table II
and Figure 5) method despite the fact that it needs the
calculation of an extra stage.
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Fig. 5: Time comparison in seconds between SSPRK(4,3)-
(3,3) and RK4.
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Fig. 6: Spatial absolute error as a function of time for the
HC-SSPRK(4,3)

Model Problem III

The third model problem, used to investigate the perfor-
mance of the HC-RK methods, is described by
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Fig. 7: Plot of the numerical solution
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ut =

[(
1

10
u+ 1

)
ux

]
x

+ u− u2 − 2u3

ux(−5, t) = 0, ux(5, t) = 0

u(x, 0) =
1

0.4
√
π
e−( x

0.4 )
2

.

The results obtained from all experiments for this model
problem, are reported my means of Table III and Figure 8
that follow.

TABLE III Computational Performance of HC-RK schemes
Error Norm Collocation’s Time (sec) needed

E∞ O.o.C. to reach t = 2

h SSP(4,3)/(3,3) SSP(4,3)/(3,3) SSP(4,3) SSP(3,3)
1/4 1.72e-05 - 0.18 0.27
1/8 1.26e-06 3.77 0.78 1.20
1/16 8.17e-08 3.94 3.93 6.17
1/32 5.15e-09 3.98 23.03 36.14
1/64 3.24e-10 3.98 147.29 252.05
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Fig. 8: Time comparison in seconds between SSPRK(4,3)-
(3,3) and RK4.

The CFL conditions, imposed on time stepping, are numer-
ically found to satisfy

∆t ≤ 1

10
h2 for SSPRK(4,3)

∆t ≤ 1

20
h2 for SSPRK(3,3)

and favor consistently the SSPRK(4,3) scheme. Under these
restrictions both time discretization schemes produce identi-
cal high accuracy error results while preserving the O(h4)
order of convergence of the HC method (see Table III). How-
ever, due to the CFL condition, the SSPRK(4,3) outperforms
HC-SSRK(3,3) (see Table III and Figure 8) method despite
the fact that it needs the calculation of an extra stage.

CONCLUSION

In this work, the fourth order HC is coupled to third
order SSPRK schemes for the treatment of a generalized
Fisher equation. Numerical results presented, imply that HC-
SSPRK(4,3) method is a very competitive, effective and
stable space-time integration scheme. For stiff parabolic
problems and problems with large derivative variations other
type time integration schemes and adaptive grids will be used
in future work.
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