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Abstract—The main goal of the paper is to present construc-
tions of linear approximation methods preserving the shape
in the sense of cones of generalized convex functions and to
examine their approximation properties using Korovkin type
results for conservative linear approximation.

Index Terms—shape-preserving approximation; linear ap-
proximation; degree of approximation

I. INTRODUCTION

Different applications of computer-aided geometric design
require to approximate functions with preservation of such
properties as monotonicity, convexity, concavity and the like.
The part of approximation theory that deals with this type
of problem is known as the theory of shape preserving
approximation. Over the past 30 years extensive study in the
theory of shape-preserving approximation has brought about
new results, the most substantial of which were outlined in
[1], [2] and [3].

One of the main directions of research in the theory
of shape-preserving approximation is the study of shape-
preserving properties of Bernstein-type polynomials. It was
shown by J. Pál [4] in 1925 that any convex function defined
on [0,1] can be uniformly approximated by a sequence of
convex algebraic polynomials on [0,1]. Some years later T.
Popoviciu [5] proved that if f is k-monotone on [0,1], then
Bernstein polynomial

Bnf(x) :=
n∑
i=0

(
n

i

)
xi(1− x)n−if

(
i

n

)
(1)

also is monotone of order k on [0,1]. The papers [6], [7], [8],
[9], [10] investigate the shape preserving and convergence
properties of sequences of linear Bernstein-type operators.
On the other hand, it is well-known that one of the short-
comings for Bernstein-type approximation is the low order
of approximation [11].

The papers [12], [13] present the example of linear opera-
tor of finite rank n that preserves k-monotonicity and uses k-
th derivative’s values of approximated function at equidistant
knots on [0,1], with optimal order of approximation n−2.
It should be noted that non-linear approximation methods
preserving k-monotonicity are much better in the terms of
approximation error than linear ones [14]. On the other hand,
for sequences of linear operators preserving k-monotonicity
(as well as intersections of cones) there are [15], [16], [17]
simple convergence conditions (Korovkin type results).
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Definition 1. Let k ∈ N and let ul ∈ Ck−1[0, 1], l =
0, . . . , k − 1, be such that a system {u0, . . . , uk−1} is an ex-
tended complete Tchebycheff system on [0, 1] (ECT-system).
We recall that a function f , defined on [0,1], is said to be
convex relative to the system {u0, . . . , uk−1}, if∣∣∣∣∣∣∣∣∣

u0(t0) u0(t1) . . . u0(tk)

. . . . . . . . . . . .

uk−1(t0) uk−1(t1) . . . uk−1(tk)

f(t0) f(t1) . . . f(tk)

∣∣∣∣∣∣∣∣∣ ≥ 0

for all choices of points 0 < t0 < t1 < . . . < tk < 1.

Definition 2. Let

C(u0, . . . , uk−1)

denote the cone of all real-valued function defined on [0,1]
and convex relative to the system {u0, . . . , uk−1}. In the
following we will use the notation

Vk := C(u0, . . . , uk−1)

for brevity.

In particular, if u0(x) = 1, then C(u0) is the cone of all
non-decreasing functions on (0, 1). If u0 = 1, u1(x) = x,
then C(u0, u1) is the cone of all convex functions on (0, 1).
The review of the theory of generalized convex functions can
be found in the book [18].

If function f ∈ C[0, 1] has shape properties, it usually
means that element f belongs to a cone V in C[0, 1].

Definition 3. Let V be a cone in C[0, 1]. It is said that a
linear operator L : C[0, 1]→ C[0, 1] preserves the shape in
the sense of the cone V if L(V ) ⊂ V .

The main goal of the paper is to present constructions of
linear finite-dimensional methods preserving shape-property
in the sense of the cone Vk and to examine their approxima-
tion properties.

II. KOROVKIN-TYPE THEOREMS

One of the most well-known classes of linear operators
which preserve shape is the class of linear positive operators.
Let V0 denote the cone of all non-negative continuous
functions defined on [0,1], i.e V0 := {f ∈ C[0, 1] : f ≥ 0}.

Definition 4. Recall that an operator L defined in C[0, 1]
with range in C[0, 1], is called positive operator, if L(V0) ⊂
V0, i.e. if L preserves the shape in the sense of cone V0.

Results of Korovkin are classical in the theory of positive
operators. Korovkin found [19] conditions of convergence of
a sequence of linear positive operators to identity operator I
in C[0, 1].
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Let ej(t) = tj , j = 0, 1, . . .. Let ‖·‖ denote uniform norm,
‖f‖ = sup

t∈[0,1]
|f(t)|.

Theorem 1. Let Ln : C[0, 1] → C[0, 1], n ≥ 1, be a
sequence of linear operators. If

1) Ln(V0) ⊂ V0, n ≥ 1,
2) lim

n→∞
‖(Ln − I)ej‖ = 0, j = 0, 1, 2,

then
lim
n→∞

‖(Ln − I)f‖ = 0

for all f ∈ C[0, 1].

In this section we use some results of [16] and prove
Korovkin-type results for sequences of linear operators pre-
serving shape-property in the sense of the cone Vh,k(σ).

We need the following result proved in [16].
Let R[0,1] be the space of all real-valued functions defined

on [0,1]. Let B be a subset of R[0,1], and A be subspace of
C[0, 1] with A ⊂ B. Let L : B → R[0,1] be a linear operator
satisfying L(A) ⊂ C[0, 1].

Lemma 2. Let P = {f ∈ B : Lf ≥ 0} and let V be a cone
of A. Let U be a finite-dimensional subspace of A satisfying
the following properties:

1) there exists Chebyshev system {w0, . . . , wr}, r ≥ 2,
such that L(U) = span {w0, . . . , wr}

2) for every point z ∈ [0, 1], there exists φz ∈ V ∩U such
that
• Lφz(z) = 0 < Lφz(x) for all x ∈ [0, 1] \ z
• ∀f ∈ A, ∃α = α(f) > 0: β > α ⇒ βφz + f ∈ V

Let {Kn}n≥1, Kn : A → B, be a sequence of linear
operators satisfying the following properies

1) Kn(P ∩ V ) ⊂ P for n ≥ 1
2) for every f ∈ U , L(Knf) converges uniformly to Lf

as n→∞
Then for every f ∈ A, L(Knf) converges uniformly to

Lf as n→∞

Let ul ∈ Ck+2[0, 1], l = 0, . . . , k + 2, be such that a
system {u0, . . . , uk+2} is an ECT-system on [0, 1].

Without loss of generality we can assume that functions
u0, . . . , uk+2 ∈ Ck+2[0, 1] satisfy initial conditions u(p)l =
0, p = 0, . . . , l − 1, l = 1, . . . , k + 2. It is known [18] that
the system {u0, . . . , uk+2} can be represented as

u0(t) = ω0(t),

ul(t) = ω0(t)×∫ t

0

ω1(ζ1)

∫ ζ1

0

ω2(ζ2) . . .

∫ ζl−1

0

ωl(ζl)dζl . . . dζ1,

l = 1, . . . , k + 2,

where ω0, . . . , ωk+2 are strictly positive functions on [0,1],
such that ωl ∈ Ck−l[0, 1], l = 0, . . . , k + 2.

Let Dj , j = 0, . . . , k, denote the first order differential
operator

(Djf)(t) =
d

dt

(
f(t)

ωj(t)

)
.

Denote D[r] = Dr−1 . . . D0, r = 1, . . . , k, D[0] := I . It is
known [18] that

D[j+1]uj+1 = ωj+1, j = 0, . . . , k − 1,

D[j+1]uj = 0, j = 0, . . . , k.

Note that uj ∈ Vj := C(u0, . . . , uj−1), j = 1, . . . , k + 2.
One of the most well-known examples for ECT-system

is {e0, e1, . . . , ek+2}, i.e the system of monomial functions.
The system is generated by ω0 = 1, ωj = j, j = 1, . . . , k+2.
Then uj = ej , j = 0, . . . , k + 2, and D[j] = Dj , where Dj

is the j-th differential operator, Djf(t) = djf(t)
dtj .

Theorem 3. Let Ln : Ck[0, 1] → Ck[0, 1], n ≥ 1, be a
sequence of linear operators. If

1) Ln(Vk) ⊂ Vk,
2) lim

n→∞
‖(D[k]uj−D[k](Lnuj)‖ = 0, j = k, k+1, k+2,

then
lim
n→∞

‖(D[k]f −D[k](Lnf)‖ = 0

for all f ∈ Ck[0, 1].

We will prove the following more general result.
Let σ = (σ0, . . . , σk) ∈ Rk+1, σi ∈ {−1, 0, 1}, and let h,

k be two integers, such that σhσk 6= 0. Consider the cone

Vh,k(σ) =
k⋂

l=h, σl 6=0

σlVl. (2)

Denote σ[j] = {σ[j]
i }i≥0, with σ[j]

i = 0 for i 6= j and σ[j]
j =

σj . Let σ(j) = {σ(j)
i }i≥0, with σ

(j)
i = σi for i 6= j and

σ
(j)
j = 0.

Theorem 4. Let Vh,k(σ) be the cone defined in (2). Let
Ln : Ck[0, 1] → Ck[0, 1], n ≥ 1, be a sequence of linear
operators. If

1) Ln(Vh,k(σ)) ⊂ Vh,k(σ[k]),
2) lim

n→∞
‖(D[k]uj −D[k](Lnuj)‖ = 0, j = h, . . . , k + 2,

then
lim
n→∞

‖(D[k]f −D[k](Lnf)‖ = 0

for all f ∈ Ck[0, 1].

The proposition of Theorem 4 follows from Lemma 2 and
Lemma 5.

Lemma 5. For every point z ∈ [0, 1], there exists ϕz ∈
span{uh, . . . , uk+2} such that

1) ϕz ∈ Vh,k(σ(k));
2) D[k]ϕz(z) = 0 < D[k]ϕz(x) for all x ∈ [0, 1] \ {z};
3) for every f ∈ Ck[0, 1] there exists α = α(f) ≥ 0 such

that for all β > α βϕz + f ∈ Vh,k(σ) holds.

Proof: Take z ∈ [0, 1]. Since the system
{D[k]uk, D

[k]uk+1, D
[k]uk+2} is a Tchebycheff system it is

possible to choose ai = ai(z) ∈ R, i = 0, 1, 2, such that

2∑
i=0

ai(z)D
[k]uk+i(z) =

0 <
2∑
i=0

ai(z)D
[k]uk+i(x) for all x ∈ [0, 1] \ z.

Define a function ϕz ∈ span{u0, . . . , uk+2} in the following
way

1) D[k]ϕz = σk
∑2
i=0 ai(z)D

[k]uk+i;
2) for p = h, . . . , k− 1 we take D[p]φz(0) = σp(1 +βp),

βp := ‖ωp+1D
[p+1]φz‖.
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It can be checked that φz ∈ Vh,k(σ(k)) and σpD[p]ϕz ≥ 1,
p = h, . . . , k−1. Indeed, let σp 6= 0, h ≤ p ≤ k−1. We have
σpD

[p]φz(x) = σpD
[p]φz(0) + σp

∫ x
0

(ωp+1D
[p+1]φz(x)) ≥

σpD
[p]φz(0)− βp ≥ 1 for all x ∈ [0, 1].

In paper of F. J. Muñoz-Delgado, V. Ramı́rez-González
and D. Cárdenas-Morales [16] the following cone

Ch,k(σ) = {f ∈ Ck[0, 1] : σiD
if ≥ 0, h ≤ i ≤ k}.

was considered. They proved [16] the next Korovkin-type
result for sequences of linear operators preserving shape.

Theorem 6. Let Ln : Ck[0, 1] → Ck[0, 1], n ≥ 1, be a
sequence of linear operators. If

1) Ln(Ch,k(σ)) ⊂ Ch,k(σ[k]),
2) lim

n→∞
‖Dkej −Dk(Lnej)‖ = 0, j = h, . . . , k + 2,

Then
lim
n→∞

‖Dkf −Dk(Lnf)‖ = 0

for all f ∈ Ck[0, 1].

The result of Theorem 6 is a particular case of the result
of Theorem 4 with uj = ej , j = 0, . . . , k+ 2. It arises from
the following facts:

1) the system e0, . . . , ek+2 is extended complete Tcheby-
cheff system on [0, 1];

2) ej is a convex relative to the system e0, . . . , ej−1, j =
h+ 1, . . . , k + 2.

III. PRESERVATION OF CONES OF GENERALIZED
CONVEX FUNCTIONS

A. Properties of Generalized Polynomials

Let p ∈ N ∪ {0}, ul ∈ Cp[0, 1], l = 0, . . . , p, and let
{u0, . . . , up} be an ECT–system on [0, 1].

Definition 5. Let

Lpf( · ; y0, y1, . . . , yp) ∈ span{u0, . . . , up}

denote the generalized polynomial which interpolates f ∈
C[0.1] at points 0 ≤ y0 < y1 < . . . < yp < 1:

Lpf(yi; y0, y1, . . . , yp) = f(yi), i = 0, . . . , p. (3)

Denote y−1 = −∞, yp+1 = +∞.
Let σ = (σi)i≥0 be a sequence with σi ∈ {−1, 0, 1}.

Lemma 7. Let f ∈ V0,p+1(σ).
1) If σ0σp+1 > 0, then

σ0Lpf(x; y0, . . . , yp) ≥ 0 (4)

for all x ∈
⋃[(p)/2]
i=0 [yp−(2i+1), yp−2i].

2) If σ0σp+1 < 0, then the inequality (4) holds for all
x ∈

⋃[(p+1−2)/2]
i=−1 [yp−(2i+2), yp−(2i+1)].

Proof: Suppose that x ∈ (yl−1, yl), l = 0, . . . , p+ 1. It
follows from f ∈ V0,p+1(σ) that σp+1∆pf(x; y0, . . . , yp) ≥
0, where

∆pf(x; y0, . . . , yp) =

(−1)l

∣∣∣∣∣∣∣∣∣
u0(x) u0(y0) . . . u0(yp)

. . . . . . . . . . . .

up(x) up(y0) . . . up(yp)

f(x) f(y0) . . . f(yp)

∣∣∣∣∣∣∣∣∣ .

It follows from

∆pf(x; y0, . . . , yp) =

(−1)p+l(Lpf(x; y0, . . . , yp)− f(x)) det(ui(yj))
j=0,...,p
i=0,...,p ,

(5)

that σp+1(−1)p+lLpf(x; y0, . . . , yp) ≥ σp+1(−1)p+lf(x).
Since σ0f ≥ 0, the inequality (4) holds for appropriate x.

In the case uj = ej Lemma 7 was proved in [20].

Lemma 8. If 0 ≤ y0 < y1 < . . . < yp < 1, then

Lpui( · ; y0, . . . , yp) = ui, i = 0, . . . , p,

where Lp is defined in Definition 5.

Lemma 9. Let p ∈ N ∪ {0} and let {u0, . . . , up+1} be an
ECT–system on [0, 1]. Let x ∈ (0, 1) and {Yn}n≥1 := {0 ≤
y0,n < y1,n < . . . < yp,n < 1}n≥1 be such that

1) max1≤i≤p |yi,n − yi−1,n| ≤ 1
n ;

2) for some 1 ≤ j ≤ p the inclusions x ∈ (yj−1,n, yj,n)
holds for all n ≥ 1.

Then

lim
n→∞

‖Lpup+1(x; y0, . . . , yp)− up+1(x)‖C[yj−1,n,yj,n] = 0.

B. Constructions of Linear Methods that Preserve Cones of
Generalized Convex Functions

Let p ∈ N, s ∈ N ∪ {0}, 0 ≤ y0 < y1 < . . . <
yp < 1, and let {u0, . . . , us+p} be an ECT–system on
[0, 1]. Let f ∈ Cs[0, 1] and denote Ls,pf( · ; y0, . . . , yp) ∈
span{u0, . . . , us+p} the generalized polynomial uniquely
defined by

1) D[s]Ls,pf(x; y0, . . . , yp) = Lp(D
[s]f)(x; y0, . . . , yp);

2) D[i]Ls,pf(0; y0, . . . , yp) = 0, i = 0, . . . , s − 1, if
r > 0.

If {u0, . . . , uk} is an ECT–system on [0, 1], then for any
0 ≤ i ≤ k, z ∈ [0, 1], g ∈ Ck[0, 1] there is a unique function
Fi,z[g] ∈ span{u0, . . . , ui} such that

D[l]Fi,z[f ](z) = D[l]g(z), l = 0, . . . , i.

Let n ∈ N, xi = i/n, i = 0, . . . , n.
Let the linear operator Mk,n : Ck[0, 1] → Ck[0, 1] be

defined in steps from left to right in the following way:

Mk,nf(x) = Fk−1,x0 [f − Lk,2f( · ;x0, x1)](x)+

Lk,2f(x;x0, x1), x ∈ [x0, x1] ; (6)

Mk,nf(x) = Fk−1,xj−1
[Mk,nf−Lk,2f( · ;xj−1, xj)](x)+

Lk,2f(x;xj−1, xj), x ∈ (xj−1, xj ] , j = 2, . . . , n. (7)

Theorem 10. Let Mk,n : Ck[0, 1]→ Ck[0, 1] be the linear
operator defined by (6) and (7). Then

1) Mk,n(Vk) ⊂ Vk;
2) for any f ∈ Ck[0, 1]

lim
n→∞

‖D[k]Mk,nf −D[k]f‖ = 0.

Proof: The proposition 1 of Theorem follows from
Lemma 7. It follows from Lemma 8 that

D[k]Mk,nui = D[k]ui, i = 0, . . . , k + 1. (8)
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It follows from Lemma 9 that

lim
n→∞

‖D[k]Mk,nuk+2 −D[k]uk+2‖ = 0. (9)

Finally, the proposition 2 of Theorem is the corollary of (8)–
(9) and Theorem 3.

C. The Example of Preservation k-Monotonocity
Denote ej(x) = xj , j = 1, 2, . . .. In this section

we consider the case uj = ej , j = 0, 1, 2, . . ., i.e.
C(1, e0, . . . , ek−1) is the cone of all function f defined on
[0,1] and convex relative to the system e0, . . . , ek−1. Then
C(1, e0, . . . , ek−1) is the cone of all k-monotone functions
defined on [0,1].

We will use the notation ∆k := C(1, e0, . . . , ek−1). If
f is a real-valued and k-times continuously differentiable
function defined on [0, 1], then f ∈ ∆k iff f (k)(t) ≥ 0,
t ∈ [0, 1].

Denote by Ck[0, 1], k ≥ 0, the space of all real-valued
and k-times continuously differentiable functions defined on
[0, 1], equipped with the norm

‖f‖Ck[0,1] =
∑

0≤i≤k

1

i!
sup
x∈[0,1]

|Dif(x)|, (10)

where Di denotes the i-th differential operator, Dif(x) =
dif(x)/dxi, and D0 = I is the identity operator, and the
derivatives are taken from the right at 0 and from the left at
1. If f ∈ Ck[0, 1], then f ∈ ∆k iff f (k)(t) ≥ 0, t ∈ [0, 1].

It is said that a linear operator L of C[0, 1] into C[0, 1]
preserves k-monotonicity, if L(∆k) ⊂ ∆k.

Denote by Bk[0, 1], k ≥ 0, the space of all real-valued
functions, whose k-th derivative is bounded on [0, 1] en-
dowed with the sup-norm (10).

Let W (k+2)
∞ [0, 1] be the Sobolev space of all real-valued,

(k + 1)-times differentiable functions whose derivative of
order (k + 1) is absolutely continuous and whose derivative
of order k+ 2 is in L∞[0, 1], ‖f‖∞ := ess supx∈[0,1]|f(x)|.
Denote B(k+2)

∞ := {f ∈W (k+2)
∞ [0, 1] : ‖Dk+2f‖∞ ≤ 1}.

In the case uj = ej , j = 0, . . . , k + 2, the operator Mk,n

defined in (6) and (7) can be presented as follows.
Let k, n ∈ N, n ≥ k + 2, xj = j/n, j = 0, 1, . . . , n, and

let Λk,n : Ck[0, 1]→ Ck[0, 1] be the linear operator defined
in steps from left to right by (see also [12])

Λk,nf(x) =
k−1∑
l=0

1

l!
xl
(
Dlf(x0) +

(−1)k+1−l

(k + 1− l)!nk−l
Dkf(x0)

)
+

n

(k + 1)!

[
(x− x0)k+1Dkf(x1)+

(−1)k(x1 − x)k+1Dkf(x0)
]
, x ∈ [0, x1], (11)

Λk,nf(x) =
k−1∑
l=0

1

l!
(x− xi)l

(
DlΛk,nf(xi)+

(−1)k+1−l

(k + 1− l)!nk−l
Dkf(xi)

)
+

n

(k + 1)!

[
(x− xi)k+1Dkf(xi+1)+

(−1)k(xi+1 − x)k+1Dkf(xi)
]
,

x ∈ (xi, xi+1], i = 1, 2, . . . , n− 1. (12)

Theorem 11. Λk,n : Ck[0, 1] → Ck[0, 1] is a continuous
linear operator of finite rank n+ 1, such that

1) Λk,n(∆k) ⊂ ∆k;
2) for any f ∈ Ck[0, 1]

lim
n→∞

‖Dk(Λk,nf)−Dkf‖ = 0;

3) there exists a constant 0 < c ≤ 2−3 not depending on
n such that

sup
f∈Bk+2

∞

‖DkΛk,nf −Dkf‖ ≤ cn−2. (13)

Proof: The proposition 1 of Theorem is the corollary of
Theorem 10, part 1.

The proposition 2 of Theorem follows from Theorem 10,
part 2.

Let f be a function from B
(k+2)
∞ . Let x ∈ [xj , xj+1]. Then

Dkf ∈W (2)
∞ [0, 1] can be represented as

Dkf(x) = Dkf (xj) +

Dk+1f (xj)

1!
(x− xj) +

∫ 1

xj

(x− t)+Dk+2f(t)dt. (14)

where y+ := max{y, 0}.
Note that Dk(Λk,nf) is a piecewise linear function on

[0,1] with the set of breakpoints {(xj , Dkf(xj))}j=0,...,n. If
x ∈ [xj , xj+1] then

Dk(Λk,nf)(x) = Dk(Λk,nf) (xj) +

Dk+1
+ Λk,nf (xj)

1!
(x− xj)+

∫ 1

xj

(x−t)+Dk+2Λk,nf(t)dt,

(15)

where Dk+1
+ Λk,nf(xj) is the right-hand side derivative of

DkΛk,nf at point xj .
It follows from (14) and (15) that if x ∈ [xj , xj+1] then(
Dk(Λk,nf)−Dkf

)
(x) =

(x− xj)
[
n
(
Dkf (xj+1)−Dkf (xj)

)
−Dk+1f (xj)

]
−∫ 1

xj

(x− t)+D
k+2f(t)dt =∫ 1

xj

(
n (x− xj) (xj+1 − t)+ − (x− t)+

)
Dk+2f(t)dt.

Since ‖Dk+2f‖∞ ≤ 1, we have

sup
x∈[xj ,xj ]

∣∣Dk(Λk,nf)(x)−Dkf(x)
∣∣ ≤

sup
x∈[0, 1n ]

∫ 1
n

0

∣∣∣∣∣nx
(

1

n
− t
)

+

− (x− t)+

∣∣∣∣∣ dt ≤
sup

x∈[0, 1n ]

1

2
x

(
1

n
− x
)

=
1

8n2
. (16)

It follows from (16) that∣∣Dk(Λk,nf)(x)−Dkf(x)
∣∣ ≤ 1

8n2

for every x ∈ [0, 1].
Note that linear operator Λk,n defined in (11)-(12) is

the minimal shape-preserving projection [21] on the first
interval [0, 1

n ], and then it is smoothly extended to the next
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Figure 1. Errors of approximation of function f(x) = exp(x) on [0,1] by
(1) Bernstein operator Bn, n = 10; (2) Bernstein operator Bn, n = 20;
(3) operator Λk,n, n = 10, k = 1; (3) operator Λk,n, n = 20, k = 1

intervals. The paper [22] presents the example of linear
finite-dimensional approximation method that preserves k-
monotonicity of approximated functions and uses the values
of function at equidistant points on [0,1] (rather than values
of derivatives as it is in the definition of Λk,n). The example
of linear linear operators preserving an intersection of cones
can be found in the paper [23].

Figure 1 plots the comparison for errors of approximation
of exponential function f(x) = ex on interval [0,1] by
Bernstein operator Bn (defined in (1)) and operator Λk,n
for different n and k = 1. Line (1) of the plot is B10f − f ,
line (2) of Figure 1 is the error B20f − f , lines (3) and (4)
plot the differences Λ1,10f − f and Λ1,20f − f respectively.

D. Applications

Approximation methods preserving cones have numerous
applications in different areas of science and engineering
such as computer graphics, numerical analysis, computa-
tional geometry, and many others industrial, medical, and
scientific applications. In particular, software developers of-
ten need with mathematical and computational methods for
the description of geometric objects as they arise in areas
ranging from CAD/CAM to robotics and scientific visual-
ization. Another application of shape-preserving algorithms
is in the optimization theory and the theory of dynamic
optimization. It is worth noting the paper [24] that presents
algorithms for solving the dynamic programming problems
based on shape-preserving methods of approximation and
shows the applicability of the cone-preserving algorithms for
the optimal growth problem.
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[6] D. Cárdenas-Morales, F. J. Muñoz-Delgado, and P. Garrancho, “Shape
preserving approximation by Bernstein-type operators which fix poly-
nomials,” Applied Mathematics and Computation, vol. 182, pp. 1615–
1622, 2006.

[7] D. Cárdenas-Morales and F. J. Muñoz-Delgado, “Improving certain
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nia University of Braşov, Series III: Mathematics, Informatics, Physics,
vol. 5 (54), pp. 65–68, 2012.

[11] M. S. Floater, “On the convergence of derivatives of Bernstein approx-
imation,” J. Approx. Theory, vol. 134, pp. 130–135, 2005.

[12] S. Sidorov, “On the order of approximation by linear shape-preserving
operators of finite rank,” East Journal on Approximations, vol. 7, no. 1,
pp. 1–8, 2001.

[13] S. P. Sidorov, “Negative property of shape preserving finite-
dimensional linear operators,” Appl. Math. Lett., vol. 16, no. 2, pp.
257–261, 2003.

[14] K. Kopotun and A. Shadrin, “On k-monotone approximation by free
knot splines,” SIAM J. Math. Anal., vol. 34, pp. 901–924, 2003.

[15] H. H. Gonska, “Quantitative korovkin type theorems on simultaneous
approximation,” Mathematische Zeitschrift, vol. 186, no. 3, pp. 419–
433, 1984.

[16] F. J. Muñoz-Delgado, V. Ramı́rez-González, and D. Cárdenas-Morales,
“Qualitative Korovkin-type results on conservative approximation,” J.
Approx. Theory, vol. 94, pp. 144–159, 1998.

[17] F. J. Muñoz-Delgado and D. Cárdenas-Morales, “Almost convexity and
quantitative Korovkin type results,” Appl. Math. Lett., vol. 94, no. 4,
pp. 105–108, 1998.

[18] S. Karlin and W. Stadden, Tchebycheff systems: With applications in
analysis and statistics. New York: Interscience Publishers John Wiley
& Sons, 1966, vol. Pure and Applied Mathematics XV.

[19] P. P. Korovkin, “On the order of approximation of functions by linear
positive operators,” Dokl. Akad. Nauk SSSR, vol. 114, no. 6, pp. 1158–
1161, 1957, russian.

[20] S. P. Sidorov, “Approximation of the r-th differential operator by
means of linear shape-preserving operators of finite rank,” J. Approx.
Theory, vol. 124, no. 2, pp. 232–241, 2003.

[21] G. Lewicki and M. P. Prophet, “Minimal shape-preserving projections
onto πn: Generalizations and extensions,” Numerical Functional Anal-
ysis and Optimization, vol. 27, no. 7-8, pp. 847–873, 2006.

[22] D. I. Boytsov and S. P. Sidorov, “Linear approximation method
preserving k-monotonicity,” Siberian electronic mathematical reports,
vol. 12, pp. 21–27, 2015.

[23] S. P. Sidorov, “Linear relative n-widths for linear operators preserving
an intersection of cones,” Int. J. of Math. and Math., vol. 2014, Article
ID 409219, pp. 1–7, 2014.

[24] Y. Cai and K. L. Judd, “Shape-preserving dynamic programming,”
Math. Meth. Oper. Res., vol. 77, pp. 407–421, 2013.

Proceedings of the World Congress on Engineering 2015 Vol I 
WCE 2015, July 1 - 3, 2015, London, U.K.

ISBN: 978-988-19253-4-3 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2015




