



Abstract— The use of domain-specific modeling languages

and associated methodologies, provide support in application

domain where the safe and reliable operations of the systems

are of paramount importance to the users and organizations,

and wherein the domains are well understood and documented.

One such area of domain-specific modeling application is in the

field of avionic systems. For software systems to be used

onboard aircrafts they must be certified, and as such

certification protocols have been established for developing

these safety-critical systems. These established protocols are

usually represented as textual documents and inherently are

difficult to apply directly in software development

environments. The work presented herein proposes a

graphical modeling representation for an avionic software

system certification specification and an accompanying model-

driven methodology for implementing the certification

specification. This work is based on the RTCA Software

Consideration in Airborne Systems and Equipment

specification and the Unified Modeling Language. The

presented model-driven methodology, incorporates the use of

formal specification techniques to satisfy many of the

verification requirements of the RTCA specification. The

benefit of this work is in the transformation of textual

description to graphical models in support of precise software

system development, and a rigorous model-driven software

development methodology for avionic soft-ware system

development.

Index Terms— Domain-Specific Modeling Language,

Formal Specification Techniques, Model Transformation,

Safety-Critical Systems, Software Engineering.

I. INTRODUCTION

OMAIN-SPECIFIC modeling languages (DSMLs) [1] are

a subset of software visual modeling languages that are

characterized by having a vocabulary of terms and concepts

that are fundamental to the problem and solution domains

under consideration. Thus, DSMLs are identical, in

definition, to that of software modeling languages, but with

the added feature that the terms and concepts of the

language have little applicability outside the specific

domain. DSML are most suitable in large application

domains that are well-understood, with respect to the

requirements, and are critical to the viability of work in the

specified domain. Consequently, safety-critical and

mission-critical problem domains are candidate areas for the

Manuscript received March 20, 2018; revised April 5, 2018.

E. S. Grant is with the Department of Computer Science, University of

North Dakota, Grand Forks, ND 58202-9015, USA (phone 701.777.4133,

fax: 701.777.330, email: emanueel.grant@engr.und.edu).

use of DSMLs.

An integral aspect to the development of safety- and

mission-critical systems is the verification of system

correctness. This system verification may be accomplished

in various format, with the most frequently used is that of

formal specification techniques (FST) [2]. FSTs are

methodologies wherein, mathematical representations of the

system are developed for the purpose of carrying out

rigorous analysis to identify deficiencies in the design of the

system.

The reliable operation of safety-critical and mission–

critical systems [3] are fundamental to the environment in

which they are used. Some of these systems, apart from the

issue of reliability, also must be developed following

established standards and guidelines. One such application

domain is that of the field of onboard avionic systems.

Software system that are intended to be used in manned and

soon to be established unmanned, aerial vehicles have to

certified before they can be placed in their operational

environment. This certification process sets out

development processes, procedures, and artifacts that must

be implemented before the software systems are approved.

Many of these software development standards and

guidelines exist in the form of textual documents and must

be understood by the developers in order to achieve the

stated objectives. Fundamentally, as it is with software

system requirements that exist in textual format, there may

be ambiguities in the textual representations of these avionic

software system development guidelines. Consequently, the

developers are faced with this added complexity in carrying

out their tasks.

The current standard for avionic software development

that is used in the United States of America (USA) is the

RTCA DO-178C “Software Consideration in Air-borne

Systems and Equipment Certification” [4]. A corresponding

EUROCAE (Europe-an Organization for Civil Aviation

Equipment) guideline for software development, the ED 12,

was development in conjunction with DO-178C for use in

Europe.

The work presented in this report is composed of two

phases. The first phase addresses the transformation of the

DO-178C specification from a textual representation to a

graphical representation, in the form of the UML (Unified

Modeling Language [5]. The second phase of the work

involves the definition of a model-driven object-oriented

software development methodology that is in compliance

with the DO-178C and incorporates FSTs for verification

and validation of the system under development. The suite

Towards Domain-Specific Modeling

Methodology for Avionic Safety-Critical

Systems

Emanuel S. Grant, Member, IAENG

D

Proceedings of the World Congress on Engineering 2018 Vol I
WCE 2018, July 4-6, 2018, London, U.K.

ISBN: 978-988-14047-9-4
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2018

mailto:emanueel.grant@engr.und.edu

of models is the DSML for avionic system development.

The remaining sections of this paper is described as follows.

Section II provides a description of the research areas of the

work done. Section III describes the work on transforming

the DO-178C specification and the methodology defined.

Section 4 describes three projects on which the methodology

was applied and the outcomes. The next section gives a

concluding statement and a look at future work in this area.

II. BACKGROUND

A. Domain Description

In this work the definition of safety-critical systems and

the accompanying mission-critical systems are areas of

software development are viewed with the same level of

criticality but define separately. Both areas of software

development garner greater resources and effort than other

software application domains. Safety-critical systems are

characterized as those systems that may result in harm or

death to persons who are using they systems or on who the

systems are being used, should the system fail. Mission-

critical systems are characterized as those systems that an

organization may experience significant financial,

reputation, or resource loses, should such systems fail. The

focus of this work is on the development of systems in a

manner to minimize the possibilities of system failure by

maximizing the software development activities of rigor and

tractability at the requirements and design stages of

development.

B. Avionic Software Development Specification

The RTCA DO-178C is the de facto standard guideline

for avionic software development in the USA. A

corresponding EUROCAE (European Organization for Civil

Aviation Equipment) guideline for software development,

the ED 12, was development in conjunction with DO-178C

for use in Europe. The DO-178C describes the requirements

for certification of software system in airborne operation but

does not specify how these requirements are to be met. It is

left up to the software developers to incorporate notations,

processes workflows, and methodologies that comply with

the objectives of DO-178C for certification. This standard

supports the use of formal specification methods, objected

oriented-methodologies, mode-based development and

verification, and CASE tool usage. DO-178C had a

predecessor, DO-178B, which has been retired with the

release of DO-178C in 2012. DO-178B was last updated in

1992 and did not address many of the current software

development methodologies, specifically objected-oriented,

model-based development, and formal specification. The

DO-178C was codified to address those and other

deficiencies in DO-178B. The DO-178A addresses the

certification of electronic hard-ware for use in airborne

operation.

C. UML

Unified modeling language is a standard modeling

language used to visualize, specify, construct, and document

the artifacts of software intensive systems [5]. Diagrams are

categorized in UML as structure and behavior diagrams.

Structure diagrams represent static compositions of a system

e.g. Class, Component, Object, Deployment, and Package

diagrams. Behavior diagrams describe dynamic features of

a system e.g. Use-case, Activity, and State diagrams. The

expressive nature, informality, user-friendliness, and

comprehensive diagrams are widely used to design various

critical systems.

Several UML diagrams are used in this research in order

to show the usefulness of them to depict a system from high-

level to low-level descriptions. Package diagrams are used

to portray the high-level view of a system while activity

diagrams portray the activities in detail at granular level, and

class diagrams are a set of classifiers. Class package and

activity diagram are used to represent the DO-178C

specification.

D. Formal Specification Techniques

Formal specification techniques (FSTs) use mathematical

concepts to describe software systems with precision

through rigorous analysis [7]. The use of FSTs is not a

substitute for graphical software models; they are

complementary. While formal models reveal

inconsistencies and omissions, the informal model is an

explicable version of the formal models. The specification

language chosen in this work is Z notation.

The excessive cost during the implementation and early

test phases are most times caused by errors in specification

and design phases [6]. A specification written in a FS

notation models the proposed system by naming the

components of the system and expressing constraints

between those components. Its formal basis enables

mathematical reasoning, and hence proves that desired

properties are consequences of the specification [6]. From

these proofs, it can be determined whether the system will

behave in a desirable manner; assuming the specification is

accurate and complete.

III. METHODOLOGY

A. Phase I

In conducting the first phase of the research work, i.e.

transforming the DO-178C document from its textual

representation to a graphical representation, a series of UML

diagrams are developed which comply with the DO-178C

specification. The specifications are carefully converted

from high-level to low-level models in a hierarchical

manner.

The DO-178C specification for avionic software

development is made up of twelve sections, two annexes,

and two appendices. To develop a graphical representation

of DO-178C specification a series of UML Package, Class,

and Activity diagrams were developed. The Package

diagrams were used to capture the high-level descriptions of

the specification in the first phase of the work. Figure 1

illustrates the upper-most package diagram which presents

the relationships between the twelve sections of the

document.

The numerical references in the packages and activities of

the graphical representations of the DO-178C specification,

contained in the figures: are the section numbers from the

DO-178C specification and have been added for traceability.

Each package of Fig. 1 is decomposed into a lower-level

package diagram, as illustrated in Fig. 2, wherein the DO-

Proceedings of the World Congress on Engineering 2018 Vol I
WCE 2018, July 4-6, 2018, London, U.K.

ISBN: 978-988-14047-9-4
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2018

178C Software Planning Process 4.0 UML Package Mode is

presented. This is done for each package of each model,

until all textual paragraph of the DO-178C specification is

represented as a component of a UML class diagram or an

activity diagram.

Fig. 1. DO-178C High-Level Package Diagram

The stereotypes <<data item>> are decomposed into

UML class diagrams, and the <<process>> stereotypes are

decomposed into activity diagrams, which are the focus of

the first phase of the work.

Fig. 2. DO-178C Software Planning Process 4.0 UML Package Model

Fig. 3 represents the DO-178C Software Planning Process

(Section 4 of the DO-178C specification) as an UML Use

Case Diagram, wherein the user is the project development

team. Fig. 3 is decomposed into a set of UML use case

diagrams, class diagrams, and activity diagrams. Fig. 3 is

one of the models contained in the Software Planning

Process 4.0 of the Fig. 1 package-level model

B. Phase II

The methodology of the research is presented as a UML

activity diagram, in Fig 4. The format of the activity

diagram includes the related DO-178C specification section

number for traceability reference. The “Conduct Software

Requirement 5.0” and “Conduct Software Requirement

Process 5.1” are the sub-activity events that are fundamental

to the successful software development at the early stage of

the methodology. The models that are output from the

“Conduct Software Requirement Process 5.1”, namely,

UML Requirement Class Diagram, Use Case Diagram, and

Use Case, are then input to the “Conduct High-Level Design

5.2.2” process. These models will be refined and

transformed during this and later stages of the methodology.

It is to be noted that the models of Fig 4 are an instantiation

of the methodology; for other application domains other

models and formal specification notation may be used.

Fig. 3: DO-178C Software Planning Process 4.0 UML Use Case Diagram

Representation

Fig. 5 elaborates the requirement sub-activities of Fig. 4.

The input to the sub-activity (Acquire Requirement 5.1.2)

are the “Software Development Plan 11.2” and “Software

Requirement Standard 11.6” outputs from the prior sub-

activity of Fig 4, namely, “Conduct Software Planning 4.0”.

As discussed earlier, various UML diagrams are created

to implement Model Driven Development approach for

different modules and sub-modules of DO-178C. In an

earlier study [7], modules 4.0, 5.0 and 7.0 of DO-178C

specification were selected for transformation.

C. Formal Specification Techniques

Formal specification techniques (FSTs) employ

mathematical concepts to represent software systems with

precision to conduct rigorous analysis [2]. The use of FSTs

is not a substitute for modeling software systems ass

graphical models; they are complementary. While formal

models can reveal errors I the requirement specification and

system design, the informal model is a visually

understandable representation of the software system.

 The formal specification notation used in this work is the

Z notation [8]. A specification written in the Z notation,

models the system design by representing the components of

the system and expressing constraints on and between those

components. Its formal basis enables mathematical

Proceedings of the World Congress on Engineering 2018 Vol I
WCE 2018, July 4-6, 2018, London, U.K.

ISBN: 978-988-14047-9-4
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2018

reasoning, and hence proves that desired properties are

consequences of the specification [6]. From these proofs,

the system’s behavior is assessed to be in a desirable or

undesirable state.

System behavior should always be deterministic in the

domain of safety critical systems. These software systems

encompass highly complex processing and have a high

demand for reliability and accuracy. Due to the continuous

use of UML in software development, there is a need to

resolve the informal semantics of the models it produces.

Transforming UML models into Z equivalences also provide

formal analysis to accomplish verification and validation of

software systems.

Fig. 4. UML Activity Diagram of the Research Methodology

IV. RESULTS

A. Case Study I

The reported work has it genesis on a project at the

University of North Dakota (UND) for the development of

an air-worthiness system for the operation of un-manned

aerial vehicles (UAV) [7]. With the increasing use of UAVs

in military and civilian areas there is an increasing need to

develop and advance the reliability, availability, and

performance of these safety-critical systems. An obstacle to

the use of UAS is the interaction between UAV and manned

aerial vehicles (MAV). Towards achieving integration of

UAV and MAV flights there is the need for systems that

ensures the possibility of an incident between these vehicles

be the same as or better than that which now exists for

MAVs operation [4]. The UND – UAS Risk Mitigation

Project was started to address this problem. This project

supported UAV experimentation and training, and assistance

to civilian authorities.

Fig. 5. UML Activity Diagram of Research Requirement Processes

The UND – UAS Risk Mitigation Project system was

made up of three core components; a, radar system, a data

computation unit, and a display system. The display system

software is the focus of the work for which the methodology

of this work was defined.

This work resulted in the identification of multiple errors

in the initial design models by means of the formal

specification technique (FST) that was applied at the

verification phase of the model-driven software

development methodology employed on the project. In a

safety-critical environment, these software design errors

could result in catastrophic failure of the operating system.

Examples of Z formal specification models developed on

this project are presented in Fig. 6.

The display system was made up of UML class diagram

of: 174 classes, 2,250 attributes, 383 associations, 580

operations (methods) and, 268 parameters. A subset of this

class diagram that contained 9 classes with a combined total

of 455 attributes, 16 associations and their multiplicities,

and 56 operations were transformed to a Z notation

representation. This derived 206 paragraphs in Z/EVES,

which included the declaration of schemas, basic types, and

axiomatic definitions.

Fig. 6. Example of Z notation model for UAS System [7]

Proceedings of the World Congress on Engineering 2018 Vol I
WCE 2018, July 4-6, 2018, London, U.K.

ISBN: 978-988-14047-9-4
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2018

B. Case Study II

A commercial airline company, as a part of its operation

review, identified a problem in its information system

structure. The company encountered what was identified as

a “single-point of failure” in the process for dynamic

assignment of aircrafts to airport terminal gates. That single

point of failure in the process was the reliance on a single

specific operator to conduct dynamic assignment of aircrafts

to terminal gates. The process involves the listing of all

aircrafts for assignment and the available gates. Aircrafts

are classified based on certain attributes, such as size,

capacity, manufacturer, arrival time, departure time, etc.

Gates are classified based on certain attributes, such as,

location to runway, fuel-port, accessibility, availability time,

etc. Other constraints pertain to global considerations, such

as available runway, taxiway path to runway, established

departure timeframes, etc. [9].

The operator would compile the aircraft and gate lists and

generate a standard assignment, based on the previous

assignment cycle. The existing software system would then

identify any assignment conflicts, which may arise from

gate closures, incompatible aircraft-gate assignment aircraft

late or none arrival, etc. The operator would then attempt to

resolve the assignment conflicts by reassigning aircrafts

based on prior experience of executing this process.

Whenever that operator is unavailable, the new operator

would conduct the same operation, but the resolution would

be based on his experience.

The company recognized the failure that may arise if this

system and process were not improved to be more efficient

and effective. Consequently, a team of researchers from the

University of North Dakota (UND) departments of Aviation

and Computer Science were asked to look at the problem

and develop a plan to mitigate the potentially problematic

system and process. The UND team included researchers in

genetic algorithm design and software engineering from the

Department of Computer Science; it is the software

engineering researchers’ work, which is specifically

documented in this report.

Fig. 7: Reverse-Engineering Modified Model-Driven Methodology

The software system documentation team opted to

identify this system as a Level-A DO-178C system, in order

to exercise as many of the model-driven methodology’s

activities, as represented in Figure 4. The team’s effort was

centered on that of reverse engineering a set of UML models

of the genetic algorithm system for the purpose of

verification, validation, and system documentation. A

reverse engineering method was developed that overlaid the

forward engineering methodology of Fig. 4, which is

presented in Fig. 6.

The framework of Fig.7 was developed to incorporate a

reverse-engineering strategy to complement the forward-

engineering activities. Fig. 7 also illustrates the use of

formal specification techniques for validating the reverse

and forward engineering activities. The “Design UML

Models” activity of Fig.7 is reflective of the Conduct High

Level Design 5.2.2” and “Conduct Low-Level Design 5.2.2”

of Fig. 4, and the “Formal Models” activity of Fig.7 is

synonymous to the “Verify High Level Design 6.3” and

“Verify Low-Level Design 6.3” activities of Fig. 4. The

green (solid) arrowed lines represent the forward

engineering path through the process model, while the red

(broken) arrowed lines represent the reverse engineering

path through the model. The forward engineering process

commenced with the “Design UML Models” activities,

while the reverse engineering process commenced at the

“Program Code” activity.

The main UML model developed by the team was a set of

activity diagrams that was implemented at the detailed-level

of system modelling; an example is presented in Fig. 8. The

limitation to producing just one type of UML model was

borne out of the airline system administrators’ preference

for just the necessary models to facilitate any immediate

small-scale bug fixes, versus models to be used for system

evolution. The nature of the contract between UND and the

airline called for the software system’s on-going

maintenance (evolution) to be further contracted out to a

third party.

Fig. 8: UML Activity Diagram of Aircraft-Gate Assignment System

V. CONCLUSION

This report documents the work in transforming a

specification, the RTCA DO-178C, for safety-critical

system software development, from a textual representation

to a graphical representation; in the form of the UML

Proceedings of the World Congress on Engineering 2018 Vol I
WCE 2018, July 4-6, 2018, London, U.K.

ISBN: 978-988-14047-9-4
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2018

notation. Complementing this work, was the development

of a model-driven software development methodology that

is compliant with the DO-178C specification that is used in

conjunction with the DO-178C graphical representation to

design and develop software systems for onboard avionic

operations. The output of this research effort is a DSML for

avionic safety-critical software systems that is compliant

with the RTCA DO-178C specification.

 This work is primarily focused on the development of

safety-critical systems that are now ubiquitous in daily life.

Such systems appear in many fields, such as the medical,

transportation, and home-care, products and services that are

used in private. Professional, individual, and group spheres

worldwide. The reliability of these systems is paramount to

not only the users of these systems, but also to the future

application of software systems in new domains. The

increasing need for more reliable software systems will

continue to grow and the need for more reliable software

systems keeps pace.

This research effort is ongoing, with the research work

being conducting to develop tools to automate aspects of

using the DSML in application development. This future

research effort is intriguing, as the tool (CASE)

development effort will also have to abide by the DO-178C

specification

REFERENCES

[1] R. E. Faith, L. S. Nyland, and J. F. Prins. “KHEPERA: A system for

rapid implementation of domain specific languages. In Proceedings of

the Conference on Domain-Specific Languages, 1997.

[2] R. B. France, A. Evans, K. Lano,, B. Rumpe “The UML as a Formal

Modeling Notation” Computer Standards & Interfaces, vol 19, issue

7, 325—334, 1998.

[3] D. J. Smith,K. GL. Simpson, The Safety Critical Systems Handbook.

 Elsevier, MA: Cambridge, 2016.

[4] SC-205, Software Consideration in Air-borne Systems and Equipment

Certification. Washington DC: RTCA, Inc., 2011.

[5] ISO/IEC 19501, Unified Modeling Language (UML) Information

Technology - Open Distributed Processing, Version 1.4.2 (2005).

[6] R. B. France, J. Bruel, M. M. Larrondo-Petrie, “An Integrated Object-

Oriented and Formal Modeling Environment”. In Proceedings of

JOOP. 25--34. 1997.

[7] E. S. Grant, V. Jackson, S. Clachar, “Towards a Formal Approach to

Validating and Verifying Functional Design for Complex Safety

Critical Systems”, 2nd Annual International Conference on Software

Engineering & Applications (SEA 2011), Singapore, GSTF, 2011.

[8] ISO/IEC 13568, “Information Technology: Z Formal Specification

Notation - Syntax, Type System and Semantics” First ed. ISO/IEC

2002.

[9] E. S. Grant, P. Ajjimaporn, “Pedagogical Benefits from an Exercise in

Reverse Engineering for an Aviation Software Systems” 10th

International Conference on Computer Supported Education

(CSEDU- 2018), Madeira, Portugal, 2018.

Proceedings of the World Congress on Engineering 2018 Vol I
WCE 2018, July 4-6, 2018, London, U.K.

ISBN: 978-988-14047-9-4
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2018

