
Forming Productive Student Groups
Using a Massively Parallel Brute-Force Algorithm

Tyson R. Henry

Abstract—The ability to work in productive groups is critical
for success in the software industry, thus computer science students
must be given the opportunity to work in productive groups.
However, forming productive groups is difficult. A promising new
way to form student groups is to use a web application to collect
information from individual students and then use an algorithm to
form the groups. This paper provides an overview of group
formation, presents existing group formation work, explains the
complexity of the group formation problem, reports on a set of
experiments that provide an empirical description of the data
topology of group formation and subsequently illustrates the
shortcomings of existing algorithms. Specifically, the solution
space is very sparse and probabilistic algorithms are unlikely to
find a good solution. Finally, a massively parallel limited brute-
force group formation algorithm is presented.

Index Terms—student groups, student teams, group formation,
team formation, groupware.

I. INTRODUCTION

tudents need productive group experiences for two
reasons. First, potential employers usually ask students

about their group experiences. Students who relate positive
and productive experiences are more likely to be hired.
Second, once employed in the software industry, success
often depends on one's ability to be a productive member of
a software development group. Positive group experiences
from school can help students learn how to be productive in
industry settings and subsequently help them succeed early
in their career. While the need for productive groups is
clear, no silver bullet solution exists for how to form
productive groups.

S

There are three traditional approaches for forming student
groups: random composition, self selection, and the
instructor manually creating groups. Each has significant
shortcomings: random can lead to very unbalanced groups
and is unlikely to produce effective groups, self selection
discriminates against less connected students, and the large
number of possible groupings makes manual grouping
difficult and unlikely to produce one of the best possible
groupings. These shortcomings have led to a growing body
of research into algorithmic group formation.

Algorithmic group formation uses information about
individual students (i.e. goals, interests, grades, availability
for meetings, etc.) to form the groups. The first step is to
create a survey and have all students complete it. The

Manuscript received June 25, 2013; revised August 16, 2013. This work
was supported in part by a gift from the NVIDIA Corporation.

Tyson R. Henry is with the Computer Science Department, California
State University, Chico, CA 95926-0410 USA; 530-898-5709; e-mail:
trhenry@csuchico.edu.

or weight of each possible group. An integer weight is
information students provide is used to evaluate the strength
calculated based on information provided by students. For
example, a group that is available to meet ten times during
the week would have a larger weight than a group that can
only meet three times (see [1] for a thorough description of
how the weights are calculated). The task of the group
forming algorithm is to find the set of groups (or grouping)
with the largest total weight. For example, if a grouping
contains groupi, groupj, and groupk, the weight of the
grouping is weight(groupi) + weight(groupj) +
weight(groupk).

Existing group formation systems use a web-based front
end to gather information from students and one or more
heuristic algorithms to generate the groupings. While these
systems have improved on the traditional methods, they
have not adequately addressed the complexity of the
problem or considered the topology of the data space and
thus are unlikely to find optimal groupings.

This paper provides an overview of existing algorithmic
formation, describes the complexity of the problem, reports
on some experiments that demonstrate the inadequacy of
existing algorithms, and describes a massively parallel
group formation algorithm. A web-based system that uses
the presented algorithm for forming groups is described in
[2].

II. RELATED WORK

Many group formation systems are described in the
literature [3]-[7]. The most documented and the only system
available on the web is Team-Maker [3]. A large effort
(called CATME) is currently underway to provide a
thorough assessment of Team-Maker [5]. It provides a web-
based system any instructor can use to create groups and is
using the data from actual courses to evaluate their group
formation process.

The CATME research is well formed and is likely to
produce valid results. However, it does not directly analyze
the grouping algorithm. It assumes the groupings produced
by its algorithm are near optimal. The analysis described
here demonstrates that it is unlikely the CATME algorithm
finds near optimal results.

The literature contains descriptions of many different
approaches to formulating groups: genetic algorithms [5] , a
hybrid grouping genetic algorithm approach [8], fuzzy-
genetic decision support system [9], evolutionary algorithms
[10], ant colony optimization [11], agent-organized
networks [12], fuzzy optimization approach [13], student
performance [14], analytical hierarchy process [7],
clustering [15], probabilistic model checking [16], graph

Proceedings of the World Congress on Engineering and Computer Science 2013 Vol I
WCECS 2013, 23-25 October, 2013, San Francisco, USA

ISBN: 978-988-19252-3-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2013

analysis [17], and integer programming [18]. This list
shows the breadth of research on algorithm based group
formation. However, there has been only minimal analysis
of the results. Many of the listed researchers compare the
groups composed by their algorithms to randomly composed
groups or groups created manually by an instructor. Other
researchers evaluate their algorithms by comparing the
results to results generated by the same algorithm without
some portion of the logic. There is clearly a need for a
better understanding of the grouping data and a means of
evaluating algorithms.

III. GROUPING PROBLEM COMPLEXITY

The number of possible groups of size g that can be
constructed from a class of n students is n choose g or

ng. This is equivalent to  n!
g!⋅n−g !. For a

typical class, this set is small enough that it can be
constructed quickly. For example, a class of 36 students
partitioned into groups of 6 students can be partitioned into
1,947,792 distinct groups. A modern desktop computer can
calculate these groups and their weights in a matter of
seconds. The computational road block arises from the task
of selecting the best set of groups (or best grouping). The
number of possible ways to group all the groups into
groupings is

 n!
g!⋅n−g!!

ng !⋅ n!
g!⋅n−g!

−
n
g !

For a class of 36 students partitioned into groups of 6
students there are 2.67x1024 possible groupings. This
problem is intractable; it is not feasible to consider all the
possible groupings. In order to find good groupings, a
heuristic algorithm that considers only a fraction of possible
groupings must be used.

IV. DATA TOPOLOGY EXPERIMENTS

Existing group formation algorithms make two
assumptions, (1) there are many good groupings and thus a
heuristic algorithm started at a random location is likely to
be near a good solution, and (2) the best groups live at the
top of well formed hills. These claims were investigated by
a series of experiments to explore the data topology.

A software engineering class of 25 students took an
extensive survey that included questions about previous
grades, the types of projects they are interested in working
on, when they are available to meet, and their preferences
for working with each of their classmates. This data was
used to assign a weight to the 53,130 possible groups of five
students.

In order to estimate the likelihood that a given heuristic
algorithm would find an optimal solution, an accurate model
of the data is required. It would be ideal to explore the

entire data set (all possible groupings) but the data is too
large (6.23 x 1014 for this example). Thus one or more
assumptions about the data must be made in order to limit
the number of possible groupings to be considered.

For these experiments, it was assumed that the best
groupings would contain the best groups. In other words,
groups with the highest weights will probably be the ones in
the best groupings (the groupings with the highest weight).
Using this assumption, the following algorithm was
developed to search for optimal solutions:

• Sort all groups from largest weight to smallest
smallest.

• Consider the first N best groups (which are now at
the front of all groups).

• For every groupi where i < N, recursively consider
all possible groupings that contain groupi and
groupsk where k > i.

• The search is terminated when it becomes
mathematically impossible to improve on the
current best grouping (since the groups are ordered
from best to worst, it is possible to determine when
no better solutions exist).

The result of this algorithm is the best grouping for each of
the N best groups (since all possible groupings are
considered, it is certain this is the best grouping for the
given group). However, this set of N groupings may not
contain the best overall grouping. This set of groupings will
contain the best overall grouping only if the assumption that
the best groupings contain the best groups is true.

The algorithm was run on a 2000 GFLOPS computer (one
with two 448 core NVIDIA Tesla C2050 GPU computing
processors) for about 40 days. Ten threads were run on each
core resulting in 8960 threads. Each thread found the best
grouping for two groups. Thus the program considered the
best groupings for the best 17,952 groups (34% of total
53,130 groups). The results of this experiment are shown in
Figure 1.

Fig 1: Best 17,952 Groups
(with pruning)

For each processor, the current best grouping was stored.
When considering a new starting group, if it became
mathematically impossible to improve on the best current
grouping (because all the remaining groups had weights too
low to produce a better grouping), the search was pruned.
The middle of Figure 1 is empty because each of these
groups lead to a groupings with a lower weight than the

Proceedings of the World Congress on Engineering and Computer Science 2013 Vol I
WCECS 2013, 23-25 October, 2013, San Francisco, USA

ISBN: 978-988-19252-3-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2013

thread's current best grouping (best groupings are shown on
the left). The second group of plots were generated by the
second set of threads. These threads started their searches
by starting with groups later in the array. These threads also
pruned the majority of their searches. The results shown in
Figure 1 validate the assumption that the best groupings will
contain the groups with the highest weights.

Fig 2: Best 896 Groups
 (no pruning)

In order to expand on the data shown in Figure 1, a
second experiment was performed starting with the 896
groups that composed the best groupings found in the first
experiment (896 was chosen to facilitate dividing the task
among the 896 processors). For each group, the best
grouping was found. The sorted results are shown in Figure
2.

The first experiment illustrated that it is unlikely optimal
groupings are in the data space not explored. The steep
decline in Figure 2, shows that it is unlikely that even good
solutions (those with weights less than half of the best
groupings) are in the unexplored data space.

The net results of both experiments is that there are very
few good solutions (those with weights greater than 50% of
the best groupings). Thus a heuristic algorithm must use
more than chance to guide itself toward a good solution.

Existing group formation algorithms (e.g. [3]-[7]) rely on
the data space containing many good solutions (they
typically consider only one in 100,000,000,000 possible
groupings). These algorithms rely on forms of hill-climbing
that in turn relies on the data containing well formed hills. A
third experiment was performed to determine if the best
groupings are at the top of well formed hills.

For the 896 best groupings found above, all 250 possible
single swap permutations were considered (a student from
one group was swapped with a student from another group;
this resulted in 250 possible new groupings). Then for each
of the groupings that resulted from the swaps, all 250
possible single swap permutations were considered, and so
on. After four steps of single swaps, it is possible to reach
as many as 896 * 2504 = 3.4 x 1012 groupings. At each step
of the way, if the swap did not produce a lower weight
grouping (a grouping downhill from the last step), or if a hill
climbing algorithm would not choose to move towards the
last step (because it was not the best choice), the grouping
was pruned.

Of the 896 best groupings, only 14 were uphill from
neighbors 4 steps away. For these 14 groupings, on average

only 2.7% of all their neighbors 4 steps away were strictly
downhill from them. This result compounds the effect of the
sparse data. Not only is it very unlikely that a random
algorithm could get close to an optimal solution, it is
unlikely (2.7% chance) that the algorithm would move
towards the optimal solution even if it landed close to it.

V. LIMITED BRUTE-FORCE PARALLEL ALGORITHM

The algorithm used for the experiments reported above
combined with more aggressive pruning results in an
algorithm that can find good groups in a reasonable time (a
few minutes). This section provides the implementation
details of this algorithm, and discusses the pruning
approaches.

Each group is represented using an array of bits. For
example, if the class contains 64 students, 64 bits are used to
represent a group. If student n is in group g, bit n of group
g's bit array is set to 1. If student n is not in the group, bit n
is set to 0. The current system limits class size to 64 which
allows for a single long int to represent each group and thus
comparisons can be made in a single CPU cycle.

A valid grouping is a set of groups that contain all the
students in the class. Since each student is represented by a
unique bit, when the bitwise-or operator is applied to all the
groups in a grouping, the result must be a bit array in which
all the elements are 1. For example, consider a class of four
students to be grouped in groups of 2. The possible groups
are:

0011 0101 1010 1001 0110 1100

The first group (0011) contains student0 and student1 (bits
are numbered right to left).

These groups can be combined into the following groupings:

0011 and 1100
0101 and 1010
1001 and 0110

When the groups are combined using bitwise-or, the result is
a bit array that contains all the students:

0011 | 1100 = 1111
0101 | 1010 = 1111
1001 | 0110 = 1111

The first step of the algorithm is to generate all possible
groupings. This is equivalent to all possible bit arrays that
represent a valid group (that is, all bit arrays of length equal
to the class size and with m non-zero bits where m is the
group size). This step uses recursion with backtracking,
similarly in fashion to searching for solutions in the 8-
queens problem.

Once all the groups have been enumerated, a weight is
calculated for each group. The method for calculating the
group weights is similar to that described in [1]. The groups
are then sorted from highest weight to lowest weight.

The next step is to eliminate groups that are undesirable.

Proceedings of the World Congress on Engineering and Computer Science 2013 Vol I
WCECS 2013, 23-25 October, 2013, San Francisco, USA

ISBN: 978-988-19252-3-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2013

For example, research shows that in male dominated classes,
women tend to do better when in a group with at least one
other woman [19]. Thus groups that contain a single woman
can be removed from the set of groups. Another example
would be to prune groups that have low social sensitivity
[20]. Such semantic pruning can be controlled by the group
formation website.

The set of groups must then be pruned along two metrics.
The first is the number of groups to consider. Since the
groups are sorted highest weight to lowest weight, it is likely
that the groups that form the best groupings are those at the
front of the list. In practice, considering 2,000 – 5,000 seed
groups can yield several strong groupings for class sizes
around 30.

The second pruning metric is which groups will be part of
the seed group set. The group searching algorithm
(described below) is seeded with a set of groups likely to be
in good groupings (e.g., groups with high weights). In order
to make the algorithm fair for all students, a set of seed
groups for each student is found. Thus the total number of
seed groups is distributed among the students. For example,
if the seeding set is 3000 groups and there are 30 students,
100 seed groups will be found for each student.

At this point the best grouping is found for each seed
group. Specifically, the grouping with the highest weight
that contains the seed group gi and other groups with an
index greater than i. This is sufficient because if there were
a better grouping for groupi that contained a group with
index < i, that grouping would be found when considering
one of the groups with an index < i as the seed group.

Recall that all the groups are in an array. gi is the group at
index i. This algorithm considers all groups with an index >
i. When forming a grouping two things are stored: the
indexes of the groups in the grouping (stored as an array of
integers) and the bitwise-or of all the groups (stored as a
long integer) that represents the students in the current
grouping. The algorithm uses recursion with back-tracking
similar to typical solution to the 8-queens problem.

It starts with the seed group index in the array of indexes
and the seed group as the current grouping members (the
bitwise-or of all groups in the grouping). It then considers
group gi+1 by performing a bitwise-and with the new group
and the current grouping members. If the result of this
bitwise-and is zero (which happens when none of the
members of groupi+1 are already in the grouping), this group
is added to the grouping (its index is added to the array of
indexes and it is added to the current grouping members
using bitwise-or).

Before a new group is added to the current grouping, the
current grouping is saved as a potential backtracking point.
In other words, the algorithm will eventually backtrack to
the point where groupi+1 was added. When it backtracks to
this point, groupi+1 will be skipped and groupi+2 will be
considered.

The algorithm continues adding groups to the current
grouping until it either completes a grouping (i.e. contains a
set of groups that includes all students in the class) or
reaches the end of the groups without finding a complete
grouping. If a valid grouping was found, it compares the
weight of the grouping with the best grouping found so far

(the weight of a grouping is the sum of the weights of the
groups in the grouping). If the weight is higher, this new
grouping becomes the current best grouping.

At this point the algorithm backtracks to the point where
the last group was added. It skips this group and continues.
This method exhaustively considers all possible groupings
containing groupi and groups with index > i.

Consider the situation where the target grouping size is
six groups and the current grouping contains three groups
and has a weight of 300. If the current group being
considered has a weight of 50, the three groups that will
need to be added to this grouping will all have weights less
than or equal to 50. Thus the the best possible weight for
the current grouping is 450 (300 + 3 * 50). If the best
grouping for the current seed group is greater than 450, this
search can be terminated (pruned) with certainty that a better
grouping cannot be found.

The algorithm is executed using NVIDIA graphical
processing units (GPUs). (The two Tesla K20 GPUs used
for this research were donated by the NVIDIA Corporation.)
The algorithm is distributed among the processing cores.
Each core is assigned a set of seed groups and calculates the
best grouping for each of its seed groups.

For example, if the set of seed groups is 4,000 groups and
there are 1000 cores, each core will be assigned 4 seed
groups. Since calculating groupings later in the series is less
computationally intensive (e.g. group0 has to consider 4,000
more groups than group3,999), thus each core does not receive
consecutive seed groups.

The controller program calculates the groups, weights,
and starts the processing cores. When the cores complete
calculating the best groupings for their seed groups, the
controller program sorts the resulting groupings from
highest weight to lowest weight.

In the event that no groupings were found (this can
happen if the set of groupings was pruned too much), the
algorithm can be repeated with a larger set of groups.

VI. CONCLUSION AND FUTURE WORK

Existing heuristic grouping algorithms have not
adequately addressed the algorithmic complexity and the
topology of the data. The complexity of the problem and the
experimental results reported above demonstrate: (1) it is
unlikely that a large number of optimal and near-optimal
solutions exist, (2) the best solutions are not at the top of
well formed hills and thus hill-climbing algorithms are
unlikely to find good solutions, (3) it is very unlikely (1 in
1012) existing group formation systems will find good
solutions.

The presented grouping algorithm considers the data
topology and is thus more likely to find a near-optimal or
even an optimal solution. This algorithm has been used
successfully to form groups for two software engineering
classes. The next step in this research is to demonstrate that
the pruning in the presented algorithm effectively finds good
groups for several real-life data sets. This will be
accomplished by collecting student information from several
classes, creating groupings using the described algorithm,
and then comparing those grouping to the results from using
this algorithm with significantly less pruning (the algorithm

Proceedings of the World Congress on Engineering and Computer Science 2013 Vol I
WCECS 2013, 23-25 October, 2013, San Francisco, USA

ISBN: 978-988-19252-3-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2013

will take many weeks to run with less pruning).

REFERENCES

[1] Michelle Craig, Diane Horton, François Pitt, Forming reasonably
optimal groups: (FROG), Proceedings of the 16th ACM international
conference on Supporting group work, November 07-10, 2010.

[2] Tyson R. Henry. 2013. Creating effective student groups: an
introduction to groupformation.org. In Proceeding of the 44th ACM
technical symposium on Computer science education (SIGCSE '13).
ACM, New York, NY, USA, 645-650.
DOI=10.1145/2445196.2445387

[3] Cavanaugh, R., Ellis, M., Layton, R., and Ardis, M. 2004.
Automating the process of assigning students to cooperative-learning
teams. In Proceedings of the 2004 ASEE Annual Conference.
American Society for Engineering Education.

[4] Maria Kyprianidou, Stavros Demetriadis, Andreas Pombortsis,
George Karatasios, (2009) "PEGASUS: designing a system for
supporting group activity", Multicultural Education & Technology
Journal, Vol. 3 Iss: 1, pp.47 – 60

[5] R. A. Layton, M. L. Loughry, M. W. Ohland, and G. D. Rico. Design
and validation of a web-based system for assigning members to teams
using instructor-specified criteria. In press, Advances in Engineering
Education. Advances in Engineering Education, 2(1), 2010, pp. 1–
28.

[6] David Meyer. 2009. OptAssign-A web-based tool for assigning
students to groups. Comput. Educ. 53, 4 (December 2009), 1104-
1119. DOI=10.1016/j.compedu.2009.05.022

[7] Dai-Yi Wang , Sunny S. J. Lin , Chuen-Tsai Sun, DIANA: A
computer-supported heterogeneous grouping system for teachers to
conduct successful small learning groups, Computers in Human
Behavior, v.23 n.4, p.1997-2010, July, 2007.
DOI=10.1016/j.chb.2006.02.008

[8] Agustín-Blas, L. E. , Salcedo-Sanz , S., Ortiz-García , E. G., Portilla-
Figueras , A., Pérez-Bellido , Á. M., Jiménez-Fernández, S. 2011.
Team formation based on group technology: A hybrid grouping
genetic algorithm approach, Computers and Operations Research,
v.38 n.2, p.484-495.

[9] D. Strnad and N. Guid. 2010. A fuzzy-genetic decision support
system for project team formation. Appl. Soft Comput.10, 4
(September 2010), 1178-1187. DOI=10.1016/j.asoc.2009.08.032

[10] Virginia Yannibelli and Analía Amandi. 2012. A deterministic
crowding evolutionary algorithm to form learning teams in a
collaborative learning context. Expert Syst. Appl. 39, 10 (August
2012), 8584-8592. DOI=10.1016/j.eswa.2012.01.195

[11] S. Graf and R. Bekele. Forming heterogeneous groups for intelligent
collaborative learning systems with ant colony optimization. In
Proceedings of the 8th International Conference on Intelligent
Tutoring Systems (ITS 2006), volume 4053 of Lecture Notes in
Computer Science, pages 216--226. Springer, 2006.

[12] Matthew E. Gaston and Marie desJardins. 2005. Agent-organized
networks for dynamic team formation. In Proceedings of the fourth
international joint conference on Autonomous agents and multiagent
systems (AAMAS '05). ACM, New York, NY, USA, 230-237.
DOI=10.1145/1082473.1082508

[13] Baykasoglu, A., Dereli, T., Das, S. 2007. Project Team Selection
Using Fuzzy Optimization Approach. Cybern. Syst. 38, 2 (February
2007), 155-185. DOI=10.1080/01969720601139041

[14] Feng, B., Jiang, Z., Fan, Z., Fu, N. 2010. A method for member
selection of cross-functional teams using the individual and
collaborative performances, European Journal of Operational
Research, Volume 203, Issue 3, 16 June 2010, Pages 652-661, ISSN
0377-2217, DOI: 10.1016/j.ejor.2009.08.017.

[15] Christodoulopoulos, C.E., Papanikolaou, K. 2007. Investigation of
group formation using low complexity algorithms. In: Proc. of PING
Workshop.

[16] T. Chen, M. Kwiatkowska, D. Parker, A. Simaitis, Verifying Team
Formation Protocols with Probabilistic Model Checking, Proceedings
of the 2th International Workshop on Computational Logic in Multi-
Agent Systems (CLIMA XII 2011), volume 6814 of LNCS, pages
190-297, Springer. July 2011.

[17] S. Datta, A. Majumder, KVM Naidu, Capacitated Team Formation
Problem on Social Networks, Proceedings of the 18th ACM SIGKDD
international conference on Knowledge discover and data mining.

[18] Cutshall, R., Gavirneni, S., and Schultz, K. 2007. Indiana University's
Kelley School of Business Uses Integer Programming to Form
Equitable, Cohesive Student Teams. Interfaces 37, 3 (May 2007),
265-276. DOI=10.1287/inte.1060.0248

[19] P. Brereton and S. Lees, “An Investigation Of Factors Affecting
Student Group Project Outcomes,” Proceedings of the 18th
Conference on Software Engineering Education and Training, pp.
163-170, 2005.

[20] Lisa Bender, Gursimran Walia, Krishna Kambhampaty, Kendall E.
Nygard, and Travis E. Nygard. 2012. Social sensitivity and classroom
team projects: an empirical investigation. In Proceedings of the 43rd
ACM technical symposium on Computer Science Education
(SIGCSE '12). ACM, New York, NY, USA, 403-408.

Proceedings of the World Congress on Engineering and Computer Science 2013 Vol I
WCECS 2013, 23-25 October, 2013, San Francisco, USA

ISBN: 978-988-19252-3-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2013

