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Abstract—Piecewise-continuous additive manufacturing
(AM) processes of sufficiently long in the axial direction parts
of a conical shape under action of end loads are studied. The
loads are statically equivalent to the axial tension–compression
by some time-varying force. The being formed parts exhibit
properties of deformation heredity and aging. On the basis of
the approaches of mechanics of growing solids a nonclassical
boundary value problem of the linear theory of viscoelasticity
of the homogeneously aging isotropic media to describe the
modelled process with the integral satisfaction of the force
condition on the end surface of the formed solid is stated. A
lemma about the possibility to carry in terms of the work
objectives the product of the operator of differentiation with
respect to time and the integral operator of viscoelasticity with
a limit of time integration depending on solid point through
the sign of integral over an arbitrary, expanding due to the
growth, surface inside or on the boundary of the growing
solid is proved. With its help a closed analytical solution of
the stated problem of growing solids mechanics is built. This
solution allows to retrace the evolution of the stress-strain
state of the solid under consideration during and after the
process of its additive formation.

Index Terms—additive forming, conic shape, growing solid,
tension–compression, viscoelasticity.

I. INTRODUCTION

THE additive formation of solids is realized in a wide
variety of natural and technological processes. Many of

these processes should be considered as continuous growing
processes, such that during the formation of a solid an
infinitely thin layer of additional material joins to its surface
each infinitely small period of time. In the course of additive
processes different factors influence on solids being formed
and cause their deformation. The development of stress-strain
state of such solids is impossible to describe within the
framework of classical concepts of continuum mechanics in
principle. This is due to the lack of any configuration of the
continuously growing solid which could be associated with
introduction of the strain measures. An adequate description
of mechanical behavior of solids deforming in processes
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of their continuous growing can be given on the basis of
approaches and methods of mechanics of growing solids
being actively developed nowadays [1], [2]. Statements and
solutions of various problems on growing solids deformation
can be found, for example, in [3]–[12].

The present work is devoted to the studying of additive
manufacturing processes for the relatively long in the axial
direction conical partss. It is assumed that in the process of
formation of the part its end surfaces are acted upon by loads
which are statically equivalent to the time dependant axial
tension–compression. Forming the solid under consideration
is carried out by means of its thickening in the radial
direction due to the influx of additional material to the
conic side surface. This process is piecewise-continuous, i.e.
consists of arbitrary number of stages of continuous accretion
alternating with arbitrary long pauses during which the influx
of the material does not take place.

In the proposed study we consider the situation when the
solid being formed exhibits the properties of deformation
heredity (viscoelasticity) and aging (weakening the deforma-
tion properties over time regardless stresses existing in the
solid), and therefore, during pauses in the growing process
as well as after the final cessation of growth the solid
continues to change its stress-strain state. This situation is
quite difficult to simulate as rheological manifestations in the
deformation response of the material continuously interact
with mechanical reactions of the solid on the developing in
time process of adding new material elements to it [13]–[15].

The problem is solved in quasistatic statement in the
approximation of small strains. The latter let us consider the
radii of the growing solid ends expanding due to the influx
of additional material to be known functions of time, which
are prescribed by a specific simulated growing process. The
process itself is considered to be those that the additional
material influx to the surface of the formed solid does not
acquire nonzero stresses near this surface at the time moment
of the material inclusion in the composition of this solid. The
difference between the radius of one of the solid end and
the radius of the other one may change arbitrarily during the
process of the body growing both in size and in sign.

II. CONSTITUTIVE RELATIONS

We will consider uniform isotropic linearly viscoelastic
aging material described by the equation of state [4], [16]

T(r, t) = H−1
τ0(r)

[
2E(r, t) + (κ − 1)1 trE(r, t)

]
. (1)

Here τ0(r) is the time when stresses appear at some point of
a solid with the position vector r; T and E are the stress and
linear strain tensors, 1 is the unit tensor of the second rank;
κ = (1 − 2ν)−1, where ν = const is Poisson’s ratio. The
linear operator H−1

s = G(t)
(
I+Ns

)
is inverse to the linear
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operator Hs =
(
I − Ls

)
G(t)−1 with the real parameter

s > 0, where G(t) is the elastic shear modulus, I is the
identity operator,{

Ls
Ns

}
f(t) =

∫ t

s

f(τ)

{
K
R

}
(t, τ)dτ,

K(t, τ) = G(τ)
∂∆(t, τ)

∂τ
, ∆(t, τ) =

1

G(τ)
+ ω(t, τ).

K(t, τ) and R(t, τ) are the kernels of creep and relaxation,
∆(t, τ) and ω(t, τ) are the specific strain function and the
creep measure for pure shear (t > τ > 0). It is accepted by
definition ω(τ, τ) ≡ 0. Taking this into account we have the
identity H−1

τ ∆(t, τ) ≡ 1.
In our case the stated equation (1) is used to describe the

mechanical behavior of a solid which is built up by
additional material. Obviously, in this case, the function

τ0(r) in (1) will be determined in the following way. In the
originally existing (before accreting) part of the solid it will
be identically equal to the time moment t0 of loading of
this part. In the additional part of the solid, formed during
accreting, it will coincide with the distribution τ∗(r) of
moments of attaching particles r of additional material to
the solid.

Hereinafter we will use the following notation. For arbi-
trary functions g(r, t) of solid point r and time t and for
arbitrary function of time f(t) which is not associated with
specific points of considered solid, we denote:

g◦(r, t) = Hτ0(r) g(r, t), f◦(t) = Ht0 f(t). (2)

It is necessary to note that the defining relations above
were developed especially for the description of processes
of concrete deformation. However, they are also well suited
to describe the mechanical behaviour of some rocks, as well
as polymers, soils, ice.

III. STATEMENT OF THE PROBLEM

Let there be a conical solid of rotation which length l
significantly exceeds its transverse dimensions. It is made
from isotropic homogeneous aging linearly viscoelastic ma-
terial subordinated to the constitutive equation (1). Take the
moment of this material nucleation be the start of timing t.

At the moment t = t0 a load is applied to the ends of
the existing solid. We believe that at every moment of time
t > t0 it is statically equivalent to axial forces acting in the
central points of the ends and varying with time following
the law P (t). We will consider positive the magnitude of
tensile end force.

Some time after the application loading at the time t = t1
we start the process of gradual axisymmetric thickening of
the considered conical solid by adding the additional material
to its lateral initially free from stresses surface. Thickening
occurs in such a way that in each time moment the accreted
body maintains the shape of a right circular truncated cone
of length l. This process is piecewise continuous in time, i.e.
it consists of N consecutive phases of continuous accreting
t ∈ [t2k−1, t2k) (k = 1, N ), separated by pauses of arbitrary
duration. At the stages of continuous accreting an infinitely
thin layer of material attaches to the solid each infinitely
small period of time. The added material is supposed iden-
tical to the original one. In pauses the influx of additional

material to the solid does not take place and its lateral surface
is free from stresses. In the process of piecewise continuous
accreting and after its completion time-varying central axial
forces P (t) continue to act to the end surfaces of the cone.

Let us investigate the evolution of stress-strain state of the
considered conical solid under specified conditions of load-
ing before the start, during and upon the completion of the
described process of accreting. The process of deformation
is assumed quasi-static, and strains developing — small.

Changing the geometry of the considered conical solid due
to its piecewise-continuous accreting is completely defined
obviously by defining laws of increasing the radii of its
ends in time. Denote them by a(t) and b(t), t > t0.
These functions are continuous, non-decreasing and constant
outside intervals [t2k−1, t2k).

Combine the reference plane of a cylindrical polar co-
ordinate system with that end of the cone which radius
was denoted by a(t). Place the beginning of coordinates
O in the center of this end and extend coordinate axis Oz
perpendicular to it inside the cone. Denote the polar radius
and the angle as ρ and ϕ. If {eρ, eϕ,k} is normalized
local basis of the introduced cylindrical coordinate system
(ρ, ϕ, z), then the radius-vector of an arbitrary point of the
solid can be represented in the form r = eρ(ϕ)ρ+ k z.

Moving due to the influx of additional material (accret-
ing) the lateral surface of the cone under consideration is
described by the equation ρ = Λ(z, t), where Λ(z, t) =
a(t) · (1 − z/l) + b(t) · z/l. The trace of its passing in
the space forms an additional part of the considered solid.
At time moments t ∈ [t2k−1, t2k) (k = 1, N ) the lateral
surface represents the actual growing surface of the cone,
i.e. it is the level surface t of the function τ∗(r). Unit
vectors of the external (directed from the axis of the cone)
normal line to this surface form a vector field n(r) =
eρ(ϕ) cosα

(
τ∗(r)

)
− k sinα

(
τ∗(r)

)
, in the additional part

of the solid, where α(t) = arctan{[b(t) − a(t)]/l} is the
current polarstar angle of the growing cone.

IV. BOUNDARY VALUE PROBLEM FOR THE STAGE
BEFORE THE START OF AM

Before the start of AM the stress-strain state of the consid-
ered conical part can be determined on the basis of the theory
of viscoelasticity of homogeneously aging isotropic solids
[4] and the principle of Saint-Venant from the solution of
the following classical mechanical boundary value problem
with integral force condition on its end surface, t0 6 t 6 t1:

∇ · T = 0, 0 6 ρ < Λ(z, t0), 0 6 ϕ < 2π;

Ht0T = 2E + (κ − 1)1 trE, E = (∇uT +∇u)/2;

n · T = 0, ρ = Λ(z, t0);∫
{z=l}

∥∥∥∥ k · T
eρ ρ× (k · T)

∥∥∥∥dS =

∥∥∥∥kP (t)
0

∥∥∥∥ ;

u = 0, ∇× u = 0, ρ = 0, z = 0.

(3)

Here u(r, t) is the vector field of displacements. To exclude
displacement components not causing deformation of the
solid we imposed conditions of fixing the neighborhood of
the center point of one of its end surfaces. We require these
conditions to be satisfied after the start of the process of the
considered solid accretion as well.
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Using the notation (2) the boundary value problem (3) can
be reformulated for values u, E, T◦, t0 6 t 6 t1:

∇ · T◦ = 0, 0 6 ρ < Λ(z, t0), 0 6 ϕ < 2π;

T◦ = 2E + (κ − 1)1 trE, E = (∇uT +∇u)/2;

n · T◦ = 0, ρ = Λ(z, t0);∫
{z=l}

∥∥∥∥ k · T◦
eρ ρ× (k · T◦)

∥∥∥∥dS =

∥∥∥∥kP (t)
0

∥∥∥∥ ;

u = 0, ∇× u = 0, ρ = 0, z = 0.

(4)

In the boundary value problem (4) time t is not a significant
variable but acts only as a parameter.

V. BOUNDARY VALUE PROBLEM FOR THE STAGE OF
PIECEWISE-CONTINUOUS AM

A. Reduction to the Rate Characteristics of the Deformation
Process

Due to the objective lack of natural (unstressed) configu-
ration in the growing solid the kinematic description of the
process of its deformation that is traditional in the mechanics
of deformable solids is not suitable for this solid. However,
it is clear that the particles of the new material after the
attaching to the surface of growth continue to move as a
part of continuous, even though growing, solid. This means
that in the region of space occupied by the whole growing
solid at this time, the enough smooth velocity field v(r, t) of
the motion of its particles is uniquely determined. Therefore,
the problem of such a body deformation can be put in terms
of velocity. In this case in the formulation of the defining
relations of the material a tensor of velocities of deformation
D(r, t) = (∇vT +∇v)/2 may play a part of the deforming
process characteristics. The adopted equation of state (1) can
be rewritten by using this tensor in the form [13]:

S = 2D + (κ − 1)1 trD, (5)

where we have introduced the so-called tensor of velocities
of operator stresses S(r, t) = ∂T◦/∂t.

The approach requires knowing the whole story of chang-
ing the state of additional material elements up to their
inclusion in the composition of the solid considered. In
the studied in the present work process of accreting the
additional material is supposed to be initially free of stresses
(see Section III). In other words, we believe that the addi-
tional material begins to deform directly in the time of its
attaching to the formed body, and the attaching layers of
additional material to the surface of the body does not cause
the appearance nonzero stresses in the formed solid near the
surface of its growth:

T = 0, ρ = Λ(z, t), t ∈ [t2k−1, t2k) (k = 1, N). (6)

Note that condition (6) provides the equality to zero of the
stress vector n · T at the current growth surface, i.e. unload
of this surface.

The condition of instantaneous local equilibrium in the
growing body has obviously the same form as in the classical
solid of permanent composition. In the considered case
of mass forces absence this condition is expressed by the
standard equation

∇ · T = 0. (7)

It is possible to show [13] that for the simulated growth
process (in the absence of load on the future and the
actual surface of solid growth during the whole process of
its deformation) this equation generates similar differential
equations for the tensors T◦ S:

∇ · T◦ = 0, ∇ · S = 0. (8)

Equations (8)are fair at every moment of time t > t1 in the
region of space occupied by the whole growing body at this
moment. It should be emphasized that these equations are
not a trivial consequence of the equilibrium equation (7), as
in the case of growing the body the integral operator Hτ0(r)

and the operator of divergence (∇ · ) do not commute in
general because of the principal dependence of time τ0 of
the occurrence of stresses in the growing solid from the point
of this solid r.

One can also show, following [13] that from the specific
boundary condition (6) on the moving surface of growth
ρ = Λ(z, t) the condition on the components of the tensor
S implies for every kth step of continuous accreting which
is similar in appearance to the standard boundary condition
for the stresses:

n · S = 0, ρ = Λ(z, t), t ∈ [t2k−1, t2k). (9)

Indeed, the set of conditions (6) on the time interval t ∈
[t2k−1, t2k) can be written in the form of the initial condition
in that part of the solid, which is formed on the k-th stage
of its continuous growth:

T(r, t) = 0, t = τ∗(r),

Λ(z, t2k−1) 6 ρ < Λ(z, t2k).
(10)

According to the definition of the operator Hτ0(r) the con-
dition (10) is equivalent to identity

T◦
(
r, τ∗(r)

)
≡ 0 (11)

in the specified part of the solid. Acting on the identity (11)
with the operator of divergence we get

0 ≡
[
∇ · T◦(r, t)

]∣∣
t=τ∗(r)

+∇τ∗(r) · S
(
r, τ∗(r)

)
.

Attracting the first equation (8) and The geometric identity
n = ∇τ∗/|∇τ∗| (see Section III), we get the condition (9).

In the pauses between stages of continuous growth and
after the completion of growing the non-traditional condition
(6)on the lateral surface of the cone should be replaced by
the classical condition of equality to zero of the stress vector
on this surface: n · T = 0. Acting on this condition with
the operator Hτ0(r) and differentiating the result by time t,
we see that the boundary condition (9) saves force even out
of time intervals [t2k−1, t2k). However, it has a completely
different mechanical nature in this case.

B. Transformation of the Integral Force Conditions at the
End Surfaces

On the end surface of the cone after the start of its
piecewise continuous accreting it is necessary to use the same
integral force conditions as in the problem (3) before the ac-
cretion. However, now the the region of integration depends
on time t and we need to solve a separate mathematical
problem to perform the needed transition from the original
conditions to the conditions on the components of the tensor
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S. The solution to this problem is obtained on the basis of
the following supporting statement of a general nature.
Lemma. Let Ω0 and ΩA be two arbitrary limited surfaces
inside or on the boundary of a solid, subordinated to the
state equation (5) and formed in a process of piecewise-
continuous accretion in N stages t ∈ [t2k−1, t2k) (k = 1, N )
of continuous growth with arbitrary long pauses between
them. The surface Ω0 is entirely within the original (existing
before accreting) part of the solid considered. The surface
ΩA lies entirely in the additional part of the solid and is
obtained by motion in space of a curve Γ(t), t ∈ [t1,+∞),
which belongs to the current growth surface of the solid
at every moment of its continuous accreting and is fixed
in the pauses between the stages of continuous accreting,
i.e. outside the time intervals [t2k−1, t2k). Let g(r, t) be an
arbitrary function defined in the points r of surfaces Ω0 and
ΩA for t > τ0(r). Then, when t > t1 the formula

∂

∂t

[∫
Ω(t)

g(r, t)dS

]◦
=

∫
Ω(t)

∂g◦(r, t)

∂t
dS +∫

Γ(t)

g∗(r)υ(r, t)

G(t)
ds (12)

will be fair, where g∗(r) = g
(
r, τ∗(r)

)
are initial values of

the function g in the points of surface ΩA; υ(r, t) is the
normal to the curve Γ(t) component of the velocity of its
motion along the surface ΩA, calculated at the point r ∈
Γ(t); the expanding in time (disconnected in general) surface
Ω(t) combines the surface Ω0 and that part of the surface
ΩA, which has already been formed by the time t > t0:

Ω(t) = Ω0 ∪

{
∅, t ∈ [t0, t1],{

Γ(τ)
∣∣ t1 6 τ 6 t

}
, t ∈ (t1,+∞).

We omit the proof of this statement due to the limited
volume of this paper. Note that the surfaces Ω0 and ΩA

considered in the Lemma may have arbitrary curvature.
Meanwhile their boundaries may not have common points.
In the cpecial case it is possible that Ω0 = ∅. Forming a
surface ΩA curves Γ(t) can be both closed and unclosed. In
particular, the surface ΩA may “circle” original part of the
solid or form a “tube” enveloping only the material of the
additional part of the having been formed solid.

C. Formulation of the Boundary Value Problem

As a surface Ω(t) from the Lemma in the being solved
problem of accreting a conical solid it is necessary to
consider the flat surface constituting one end side of the
growing cone z = l for t > t0. The surface ΩA in this
case is annular, and its forming curves Γ(t) are concentric
circles ρ = b(t). The surface Ω0 is a circle 0 6 ρ 6 b0. Then
by the Lemma because of the condition (10) we have

∂

∂t

[∫
{z=l}

∥∥∥∥ k · T
eρ ρ× (k · T)

∥∥∥∥dS
]◦

=∫
{z=l}

∥∥∥∥ k · S
eρ ρ× (k · S)

∥∥∥∥dS, t > t1.

Thus, collecting together all the above-formulated relations
for the quantities v, D, S we can supply the following

boundary value problem describing the process of deforming
the considered conical solid on all the temporary beam after
the beginning of its accreting, t > t1:

∇ · S = 0, 0 6 ρ < Λ(z, t), 0 6 ϕ < 2π;

S = 2D + (κ − 1)1 trD, D = (∇vT +∇v)/2;

n · S = 0, ρ = Λ(z, t);∫
{z=l}

∥∥∥∥ k · S
eρ ρ× (k · S)

∥∥∥∥dS =

∥∥∥∥k ∂P ◦(t)/∂t0

∥∥∥∥ ;

v = 0, ∇× v = 0, ρ = 0, z = 0.

(13)

Given in (13) conditions for the vector field of velocities
v(r, t) in the neibourhood of the coordinates origin O
provide a rigid fixing this neighbourhood throughout the
whole process of deformation of considered growing solid.

VI. SOLUTION OF AN AUXILIARY PROBLEM FOR THE
TENSION-COMPRESSION OF A TRUNCATED CONE

As we can see, the problem (4) and the problem (13)
turned out to be mathematically equivalent to the same
classical mechanical problem of the equilibrium of a linearly
elastic truncated circular cone of permanent composition
with free lateral surface ρ = Λ(z, t), z ∈ [0, l], rigidly fixed
in the coordinates origin and being under the action of axial
forces centrally applied to its ends. The radii of the ends
of the cone and the value of forces acting on it depend on
a real parameter t. This formal coincidence is gained by
substituting in the problems (4) and (13) the values P ◦ and
∂P ◦/∂t to the value of tensile force related to the shear
modulus, the tensors T◦ and S to the stress tensor related
to the shear modulus, and in the problem (13) — also the
tensor D to the small strain tensor and the vector v to the
displacement vector as well. Let us construct the analytical
solution of the described classical problem of the theory of
elasticity.

Consider a non-growing elastic truncated cone of length
l, to that ends of radii a and b the central tensile axial
forces of magnitude P are applied. We introduce the polar
cylindrical coordinate system (ρ, ϕ, z) in the region busy by
the cone in the way we did it in Section III for accreted
conical solid. A cone is considered sufficiently long in the
axial direction compared with its transverse dimensions. In
this case, the specific distribution of acting on the ends forces
does not influence the stress-strain state of the greater part
of the cone, and this condition can be determined on the
basis of the Saint-Venant principle. To do it we can use the
known solution of the problem of tensioning an infinitely
long pointed cone with an axial force P applied to its vertex
[17]. Let us introduce an additional spherical coordinate
system (R,Θ,Φ) with the center at the cone vertex, where
R is the length of radius-vector, Φ is the longitudinal angle
counted around the axis of symmetry of the cone, Θ is the
pole angle counted from the axis of symmetry inside the
solid. In this coordinate system the solution mentioned has
the form:

u = eRuR + eΘuΘ,∥∥∥∥uRuΘ

∥∥∥∥ =
P

4πGR Q(cos Θ0)
×∥∥∥∥∥ 2(κ + 1) cos Θ− (1 + cos Θ0)[

(1 + cos Θ0)/(1 + cos Θ)− (κ + 2)
]

sin Θ

∥∥∥∥∥ ;
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T = eR eRσR + eΘ eΘσΘ + eΦ eΦσΦ +

(eR eΘ + eΘ eR)τRΘ,∥∥∥∥∥∥∥∥
σR
σΘ

σΦ

τRΘ

∥∥∥∥∥∥∥∥ =
P

2πR2Q(cos Θ0)
×

∥∥∥∥∥∥∥∥∥
1 + cos Θ0 − (3κ + 1) cos Θ[

1− (1 + cos Θ0)/(1 + cos Θ)
]

cos Θ

cos Θ− (1 + cos Θ0)/(1 + cos Θ)[
1− (1 + cos Θ0)/(1 + cos Θ)

]
sin Θ

∥∥∥∥∥∥∥∥∥ .
Here {eR, eΘ, eΦ} is the normalized local basis of the
spherical coordinate system, Θ0 is the angle of the cone
polarstar, Q(ξ) = κ ξ3 − ξ2 + ξ − κ.

To apply the written solutions to the considered in this
section classical problem of theory of elasticity it is necessary
to extend the lateral surface of the considered truncated cone
of length l in both sides in the axial direction so as to obtain
infinitely long cone with a vertex. Denote this vertex as O′.
After this it is necessary to analyze separately the cases a < b
and a > b.

In the case a < b (a > b) the reference end z = 0 of
the truncated cone is closer among its two ends to the vertex
(further from the vertex) O′ of a pointed cone. Therefore, the
introduced in Section III vector k is codirected (oppositely
directed) to the vector defining the direction Θ = 0, and the
vector eϕ is codirected (oppositely directed) to the vector
eΦ. Thus, the transition from the additionally introduced
spherical coordinate system to the original cylindrical one
is maintained by means of the following transformation of
the local bases:

∥∥eR eΘ eΦ

∥∥ =
∥∥eρ eϕ k

∥∥·
∥∥∥∥∥∥

sin Θ cos Θ 0
0 0 ±1

± cos Θ ∓ sin Θ 0

∥∥∥∥∥∥ .
The upper signs correspond to the case a < b, the lower
ones — to the case a > b. Meanwhile, we also need to put
cos Θ = ±(z + d)/R, sin Θ = ρ/R, R =

√
ρ2 + (z + d)2,

d = la/(b − a), Θ0 = ±α, α = arctan{(b − a)/l} =
arctan{a/d}. The value d is, accurate to sign, the distance
from the reference end z = 0 to the vertex O′ of a pointed
cone. The value of α is, accurate to sign, the polarstar angle
of the cone.

Perform specified transformations, ensuring rigid fixing
of a neighborhood of the coordinates origin O by adding
a proper constant to the axial displacement. We find:

u = eρuρ + ez uz,∥∥∥∥ uρ
uz + c

∥∥∥∥ =
P

4πGR(ρ, z)Q(cosα)
×∥∥∥∥∥∥∥∥

[
±κ (z + d)

R(ρ, z)
− 1 + cosα

1± (z + d)/R(ρ, z)

]
ρ

R(ρ, z)

±
[
κ (z + d)2/R2(ρ, z) + κ + 1− cosα

]
∥∥∥∥∥∥∥∥ ,

T = eρ eρσρ + eϕ eϕσϕ + ez ez σz + (eρ ez + ez eρ)τρz,∥∥∥∥∥∥∥∥
σρ
σϕ
σz
τρz

∥∥∥∥∥∥∥∥ =
P

2πR2(ρ, z)Q(cosα)
×

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

1 + cosα

1± (z + d)/R(ρ, z)
∓
[
cosα+

3κρ2

R2(ρ, z)

]
z + d

R(ρ, z)

± z + d

R(ρ, z)
− 1 + cosα

1± (z + d)/R(ρ, z)

±
[
cosα− 3κ (z + d)2/R2(ρ, z)

]
(z + d)/R(ρ, z)

±
[
cosα− 3κ (z + d)2/R2(ρ, z)

]
ρ/R(ρ, z)

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
.

Above, the following constant is used:

c =
(2κ + 1− cosα)P tanα

4πGa Q(cosα)
.

The expressions received for the displacements and
stresses can be written simplier with the function ζ(ρ, z) =
±(z+d)/R(ρ, z) = cos Θ, if we also enter the function of the
shape of the cone lateral surface Λ(z) = a ·(1−z/l)+b ·z/l
and note that z + d = Λ(z)/ tanα. Indeed, then we have
±R(ρ, z) = (z + d)/ cos Θ = Λ(z)/[ζ(ρ, z) tanα], more-
over, the function ζ(ρ, z) can be calculated by the formula

ζ(ρ, z) =
[
ρ2 tan2α/Λ2(z) + 1

]−1/2
, (14)

as ζ = (tan2 Θ + 1)−1/2 and tan Θ = sin Θ/ cos Θ =
±ρ/(z + d) = ±ρ tanα/Λ(z).

In result∥∥∥∥ uρ
uz + c

∥∥∥∥ =
P ζ(ρ, z) tanα

4πGΛ(z)Q(cosα)
×∥∥∥∥∥∥∥

[
κ ζ(ρ, z)− 1 + cosα

1 + ζ(ρ, z)

]
ζ(ρ, z) ρ tanα

Λ(z)

κ ζ2(ρ, z) + κ + 1− cosα

∥∥∥∥∥∥∥ ,∥∥∥∥∥∥∥∥
σρ
σϕ
σz
τρz

∥∥∥∥∥∥∥∥ =
P ζ2(ρ, z) tan2α

2πΛ2(z)Q(cosα)
×

∥∥∥∥∥∥∥∥∥∥∥∥

1 + cosα

1 + ζ(ρ, z)
−
[
cosα− 3κ ζ2(ρ, z) + 3κ

]
ζ(ρ, z)

ζ(ρ, z)−
[
1 + cosα

]/[
1 + ζ(ρ, z)

][
cosα− 3κ ζ2(ρ, z)

]
ζ(ρ, z)[

cosα− 3κ ζ2(ρ, z)
]
ζ(ρ, z) ρ tanα/Λ(z)

∥∥∥∥∥∥∥∥∥∥∥∥
.

(15)

Note that all stresses are proportional to the value of
P/
[
πΛ2(z)

]
, which is, obviously, the average normal stress

acting at any cross-section z = const of the cone.
It is easy to make sure that the expression (15) remain

in force even in the special case of cylindrical solid, which
was so far excluded from our consideration. Indeed, if the
parameter α tends to zero at fixed values of other geometric
parameters a and l and arbitrary fixed values of the variables
ρ ∈ [0, a) and z ∈ (0, l), then given the submission Λ(z) =
a+ z tanα we have

uρ → −
P

πa2
· (κ − 1)ρ

2(3κ − 1)G
, uz →

P

πa2
· κ z

(3κ − 1)G
,

σz →
P

πa2
, σρ,ϕ , τρz → 0.

Obtained with α→ 0 the limit values of displacements and
stresses correspond, obviously, to the solution of the Saint-
Venant problem of the uniaxial tensile with a force P of a
cylinder with the fixed end z = 0.
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VII. THE CONSTRUCTION OF THE SOLUTION
FOR AN AM PROBLEM

In Section VI the solution of the classical problem of
tension–compression of a non-growing elastic conical part
with an arbitrary correlation of radii of its loaded end
surfaces is constructed. As indicated in Section VI, after a
suitable replacement of variables contained in the solution it
is possible to obtain the solutions of boundary value problems
(4) and (13). These solutions will contain the introduced in
Section III functions α(t) and Λ(z, t) as well as the function

ζ(ρ, z, t) =
[
ρ2 tan2α(t)/Λ2(z, t) + 1

]−1/2

introduced by analogy with (14).
As a result, in each point of r of the considered piecewise

continuously accreted aging viscoelastic conical solid we will
know the evolution of the velocity vector v and the tensor
S of velocities of operator stresses on the time beam

t > τ1(r) =

{
t1, 0 6 ρ < Λ(z, t0),

τ∗(r), Λ(z, t0) 6 ρ < Λ(z, t2N ),

which covers the entire history of deformation of the neigh-
borhood of a given point in the composition of the formed
solid after the beginning of the process of its accretion. And
at the points of the original part of this solid we will also
know the evolution of the displacement vector u and the
operator stress tensor T◦ on the time segment t ∈ [t0, t1]
before the beginning of the accretion process. After that, the
evolution of the operator stress tensor T◦ at any point r of
the solid for all t > τ1(r) can be recovered by using the
integration procedure:

T◦(r, t) = T◦
(
r, τ1(r)

)
+

∫ t

τ1(r)

S(r, τ)dτ.

Here we have T◦
(
r, τ1(r)

)
= 0 in the additional part of the

solid according to the initial condition (11).
When in a point r of the considered solid we know the

complete evolution of the tensor T◦, i.e., the values of this
tensor since the moment t = τ0(r) of occurrence of stresses
in a given point, we can find the complete evolution of the
stresses tensor T in this point by using the inverse to Hτ0(r)

transformation H−1
τ0(r):

T(r, t)

G(t)
= T◦(r, t) +

∫ t

τ0(r)

T◦(r, τ)R(t, τ)dτ.

When we use a particular approximation for the creep
kernel K(t, τ) the expression for the respective relaxation
kernel R(t, τ) may not be known in the closed form or be too
bulky. Then the procedure of reconstructing the evolution of
the tensor T by numerical treatment of the Volterra equation

T(r, t)

G(t)
−
∫ t

τ0(r)

T(r, τ)

G(τ)
K(t, τ)dτ = T◦(r, t),

for example, by the method of quadratures [18], will be less
expensive from a computational point of view and may be
even more precise.
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