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Abstract— In this paper, we propose a handy approximation 

technique (HAT) for obtaining both closed-form and 
approximate solutions of time-fractional heat and heat-like 
equations with variable coefficients. The method is relatively 
recent, proposed via the modification of the classical 
Differential Transformation Method (DTM). It devises a 
simple scheme for solving the illustrative examples, and some 
similar PDEs. Besides being handy, the results obtained 
converge faster to their exact forms. This shows that this 
modified DTM (MDTM) is very efficient and reliable. It 
involves less computational work, even without given up 
accuracy. Therefore, we strongly recommend it for solving 
both linear and nonlinear time-fractional partial differential 
equations (PDEs) with applications in other aspects of pure 
and applied sciences, management, and finance. 

 
Index Terms— time-fractional differential equations; 

modified DTM; heat and heat-like equations; variable 
coefficients, closed-form solutions. 

I. INTRODUCTION 

ANY physical problems in various fields of pure and 
applied sciences are modelled mathematically by 

partial differential equations. Heat equations are special 
version of parabolic partial differential equations (PPDEs) 
governing heat diffusion and heat-like diffusive processes. 

Heat equations are of great importance in diverse areas of 
sciences and engineering. It is highly linked to the study of 
Brownian motion through the application of the Fokker-
Planck equation (application in probability theory) [1]. In 
financial mathematics, the heat equation can also be used 
for the solutions of financial models like the Black-Scholes 
option pricing model [2], integro-differential model [3] and 
so on. 
In the sequel, the heat equation will be generalized to the 
time-fractional case (that is, of non-integer order).  The 
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study of fractional calculus has greatly attracted the 
attention of many researchers because of its suitability for 
the generalization of fractional differential equations [4]. 

Fractional differential equations are seen as alternatives to 
non-linear differential equations [4]. Many researchers have 
proposed, adopted and applied various methods in search 
for solutions of heat and heat-like equations, and related 
PDEs [5-14].  Recently, while Secer [15] applied DTM to 
heat-like equations, we hereby propose the modified DTM 
for less computational work among other merits.   

In this work, a relatively new version of the modification 
referred to as modified differential transform method 
(MDTM) will be applied to heat and heat-like PDEs for 
exact and numerical solutions. It is noteworthy saying that 
the MDTM has advantages over the decomposition methods 
and the classical DTM as the computational time required is 
minimal, and for ease and simplicity of usage.  

II.   FRACTIONAL CALCULUS: PRELIMINARIES AND 

NOTATIONS 

In fractional calculus, the power of the differential 
operator is considered a real or complex number. Hence, the 
following definitions [16-18]: 

 
Definition 1: Fractional derivative in gamma sense 

Let 
 

and 
d

D J
dx


  be differential and integral operators 

respectively, with the gamma function of ( )h x  being 

defined as: 
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Equation (1) in terms of gamma sense is expressed as: 
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     (2) 

Equation (2) is referred to as a fractional derivative of 

( )h x , of order  , if  � .  

Definition 2: Suppose ( )h x  is defined for 0x   , then: 
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   
0

( )
x

Jh x h s ds                    (3) 

and as such, an arbitrary extension of (3) (i.e. Cauchy 
formula for repeated integration) yields: 

     1

0

1 ! ( ) ( )
x

n nn J h x x s h s ds      (4) 

While the gamma sense of (4) is: 

    1

0

( ) ( )  , 0,  0.
x

J h x x s h s ds t            (5) 

Equation (5) is the Riemann-Liouville fractional integration 
of order  . 

Definition 3: Riemann-Liouville fractional derivative 

 ( )
( )

d J h x
D h x

dx

  






                (6) 

Definition 4:  Caputo fractional derivative 

 ( )
( ) ,  1 ,  

J d f x
D f x

dx

  


    

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In (6), Riemann-Liouville compute first, the fractional 
integral of the function and thereafter, an ordinary 
derivative of the obtained result but the reverse is the case in 
Caputo sense of fractional derivatives; this allows the 
inclusion of the traditional initial and boundary conditions 
in the formulation of the problem. The link between the 
Riemann-Liouville operator and the Caputo fractional 
differential operator [17, 19] is: 
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As such,  
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Definition 5: The Mittag-Leffler Function 

The Mittag-Leffler function,  E z  valid in the whole 

complex plane is defined and denoted by the series 
representation as: 

   0

,   0,  
1

k

k

z
E z z

k 






  
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 1
zE z e   for 1,   

III. THE OVERVIEW OF THE MODIFIED DIFFERENTIAL 

TRANSFORM METHOD (MDTM) 

The differential transformation method (DTM) has been 
studied by many researchers and showed to be easier in 
terms of application when solving both linear and nonlinear 
differential equations as it converts the said problems to 
their equivalents in algebraic recursive forms [6, 7, 9, 11, 
15, 20]. This is unlike other semi-analytical methods: ADM, 
VIM, HAM and so on that require the determination of a 
successive term only by integrating a previous component.  

In spite of the copious merits of the DTM over other semi-
analytical methods, some levels of difficulties are still 
encountered when dealing mainly with nonlinearity of 
differential equations. This again creates rooms for 
modification of the DTM in various forms by many authors 
and researchers [21,22]. 

Let  ,x t  be an analytic function at  * *,x t  in a 

domain D , then in considering the Taylor series expansion 

of  ,x t , regard is given to some variables ovs t  

instead of all the variables as in the classical DTM. Thus, 

the MDTM of  ,x t  with respect to t  at *t  is defined and 

denoted by: 
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And as such: 

    *
0

, ,
h

h

x h x h t t



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Equation (12) is called the modified differential inverse 

transform of  ,x h  with respect to t  . 

 

A. Basic Theorems and properties of the MDTM [21]. 

Theorem a: If      , , ,a bx t x t x t    , then  

     , , ,a bx h x h x h        
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Theorem d:  (MDTM of a fractional derivative) 

If    , ,tg x t D x t , then 

   1 , 1 ,
k k
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 
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and:  
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 (13) 

Setting 1q   in (13) yields (14) and (15) as follows: 
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As such, for   0, , -analytic at 0x t x     
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B. Analysis of the Fractional MDTM  
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Consider the nonlinear fractional differential equation 
(NLFDE): 

           
   

, , , , 0
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 (16)      

where tD
t










is the fractional  Caputo derivative of 

 ,x t   ; whose modified differential transform is 

( , )x h ,     and L N   are linear and nonlinear differential 

operators with respect to x  respectively, while  .q q x t  

is the source term. 
We rewrite (16) as: 
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Applying the inverse fractional Caputo derivative, tD   to 

both sides of (23) and with regard to (8) gives: 
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   (18)  

Thus, expanding the analytical and continuous function, 
( , )x t  in terms of fractional power series, the inverse 

modified differential transform of ( , )x h  is given as 

follows: 
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IV. ILLUSTRATIVE EXAMPLES AND APPLICATIONS  

In this subsection, we will consider via the proposed 
method, the following initial boundary value problems 
(IBVPs) describing heat and heat-like PDEs of time-
fractional orders. 
 

A. Problem 4.1: Consider the time-fractional heat and 
heat-like equation {[6, 10, 13] for 1  }: 

 22 ,t xxm x m x t  ,  0,1x ,  0,t        (20)   

subject to the boundary conditions (20a) and the initial 
condition (20b) below: 

   0, 0, 1, tm t  m t e                (20a) 

  2,0m x x                    (20b) 

Solution to problem 4.1: 
We take the modified differential transform (MDT) of (20) 
and (20b) as follows: 
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When 0k  , 
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When 1k  , 
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When 2k  ,   
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It follows thus, for k n , we have: 
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For 1n    (27) becomes: 
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Thus, by using definition 5, (29) becomes: 

   2
,x tm x E t                    (30) 

Remark: when 1  , the exact solution  is therefore: 
2

,
t

x tm x e                          (31) 
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Fig. 1: Graph of the exact solution 

 

 
Fig. 2: Graph of the HAT solution 

 
Fig. 1 and Fig. 2 are for problem 4.1. For computation, we 

use:  0,1x ,  0,5t , &  0,5m .  

While Fig. 1 shows the graph of the exact solution, Fig. 2 
shows the graph of the 4-term iterate solution of the HAT. 
This shows that the solution of Ex 3.1 in [10] is a particular 
case of our result. 

B. Problem 4.2: Consider the time-fractional heat and 
heat-like Equation {[6, 10, 13] for 1  }: 

2 22 t xx yym y m x m   ,  , 0,1x y ,  0,t        (32) 

subject to the Neumann boundary conditions (32a) and the 
initial condition (32b) below: 

   
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  2, ,0m x y y                     (33) 

 
Solution procedure to problem 4.2: 
We take the modified differential transform (MDT) of (32) 
and (33) as follows: 
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such that:   ,0, ,x k x kM M                      (36) 
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Remark: when 1   , (43) yields the exact solution to 
problem 4.2 as: 

2 2
, , sinh coshx y tm x t y t                 (44) 

This is in agreement with {[6, 10, 13] for 1  }. 
 

V. CONCLUDING REMARKS  

In this paper, we implemented a handy approximation 
technique as a modified DTM (MDTM) for the solutions of 
time-fractional heat and heat-like equations. For the 
efficiency and reliability of the proposed technique, some 
illustrative examples were used; both closed-form and 
approximate solutions were obtained. The solutions were 
very much in agreement. A simple recursive equation was 
obtained via the proposed technique. We therefore, 
conclude that MDTM boosts the effectiveness of the 
computational work when compared with the classical 
DTM, even without given up accuracy. Consequently, we 
recommend the technique for solving linear and nonlinear 
time-space-fractional PDEs with applications in other areas 
of pure and applied sciences, finance and management. 
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