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Abstract—The objective of this study is to investigate 

parametrically the natural frequencies of the moderately thick, 

sandwich, circular beams. The element matrix is based on the 

Timoshenko beam theory including the rotary inertia in the 

formulation. The curved element involves two nodes and each 

node has three translations, three rotations, two shear forces, 

one axial force, two bending moment and one torque (12DOF). 

A parametric study is performed on the natural frequencies of 

sandwich beams with various thin facesheets. The results are 

verified with the available commercial CAD programs. 

 
Index Terms—composite beam, finite element, free vibration, 

Timoshenko beam theory 

 

I. INTRODUCTION 

HE increased use of composites in many applications 

due to their attractive properties in strength, stiffness 

and lightness has resulted in a growing demand for engineers 

in the design of structures made of fiber-reinforced 

composite materials. Numerous texts dealing with the 

mechanics of composites by using various theories have 

been published to satisfy this demand [1-3].  

The dynamic behaviors of the symmetrically or anti-

symmetrically laminated straight or planar curved rods are 

investigated intensively in the literature. [4] investigated the 

natural frequencies and the Euler Buckling load of generally 

layered anisotropic laminated composite beams by parabolic 

shear deformation theory. [5] derived dynamic equations for 

the free vibration of generally layered composite beams 

using Hamilton’s principle and the effects of rotary inertia 

and transverse shear are incorporated in the formulation. 

Analytical solutions are obtained by the method of the 

Lagrange multipliers. [6] studied the free vibration analysis 

of non-symmetric laminated cross-ply composite beams by 

including the coupling effects, shear deformation and rotary 

inertia based on Timoshenko beam theory. The numerical 

examples of composite beams are solved for the coupling 

effects, shear deformation and rotary inertia. [7] investigated 

the dynamic behavior of initially twisted laminated space 

rods under isothermal conditions based on Timoshenko 

beam theory by incorporating the Poisson effect, anisotropy 
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of the material, rod curvature, rotary inertia and the shear 

and axial deformations are considered. [8,9] studied the free 

vibration analysis of symmetric cross-ply laminated circular 

arches by using the transfer matrix method. [10] investigated 

the dynamic analysis of symmetric cross-ply laminated 

beams based on a three-degree-of-freedom shear deformable 

beam theory by the Ritz method and Hamilton’s principle 

under six different combinations of boundary conditions. 

The numerical results for different span ratios and lay-ups 

are obtained and compared with the results in the literature. 

[11] formulated a dynamic stiffness matrix that incorporate 

the Poisson’s effect, couplings and rotary inertia for free 

vibration analysis of generally laminated composite beams 

with Hamilton’s principle based on first-order shear 

deformation theory. The effects of the Poisson effect, 

material anisotropy, thickness ratio on the natural 

frequencies of the composite beams are investigated and the 

results are compared with the studies in the literature. [12] 

presented a formulation for the free vibration analysis of 

functionally graded spatial curved beams based on the first-

order shear deformation theory by considering the effects of 

the thickness-curvature. Ritz method is used for the natural 

frequencies.  

This work studies the natural frequencies of the 

moderately thick rectangular cross-sectional, sandwich, 

circular beams. For this purpose, a mixed finite element (FE) 

formulation comprising the Timoshenko beam theory is 

employed. As a numerical investigation, influence of the 

accurate torsional rigidity on the natural frequencies is 

investigated and results are verified by ANSYS 14.5.   

II. THE CONSTITUTIVE RELATIONS FOR LAMINATION  

Letting the stress tensor   and the strain tensor  , the 

constitutive equation yields :E   where E  is the matrix 

of elastic constants. In order to derive the constitutive 

equations of a layered sandwich beam, firstly the 

assumptions made on stress, in accordance with beam 

geometry [7], secondly some reductions made on the 

constitutive relation of orthotropic materials for the three 

dimensional body by incorporating the Poisson's ratio [4].  

 

 
Fig. 1. The stresses with respect to the Frenet Coordinate System. 

N : Total number of layers 

Free Vibration Analysis of Moderately Thick, 

Sandwich, Circular Beams 

Ü.N. Arıbaş, N. Eratlı, and M.H. Omurtag 

T 

Proceedings of the World Congress on Engineering 2016 Vol II 
WCE 2016, June 29 - July 1, 2016, London, U.K.

ISBN: 978-988-14048-0-0 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2016



 

 

In Frenet coordinate system (see Fig.1), paying attention 

to 0n b nb     , the constitutive relations yield 
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where the 3 3  matrix [   is the matrix in terms of the 

orthotropic material constants. Timoshenko beam theory 

requires shear correction factors and it is assumed to be 5/ 6  

for a general rectangular cross-section. By means of the 

kinematic equations 
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where, *
tu , *

nu , *
bu  are displacements at the beam continuum 

and tu , nu , bu  are displacements on the beam axis and t , 

n  and b  present the rotations of the beam cross-section 

around the t, n and b Frenet coordinates, respectively. The 

strains which are derived from (2) 
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and the constitutive equations for a single layer yield to the 

form 
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By obtaining strains for rod geometry due to displacements 

[12], the forces and moments for a layer can be derived by 

analytical integration of the stresses in each layer through 

the thickness of the cross-section, respectively. 
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where, N  is the number of the layer, 
L

n  is the width of the 

layer, 
L

b  and 
1L

b


 are the directed distances to the bottom 

and the top of the thL  layer where b is positive upward. The 

constitutive equation in a matrix form: 
 

1

t

t n

t

n
t b

L L
N

T TMb

L L

L tMT Mt

n

n
b

b

u

t

u u
T

n t
T u u

T b t

M

tM

M

t

t









 
 

 
  

  
   
   

         
         

   
   

   
   

 
 

 
 


E E

E E
 (11) 

 

or, since 
1[ ] [ ]C E , in accordance with (3) and (4), (11) 

yields to the form   
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where , ,t n b    are curvatures.  

III. THE FIELD EQUATIONS 

The field equations for the isotropic homogenous spatial 

bar [13-15], which are based on the Timoshenko beam 

theory for orthotropic material are, 
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where ( , , )t n bu u uu  is the displacement vector, 

 ( , , )t n b  Ω  is the cross section rotation vector. u  and 

Ω  are the accelerations of the displacement and rotations, 
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( , , )t n bT T TT 
 
defines the force vector, ( , , )t n bM M MM  is 

the moment vector,   is the material density. A  is the area 

of the cross section, I  stores the moments of inertia, 
TC , 

MC , T

TM MTC C  are compliance matrices where 
TMC , 

MTC  

are coupling matrices [16]. q
 
and m

 
are the distributed 

external force and moment vectors, respectively. Once the 

motion is considered as harmonic for the free vibration of 

the beam, the conditions  q m 0  are satisfied. 

IV. THE FUNCTIONAL 

Incorporating Gâteaux differential with potential operator 

concept [17] yields the functional in terms of (13)-(14) 
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which is original mixed finite element formulation for the 

literature. In (15), the square brackets indicate the inner 

product, the terms with hats are known values on the 

boundary and the subscripts   and   represent the 

geometric and dynamic boundary conditions, respectively. 

V. THE MIXED FINITE ELEMENT 

The linear shape functions ( ) /i j       and 

( ) /j i       are employed in the FE formulation 

where ( )j i     . ,i j  represent the node numbers of the 

curved element. i  and j  are the horizontal angle at i  and 

j  nodes, respectively. The curvatures are satisfied exactly at 

the nodal points and linearly interpolated through the 

element [14,15]. Calculation of the natural free vibration 

frequencies of a structural system yields to the following 

standard eigenvalue problem, 
 

    2[ ] [ ] K M u 0  



where, [ ]K and [ ]M  are the system and mass matrix of the 

entire domain, respectively. u  is the eigenvector (mode 

shape) and  depicts the natural angular frequency of the 

system. 

VI. NUMERICAL EXAMPLES  

In this study, the natural frequencies of the moderately 

thick rectangular cross-section, sandwich, circular beams 

with both ends clamped are analyzed by using the mixed FE 

algorithm based on Timoshenko beam theory. Firstly, the 

convergence analysis of this FE algorithm is performed and 

a comparison with the literature is studied. Next, a 

benchmark example is solved and the results are compared 

with the commercial FE program ANSYS. Torsional rigidity 

of an arbitrary composite cross-section requires special care. 

Therefore, the torsional rigidity for composite cross-sections 

tGI  is calculated by an FE solution based on Poisson’s 

equation [15]. 

A. The Convergence Analysis and Comparison 

A number of problems are solved on the fundamental 

natural frequencies of laminated o o o(0 / 90 / 0 )  circular 

beams. The material and geometrical properties are as 

follows: 1 2/ 40E E  , 3 2/ 1E E  , 12 13 20.6G G E  , 

23 20.5G E , 12 13 23 0.25     , the radius of circular 

beam is 15mR  , the opening angle is 
o90 , the square 

cross-section ( / 1b h  ) is used where h  is the thickness of 

the beam.  

The circular beam with three different boundary 

conditions (fixed-fixed, fixed-free, fixed-simple) and two 

different / 5, 25R h   ratios is solved by discretizing the 

beam using 40, 80 and 150 finite elements and the 

dimensionless fundamental frequency results which is 

obtained for 80 elements are compared with [9]. The 

torsional rigidity calculation given by [9] is an approximated 

formulation, thus it is denoted in Tables 1-3 by the notation 

tGI . The definition of non-dimensional frequency is   

 

2

2

2

R
E h


   (17) 

 

The precision in determining the torsional rigidity of a 

composite cross section has a great importance since it has 

considerable influence on the natural frequencies.  
 

TABLE 1 

The dimensionless fundamental frequency for fixed-fixed boundary 

condition, eN : number of elements 

/R h  eN  
Mixed FE 

 
Mixed FE 

[9] 
tGI  tGI  

5 40 4.958  5.885 5.94 

 80 4.958  5.885  

 150 4.958  5.885  

25 40 7.031  10.73 11.08 

 80 7.031  10.73  

 150 7.030  10.73  

 

TABLE 2 

The dimensionless fundamental frequency for fixed-free boundary 

condition, eN : number of elements 

/R h  eN  

 

Mixed FE 
 

Mixed FE 
[9] 

tGI  tGI  

5 80 0.412  0.840 0.909 

25 80 0.417  0.866 0.946 

 

TABLE 3 

The dimensionless fundamental frequency for fixed-simple boundary 

condition, eN : number of elements 

/R h  eN  
Mixed FE 

 
Mixed FE 

[9] 
tGI  tGI  

5 80 2.196  3.532 3.669 

25 80 2.426  4.456 4.740 
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B. The Benchmark Example 

As a benchmark example, a composite circular beam 

having rectangular composite cross-section which is made of 

steel facesheets on the top and bottom with a concrete core 

as shown in Figure 1 is considered. This circular beam is 

fixed at both ends. The material properties and geometrical 

properties are as follows: the modulus of elasticity for the 

facesheets is 210GPasE  , Poisson's ratio is 0.3s   and 

the material density is 
37850kg/ms  . The modulus of 

elasticity for concrete 30GPacE  , Poisson's ratio is 

0.2c   and the material density is 32400kg/mc  . The 

radius of composite beam is 12 mR  , the opening angle is 

o180 . The rectangular cross-section with two different 

height ( 1 0.8mh  , 2 2.4 mh  ) is employed where they 

have the same width 0.4 mb  . The thickness of face sheets 

is / 8t h  for both rectangular cross-sections. Through the 

analysis, the first five natural frequencies of the composite 

circular beam are calculated using 80 mixed finite elements. 

The results are compared with ANSYS 14.5 using solid 

elements of a fine mesh configuration and presented in 

Tables 4-5.  

As the thickness increases, an increasing trend is observed 

for the natural frequencies. It is observed that the effect of 

torsional rigidity of composite cross-sections is very 

imported on the calculation of natural frequencies. 
 

 
Figure 1. Composite rectangular cross-section 

 
TABLE 4 

The first five natural frequency (in Hz) for fixed-fixed boundary condition 

% dif.: (Mixed FE -ANSYS)×100/ Mixed FE, 
1

0.8mh   

  
Mixed FE 

ANSYS 
tGI  %dif. 

1 2.1818 -1.8 2.2215 

2 2.4929 -0.2 2.4973 

3 5.4731 -0.2 5.4827 

4 6.4582  0.1 6.4538 

5 10.150 -0.2 10.169 

 

TABLE 5 

The first five natural frequency (in Hz) for fixed-fixed boundary condition 

% dif.: (Mixed FE -ANSYS)×100/ Mixed FE, 
2

2.4mh   

  
Mixed FE 

ANSYS 
tGI  %dif. 

1 2.4929 -0.4 2.5041 

2 3.5955 -11.7 4.0164 

3 5.4731 -0.5 5.4984 

4 10.150 -0.5 10.204 

5 11.594 -1.2 11.735 

 

VII. CONCLUSION  

In this study, the effect of the torsional rigidity on the free 

vibration analysis of the moderately thick rectangular cross-

section, sandwich, circular beams are investigated via mixed 

FE algorithm. This algorithm is based on the Timoshenko 

beam theory. The finite element formulation of the circular 

beam geometry is derived using the exact curvatures at the 

nodal points and their interpolations through the element 

axis. The accuracy of formulation and the influence of the 

torsional rigidity on the natural frequencies are discussed 

with the literature and verified with ANSYS 14.5. This study 

demonstrates that the calculation torsional rigidity is 

imported for a composite cross-section.  
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