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Abstract—The ability to work in productive groups is critical
for success in the software industry, thus computer science students
must  be  given  the  opportunity  to  work  in  productive  groups.
However, forming productive groups is difficult.  A promising new
way to form student groups is to use a web application to collect
information from individual students and then use an algorithm to
form  the  groups.   This  paper  provides  an  overview  of  group
formation,  presents  existing  group  formation  work,  explains  the
complexity of  the group formation  problem,  reports  on a  set  of
experiments  that  provide  an  empirical  description  of  the  data
topology  of  group  formation  and  subsequently  illustrates  the
shortcomings  of  existing  algorithms.   Specifically,  the  solution
space is very sparse and probabilistic algorithms are unlikely to
find a good solution.  Finally, a massively parallel limited brute-
force group formation algorithm is presented.

Index Terms—student groups,  student teams, group formation,
team formation, groupware.

I. INTRODUCTION

tudents  need  productive  group  experiences  for  two
reasons.  First, potential employers usually ask students

about their group experiences.  Students who relate positive
and  productive  experiences  are  more  likely  to  be  hired.
Second,  once  employed  in  the  software  industry,  success
often depends on one's ability to be a productive member of
a software development group.  Positive group experiences
from school can help students learn how to be productive in
industry settings and subsequently help them succeed early
in  their  career.   While  the  need  for  productive  groups  is
clear,  no  silver  bullet  solution  exists  for  how  to  form
productive groups.

S

There are three traditional approaches for forming student
groups:  random  composition,  self  selection,  and  the
instructor  manually creating groups.  Each has significant
shortcomings: random can lead to very unbalanced groups
and is  unlikely to produce effective groups,  self  selection
discriminates against less connected students, and the large
number  of  possible  groupings  makes  manual  grouping
difficult  and unlikely to  produce  one of  the best  possible
groupings.  These shortcomings have led to a growing body
of research into algorithmic group formation.

Algorithmic  group  formation  uses  information  about
individual students (i.e. goals, interests, grades, availability
for meetings, etc.) to form the groups.  The first step is to
create a survey and have all students complete it.  The 

Manuscript received June 25, 2013; revised August 16, 2013.  This work
was supported in part by a gift from the NVIDIA Corporation.

Tyson R. Henry is with the Computer Science Department, California
State  University,  Chico,  CA  95926-0410  USA;  530-898-5709;  e-mail:
trhenry@csuchico.edu.

or  weight  of  each  possible  group.   An  integer  weight  is
information students provide is used to evaluate the strength
calculated based on information provided by students.  For
example, a group that is available to meet ten times during
the week would have a larger weight than a group that can
only meet three times (see [1] for a thorough description of
how  the  weights  are  calculated).   The  task  of  the  group
forming algorithm is to find the set of groups (or grouping)
with the largest total  weight.  For example, if  a grouping
contains  groupi,  groupj,  and  groupk,  the  weight  of  the
grouping  is  weight(groupi)  +  weight(groupj)  +
weight(groupk).

Existing group formation systems use a web-based front
end to gather information from students and one or  more
heuristic algorithms to generate the groupings.  While these
systems  have  improved  on  the  traditional  methods,  they
have  not  adequately  addressed  the  complexity  of  the
problem or considered the topology of the data space and
thus are unlikely to find optimal groupings.

This paper provides an overview of existing algorithmic
formation, describes the complexity of the problem, reports
on  some experiments  that  demonstrate  the  inadequacy of
existing  algorithms,  and  describes  a  massively  parallel
group formation algorithm.  A web-based system that uses
the presented algorithm for forming groups is described in
[2].

II. RELATED WORK

Many  group  formation  systems  are  described  in  the
literature [3]-[7].  The most documented and the only system
available  on  the  web  is  Team-Maker  [3].   A large  effort
(called  CATME)  is  currently  underway  to  provide  a
thorough assessment of Team-Maker [5].  It provides a web-
based system any instructor can use to create groups and is
using the data from actual courses to evaluate their group
formation process.

The  CATME  research  is  well  formed  and  is  likely  to
produce valid results.  However, it does not directly analyze
the grouping algorithm.  It assumes the groupings produced
by its algorithm are near optimal.  The analysis described
here demonstrates that it is unlikely the CATME algorithm
finds near optimal results.

The  literature  contains  descriptions  of  many  different
approaches to formulating groups: genetic algorithms [5] , a
hybrid  grouping  genetic  algorithm  approach  [8],  fuzzy-
genetic decision support system [9], evolutionary algorithms
[10],  ant  colony  optimization  [11],  agent-organized
networks  [12],  fuzzy  optimization  approach  [13],  student
performance  [14],  analytical  hierarchy  process  [7],
clustering  [15],  probabilistic model  checking  [16],  graph
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analysis  [17],  and  integer  programming  [18].   This  list
shows  the  breadth  of  research  on  algorithm based  group
formation.  However, there has been only minimal analysis
of the results.  Many of the listed researchers compare the
groups composed by their algorithms to randomly composed
groups or groups created manually by an instructor.  Other
researchers  evaluate  their  algorithms  by  comparing  the
results to results generated by the same algorithm without
some portion of  the  logic.   There is  clearly a  need for  a
better understanding of the grouping data and a means of
evaluating algorithms.

III. GROUPING PROBLEM COMPLEXITY

The  number  of  possible  groups  of  size  g that  can  be
constructed from a class of n students is n choose g or

ng.  This is equivalent to  n!
g!⋅n−g !. For a

typical  class,  this  set  is  small  enough  that  it  can  be
constructed quickly.   For  example,  a  class  of  36 students
partitioned into groups of 6 students can be partitioned into
1,947,792 distinct groups.  A modern desktop computer can
calculate  these  groups  and  their  weights  in  a  matter  of
seconds.  The computational road block arises from the task
of selecting the best set of groups (or best grouping).  The
number  of  possible  ways  to  group  all  the  groups  into
groupings is

 n!
g!⋅n−g!!

ng !⋅ n!
g!⋅n−g!

−
n
g !

For  a  class  of  36  students  partitioned  into  groups  of  6
students  there  are  2.67x1024 possible  groupings.   This
problem is intractable; it is not feasible to consider all the
possible  groupings.   In  order  to  find  good  groupings,  a
heuristic algorithm that considers only a fraction of possible
groupings must be used.

IV. DATA TOPOLOGY EXPERIMENTS

Existing  group  formation  algorithms  make  two
assumptions, (1) there are many good groupings and thus a
heuristic algorithm started at a random location is likely to
be near a good solution, and (2) the best groups live at the
top of well formed hills.  These claims were investigated by
a series of experiments to explore the data topology.

A software  engineering  class  of  25  students  took  an
extensive  survey  that  included  questions  about  previous
grades, the types of projects they are interested in working
on, when they are available to meet, and their preferences
for working with each of their classmates.  This data was
used to assign a weight to the 53,130 possible groups of five
students.

In order to estimate the likelihood that a given heuristic
algorithm would find an optimal solution, an accurate model
of  the  data is  required.   It  would be  ideal  to  explore  the

entire data set (all  possible groupings) but the data is too
large  (6.23  x  1014 for  this  example).   Thus  one  or  more
assumptions about the data must be made in order to limit
the number of possible groupings to be considered.

For  these  experiments,  it  was  assumed  that  the  best
groupings would contain the best groups.  In other words,
groups with the highest weights will probably be the ones in
the best groupings (the groupings with the highest weight).
Using  this  assumption,  the  following  algorithm  was
developed to search for optimal solutions:

• Sort  all  groups  from  largest  weight  to  smallest
smallest.

• Consider the first N best groups (which are now at
the front of all groups).

• For every groupi where i < N, recursively consider
all  possible  groupings  that  contain  groupi and
groupsk where k > i.

• The  search  is  terminated  when  it  becomes
mathematically  impossible  to  improve  on  the
current best grouping (since the groups are ordered
from best to worst, it is possible to determine when
no better solutions exist).

The result of this algorithm is the best grouping for each of
the  N  best  groups  (since  all  possible  groupings  are
considered,  it  is  certain  this  is  the  best  grouping  for  the
given group).   However,  this set of N groupings may not
contain the best overall grouping.  This set of groupings will
contain the best overall grouping only if the assumption that
the best groupings contain the best groups is true.  

The algorithm was run on a 2000 GFLOPS computer (one
with two 448 core NVIDIA Tesla C2050 GPU computing
processors) for about 40 days.  Ten threads were run on each
core resulting in 8960 threads.  Each thread found the best
grouping for two groups.  Thus the program considered the
best  groupings  for  the  best  17,952  groups  (34%  of  total
53,130 groups).  The results of this experiment are shown in
Figure 1.

Fig 1: Best 17,952 Groups
(with pruning)

For each processor, the current best grouping was stored.
When  considering  a  new  starting  group,  if  it  became
mathematically impossible to improve on the best  current
grouping (because all the remaining groups had weights too
low to produce a better grouping), the search was pruned.
The  middle  of  Figure  1  is  empty  because  each  of  these
groups  lead  to  a  groupings  with  a  lower  weight  than  the
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thread's current best grouping (best groupings are shown on
the left).  The second group of plots were generated by the
second set of threads.  These threads started their searches
by starting with groups later in the array.  These threads also
pruned the majority of their searches.  The results shown in
Figure 1 validate the assumption that the best groupings will
contain the groups with the highest weights.

Fig 2: Best 896 Groups
  (no pruning)

In  order  to  expand  on  the  data  shown  in  Figure  1,  a
second  experiment  was  performed  starting  with  the  896
groups that composed the best groupings found in the first
experiment (896 was chosen to facilitate dividing the task
among  the  896  processors).   For  each  group,  the  best
grouping was found.  The sorted results are shown in Figure
2.

The first experiment illustrated that it is unlikely optimal
groupings  are  in  the  data  space  not  explored.   The steep
decline in Figure 2, shows that it is unlikely that even good
solutions  (those  with  weights  less  than  half  of  the  best
groupings) are in the unexplored data space.

The net results of both experiments is that there are very
few good solutions (those with weights greater than 50% of
the best  groupings).   Thus a heuristic  algorithm must use
more than chance to guide itself toward a good solution.

Existing group formation algorithms (e.g. [3]-[7]) rely on
the  data  space  containing  many  good  solutions  (they
typically  consider  only  one  in  100,000,000,000  possible
groupings).  These algorithms rely on forms of hill-climbing
that in turn relies on the data containing well formed hills.  A
third  experiment  was  performed  to  determine  if  the  best
groupings are at the top of well formed hills.

For the 896 best groupings found above, all 250 possible
single swap permutations were considered (a student from
one group was swapped with a student from another group;
this resulted in 250 possible new groupings).  Then for each
of  the  groupings  that  resulted  from  the  swaps,  all  250
possible single swap permutations were considered, and so
on.  After four steps of single swaps, it is possible to reach
as many as 896 * 2504 = 3.4 x 1012  groupings.  At each step
of  the  way,  if  the  swap  did  not  produce  a  lower  weight
grouping (a grouping downhill from the last step), or if a hill
climbing algorithm would not choose to move towards the
last step (because it was not the best choice), the grouping
was pruned.

Of  the  896  best  groupings,  only  14  were  uphill from
neighbors 4 steps away.  For these 14 groupings, on average

only 2.7% of all their neighbors 4 steps away were strictly
downhill from them.  This result compounds the effect of the
sparse  data.   Not  only  is  it  very  unlikely that  a  random
algorithm  could  get  close  to  an  optimal  solution,  it  is
unlikely  (2.7%  chance)  that  the  algorithm  would  move
towards the optimal solution even if it landed close to it.

V. LIMITED BRUTE-FORCE PARALLEL ALGORITHM

The algorithm used for  the experiments  reported above
combined  with  more  aggressive  pruning  results  in  an
algorithm that can find good groups in a reasonable time (a
few  minutes).   This  section  provides  the  implementation
details  of  this  algorithm,  and  discusses  the  pruning
approaches.

Each  group is  represented  using an  array of  bits.   For
example, if the class contains 64 students, 64 bits are used to
represent a group.  If student n is in group g, bit n of group
g's bit array is set to 1.  If student n is not in the group, bit n
is set to 0.  The current system limits class size to 64 which
allows for a single long int to represent each group and thus
comparisons can be made in a single CPU cycle.

A valid grouping is a set  of groups that contain all the
students in the class.  Since each student is represented by a
unique bit, when the bitwise-or operator is applied to all the
groups in a grouping, the result must be a bit array in which
all the elements are 1.  For example, consider a class of four
students to be grouped in groups of 2.  The possible groups
are: 

0011  0101  1010  1001  0110  1100

The first group (0011) contains student0 and student1 (bits
are numbered right to left).

These groups can be combined into the following groupings:

0011 and 1100
0101 and 1010
1001 and 0110

When the groups are combined using bitwise-or, the result is
a bit array that contains all the students:

0011 | 1100 = 1111
0101 | 1010 = 1111
1001 | 0110 = 1111

The first step of the algorithm is to generate all possible
groupings.  This is equivalent to all possible bit arrays that
represent a valid group (that is, all bit arrays of length equal
to the class size and with  m non-zero bits where  m is the
group  size).   This  step  uses  recursion  with  backtracking,
similarly  in  fashion  to  searching  for  solutions  in  the  8-
queens problem.

Once all  the groups have been enumerated, a weight is
calculated for each group.  The method for calculating the
group weights is similar to that described in [1].  The groups
are then sorted from highest weight to lowest weight.

The next step is to eliminate groups that are undesirable.
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For example, research shows that in male dominated classes,
women tend to do better when in a group with at least one
other woman [19].  Thus groups that contain a single woman
can be removed from the set of groups.  Another example
would be to prune groups that have low social  sensitivity
[20].  Such semantic pruning can be controlled by the group
formation website.

The set of groups must then be pruned along two metrics.
The first  is  the number of  groups to  consider.   Since the
groups are sorted highest weight to lowest weight, it is likely
that the groups that form the best groupings are those at the
front of the list.  In practice, considering 2,000 – 5,000 seed
groups can  yield  several  strong  groupings  for  class  sizes
around 30.

The second pruning metric is which groups will be part of
the  seed  group  set.   The  group  searching  algorithm
(described below) is seeded with a set of groups likely to be
in good groupings (e.g., groups with high weights).  In order
to  make the  algorithm fair  for  all  students,  a  set  of  seed
groups for each student is found.  Thus the total number of
seed groups is distributed among the students.  For example,
if the seeding set is 3000 groups and there are 30 students,
100 seed groups will be found for each student.

At  this  point  the  best  grouping is  found for  each  seed
group.  Specifically,  the grouping with the highest weight
that  contains  the  seed  group gi and  other  groups with an
index greater than i.  This is sufficient because if there were
a  better  grouping  for  groupi that  contained  a  group  with
index < i, that grouping would be found when considering
one of the groups with an index < i as the seed group.

Recall that all the groups are in an array.  gi is the group at
index i.  This algorithm considers all groups with an index >
i.   When  forming  a  grouping  two  things  are  stored:  the
indexes of the groups in the grouping (stored as an array of
integers) and the bitwise-or of  all  the groups (stored as a
long  integer)  that  represents  the  students  in  the  current
grouping.  The algorithm uses recursion with back-tracking
similar to typical solution to the 8-queens problem.

It starts with the seed group index in the array of indexes
and the seed group as the current  grouping members (the
bitwise-or of all groups in the grouping).  It then considers
group gi+1 by performing a bitwise-and with the new group
and  the  current  grouping  members.   If  the  result  of  this
bitwise-and  is  zero  (which  happens  when  none  of  the
members of groupi+1 are already in the grouping), this group
is added to the grouping (its index is added to the array of
indexes and  it  is  added to the  current  grouping members
using bitwise-or).  

Before a new group is added to the current grouping, the
current grouping is saved as a potential backtracking point.
In  other words,  the algorithm will eventually backtrack to
the point where groupi+1 was added.  When it backtracks to
this  point,  groupi+1 will  be  skipped  and  groupi+2 will  be
considered.

The  algorithm  continues  adding  groups  to  the  current
grouping until it either completes a grouping (i.e. contains a
set  of  groups  that  includes  all  students  in  the  class)  or
reaches the end of the groups without finding a complete
grouping.  If  a valid grouping was found, it compares the
weight of the grouping with the best grouping found so far

(the weight of a grouping is the sum of the weights of the
groups in the grouping).  If  the weight is higher, this new
grouping becomes the current best grouping.

At this point the algorithm backtracks to the point where
the last group was added.  It skips this group and continues.
This method exhaustively considers all possible groupings
containing groupi and groups with index > i.

Consider the situation where the target  grouping size is
six groups and the current grouping contains three groups
and  has  a  weight  of  300.   If  the  current  group  being
considered has  a  weight of  50,  the three groups that  will
need to be added to this grouping will all have weights less
than or equal to 50.  Thus the the best possible weight for
the  current  grouping is  450  (300 + 3 *  50).   If  the  best
grouping for the current seed group is greater than 450, this
search can be terminated (pruned) with certainty that a better
grouping cannot be found.

The  algorithm  is  executed  using  NVIDIA  graphical
processing units (GPUs).  (The two Tesla K20 GPUs used
for this research were donated by the NVIDIA Corporation.)
The  algorithm is  distributed  among  the  processing  cores.
Each core is assigned a set of seed groups and calculates the
best grouping for each of its seed groups.

For example, if the set of seed groups is 4,000 groups and
there  are  1000  cores,  each  core  will  be  assigned  4  seed
groups.  Since calculating groupings later in the series is less
computationally intensive (e.g. group0 has to consider 4,000
more groups than group3,999), thus each core does not receive
consecutive seed groups.

The  controller  program  calculates  the  groups,  weights,
and starts the processing cores.  When the cores complete
calculating  the  best  groupings  for  their  seed  groups,  the
controller  program  sorts  the  resulting  groupings  from
highest weight to lowest weight.

In  the  event  that  no  groupings  were  found  (this  can
happen if the set of groupings was pruned too much), the
algorithm can be repeated with a larger set of groups.

VI. CONCLUSION AND FUTURE WORK

Existing  heuristic  grouping  algorithms  have  not
adequately  addressed  the  algorithmic  complexity  and  the
topology of the data.  The complexity of the problem and the
experimental  results  reported  above demonstrate:  (1)  it  is
unlikely that a large number of optimal and  near-optimal
solutions exist, (2)  the best solutions are not at the top of
well  formed  hills  and  thus  hill-climbing  algorithms  are
unlikely to find good solutions, (3) it is very unlikely (1 in
1012)  existing  group  formation  systems  will  find  good
solutions.

The  presented  grouping  algorithm  considers  the  data
topology and is thus more likely to find a near-optimal or
even  an  optimal  solution.   This  algorithm has  been  used
successfully to form  groups for two software engineering
classes.  The next step in this research is to demonstrate that
the pruning in the presented algorithm effectively finds good
groups  for  several  real-life  data  sets.   This  will  be
accomplished by collecting student information from several
classes,  creating groupings  using the described  algorithm,
and then comparing those grouping to the results from using
this algorithm with significantly less pruning (the algorithm
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will take many weeks to run with less pruning).
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