

Manuscript received July 16, 2013; revised August 16, 2013.

V. K. Ramanna is with San Diego State University, San Diego, CA

92182 USA (phone: 619-594-7159; fax: 619-594-2068; e-mail:
vikram1986@gmail.com).

 C. P. Paolini is with San Diego State University, San Diego, CA 92182

USA (e-mail: paolini@engineering.sdsu.edu).
M. Sarkar is with San Diego State University, San Diego, CA 92182

USA (e-mail: msarkar2@mail.sdsu.edu).

 S. Nagaraj is with San Diego State University, San Diego, CA 92182
USA (e-mail: snagaraj@mail.sdsu.edu).



Abstract— Cloud computing provides services to a large

number of remote users with diverse requirements, an

increasingly popular paradigm for accessing computing

resources over the Internet. A popular cloud-service model is

Infrastructure as a Service (IaaS), exemplified by Amazon’s

Elastic Computing Cloud (EC2). In this model, users are given

access to virtual machines on which they can install and run

arbitrary applications, including relational database systems and

geographic information systems (GIS). Location-based services

(LBS) for offering targeted, real-time advertising is an emerging

retail practice wherein a mobile user receives offers for goods

and services through a smart phone application. These

advertisements can be targeted to individual potential customers

by correlating a smart phone user's interests to goods and

services being offered within close proximity of the user. In this

paper, we examine the problem of determining the appropriate

number of microprocessor cores assigned to a relational database

instance (virtual machine) managed by a cloud infrastructure,

required to constrain the query response time for a targeted

advertisement to reach a mobile customer within approachable

distance to a Point of Sale (POS). We assume the optimum

number of cores required to minimize offer latency is one that

minimizes microprocessor core expenses, charged by cloud

infrastructure providers, while maximizing application service

provider revenues derived from POS transaction fees. Changes

in the number of microprocessor cores assigned to database

resources can result in changes in the time taken to transmit,

receive, and interpret a targeted advertisement sent to a potential

customer in motion. We develop a methodology to establish an

equilibrium state between the utility gained from POS

transaction revenues and costs incurred from purchasing

microprocessor cores from infrastructure providers. We present

different approaches based on an exponential and linear method

to model customer purchase decisions. From these models, the

marginal cost and marginal revenue is calculated to determine

the optimal number of microprocessor cores to purchase and

assign to database instances executing within cloud

infrastructures.

Index Terms— Location-based service, Cloud computing,

Mobile computing, Mobile advertising, IaaS

I. INTRODUCTION

ocation-based services refer to computational services that

locate a mobile user geographically and deliver

information to the user tailored to their location. A Location

Based Service (LBS), specifically, is a geospatial mobile-

based application that provides services based on a user’s

geographical location. An example of such a service is a food

service application that informs mobile device holders of

nearby restaurants. First generation LBSs were reactive and

client-server focused where users would query for information

and received a response back from the server. With the

advancement of push notification techniques, improved

mobile Internet access, and widespread adoption of the

Web2.0 paradigm, next generation user-to-user interactive

LBSs evolved where information is pushed asynchronously to

users based on their location, rather than users having to

explicitly query for information.

Location-based advertising services refer to marketing

services offered to smart-phone users within the proximity of a

point of sale (POS). Suppose a smart-phone application firm

wishes to host a LBS in a cloud infrastructure. An LBS will

rely on a relational database to monitor, in real-time, the

geospatial data of all application users. The firm must first

decide which particular cloud infrastructure provider to invest

in, such as Amazon EC2, Microsoft Windows Azure,

Rackspace, etc. Once a firm has chosen an infrastructure

provider, the firm deploys their database in a cloud virtual

machine (VM) instance. The firm's database is used to

maintain the purchasing preference profiles of application

users in addition to geospatial information. As mobile users

enter within a proximate distance or purchase frontier of a

POS, the deployed database is used to send offers for goods or

services to application users. Whenever a mobile user

receives an offer on his or her smart-phone, the user has a

probability of honoring the offer and changing course to walk

to the POS to make a purchase. Each purchase instigated from

a received offer will generate transaction fees returned to the

application firm in the form of revenue. The firm is thus faced

with a business optimization problem: whether to add or

subtract additional cloud infrastructure resources to maximize

profit. Adding additional resources can reduce offer latency,

or the time between when a user enters the purchase frontier of

Minimizing Computing Core Costs in Cloud

Infrastructures that Host Location-Based

Advertising Services

Vikram K. Ramanna, Christopher P. Paolini, Mahasweta Sarkar, Member, IAENG, and Santosh

Nagaraj

L

Proceedings of the World Congress on Engineering and Computer Science 2013 Vol I
WCECS 2013, 23-25 October, 2013, San Francisco, USA

ISBN: 978-988-19252-3-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2013

a POS and the time when the user receives an offer on his or

her smart-phone. However, adding additional resources incurs

additional costs for the firm. The firm must decide the

optimal number of resources to purchase from the cloud

provider to maximize profit.

Cloud computing involves delivery of hosted services over

the Internet or a Local Area Network (LAN) [1]. These

services can be broadly classified into three categories:

Infrastructure as a Service (IaaS), Platform as a Service

(PaaS) and Software as a Service (SaaS). Infrastructure as a

Service is a provision model in which an organization

outsources resources such as hardware, storage, servers, and

networking components to support operations on demand. The

service provider is completely responsible for running,

housing, and maintaining these resources, which are

distributed as a service and dynamically scaled according to

demand. The IaaS client typically is billed on a per-use basis.

The IaaS model is suitable where the demand is very volatile,

that is, where there are spikes or troughs in terms of demand

of infrastructure and where there is a limit to capital

expenditure for a specific business application.

The problem addressed in this paper is to derive a way for

cloud customers to choose, dynamically, an optimal number of

microprocessor cores to drive a relational database, hosted in a

cloud infrastructure, that supports location based advertising

services for mobile smart-phone applications. Upon choosing

a particular commercial cloud provider, a mobile application

firm hosts their back-end database application within a cloud

instance, which is used to send offers for good or services to

mobile smart-phone users. Based on the revenue generated by

transaction fees charged to smart-phone users who consent to

an offer received by purchasing goods or services at a point of

sale, the mobile application firm then chooses to either add or

remove microprocessor cores to maximize revenue.

II. MODELING MOBILE SHOPPERS

Fig. 1 shows an aerial photograph of an outdoor shopping

mall where customers walk within regions bounded by brick-

and-mortar stores. Suppose a mobile shopper is walking along

the yellow path as shown. A store, located at the black dot

labeled “POS”, transmits offers to customers as soon as they

enter the 50m purchase frontier, identified by the outer

concentric red circle. Circles are shown in increments of 10m

from the POS. The greater the offer latency, the greater the

distance traveled by a shopper and the greater the shopper will

need to backtrack to the POS to honor the received offer and

make a purchase. Based on the number of microprocessor

cores assigned to the VM that hosts the geospatial database,

the shopper will experience different offer latencies, which

will result in the shopper receiving an offer at different

distances from the POS. Suppose many cores were assigned

to the VM. Then, the offer latency would be shorter and the

shopper might receive an offer at position D1. However,

suppose fewer cores were assigned to the VM. In this case,

the shopper would travel an additional distance, say D3, before

receiving the offer. At position D1, the user will need to

backtrack a shorter distance to the POS than at position D3.

Our customer purchase model assumes the probability a user

will backtrack to a given POS is indirectly proportional to the

distance the user is to the POS at the time of receiving an

offer. Thus, a shopper who receives an offer at D1 is more

likely to walk to the POS than a shopper who receives an offer

at D3. By increasing the number of cores assigned to the

database VM, a firm can reduce the shopper’s backtrack

distance by reducing the offer latency. However, adding cores

incurs additional cost for the firm, according to the cloud

provider's resource pricing model. To maximize profit, the

mobile application firm must minimize both a mobile user's

backtrack distance by minimizing offer latency, and minimize

the cost of adding additional cores assigned to a database's

virtual instance.

To simulate offer latency as a function of core count, we

constructed a private cloud using the open source Eucalyptus

Cloud platform [2] used to build Amazon Web Services

(AWS)-compatible private and hybrid clouds. Eucalyptus is a

private cloud-computing platform that implements the

Amazon specification for EC2, S3, EBS, and IAM. We

developed a multithreaded code that simulates one million

mobile LBS users by simultaneously uploading one million

random geospatial records into a remote PostgreSQL database

running within a Eucalyptus virtual machine instance. Each

geospatial record is 0.5MB in length and stores a user's GPS

data (latitude, longitude, altitude, accuracy, GPS fix time) and

consumer interest data. The total time required to upload one

million geospatial records is given by

Total Insertion Geospatial Corelation Receptiont t t t t    (1)

where tInsertion is the time required to transmit and insert

records into a PostgreSQL table, tGeospatial is the time required

Fig. 1. Typical location-based customer purchase scenario. Aerial view of
an outdoor shopping mall where a customer walks along the yellow path

shown. A store, located at the black dot labeled POS, transmits offers to

customers as soon as they enter the 50m purchase frontier, identified by the
outer concentric red circle. Circles are shown in increments of 10m from the

POS. The greater the offer latency, the greater the distance traveled by a

shopper and the greater the shopper will need to backtrack to the POS to
honor the received offer and make a purchase.

Proceedings of the World Congress on Engineering and Computer Science 2013 Vol I
WCECS 2013, 23-25 October, 2013, San Francisco, USA

ISBN: 978-988-19252-3-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2013

Fig. 3. Shopper backtrack distance as a function of database VM

microprocessor core count, for five radii at 50, 40, 30, 20, and 10 meters from
the POS.

Fig. 4. Probability a shopper will backtrack to a POS upon

receiving an offer as a function of microprocessor core count, based

on a linear probability model, for five radii at 50, 40, 30, 20, and 10
meters from the POS.

Fig. 2. Per user geospatial processing time tUser as a function of
microprocessor core assignment. Assumes one million mobile users and

a geospatial update message size of 0.5 MB. Processing time is invariant

with five or more cores. ST_Distance_Sphere uses the haversine formula

to compute the distance between each user and the POS;

ST_Distance_Spheroid() uses Vincenty’s method.

to compute the distance between the user and the POS using

either the haversine formula [3] or Vincenty's method [4],

tCorelation is the time required to compute a correlation

coefficient between the user's commercial interests and the

products and/or services being offered by the POS, and

tReception is time required to receive an offer from the cloud

infrastructure, assuming a 4G mobile network is being used (8

Mbps download data rate, 4 Mbps upload data rate). Fig.

2Fig. shows a plot of the per user geospatial processing time

tUser as a function of microprocessor core assignment, where

tUser = tTotal/N with N = 1 million. One can see that the

processing time to receive an offer - or offer latency - is

reduced as additional cores are attached to the database VM

instance, up to 5 cores when the processing time becomes

invariant.

 Assuming an average walking speed of v = 5 km/h (1.4 m/s)

[5], we can compute the backtrack distance, dBacktrack, simply

as 2 2

Backtrackd d r  where d = v tUser is the distance traveled

by the shopper and r is the radial distance the user is from the

POS, assuming the user tangentially crosses a given concentric

circle within the purchase frontier. Fig. 3 shows a shopper's

required backtrack distance in meters as a function of core

count, for five radii at 50, 40, 30, 20, and 10 meters from the

POS. After five or more cores are assigned to a VM, the

backtrack distance becomes invariant. We assume the

reluctance of a shopper to travel the backtrack distance to a

POS is proportional to the distance. We modeled shopper

reluctance or purchase probability using a linear and

exponential model.

 The simplest approach to modeling purchase probability

uses a linear model where the probability a shopper backtracks

to a point of sale upon receiving offer on a 4G mobile smart

phone is given by

 max
linear

min max

backtrackd d
P

d d





 (2)

where dmax, dmin are the maximum and minimum distances a

shopper could have travelled upon receiving an offer for goods

and/or services. From Fig. 4, based on a linear model, a

shopper is guaranteed to make a purchase if the LBS database

VM is assigned five or more cores. We hypothesized that

shopper reluctance is more realistically modeled using an

exponential where reluctance to backtrack increases

exponentially with backtrack distance, that is

 exponential

xP e   (3)

with λ=1 and scaling factor β=1/50. Fig 5 shows shopper

purchase probability as a function of core count based on an

exponential model. The scaling factor adjusts the purchase

probability to fall in the 20% to 80% range, based on the

number of assigned cores.

Proceedings of the World Congress on Engineering and Computer Science 2013 Vol I
WCECS 2013, 23-25 October, 2013, San Francisco, USA

ISBN: 978-988-19252-3-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2013

Fig. 2. Per user geospatial processing time tUser as a function of

microprocessor core assignment. Assumes one million mobile users and

Fig. 5. Probability a shopper will backtrack to a POS upon receiving an

offer as a function of microprocessor core count, based on an exponential
probability model, for five radii at 50, 40, 30, 20, and 10 meters from the

POS.

 Fig. 6. Marginal revenue as a function of microprocessor core count,

based on a transaction fee of 10¢ per purchase and a linear probability

model, for five radii at 50, 40, 30, 20, and 10 meters from the POS.

Fig. 7. Marginal revenue as a function of microprocessor core count,

based on a transaction fee of 10¢ per purchase and an exponential

probability model, for five radii at 50, 40, 30, 20, and 10 meters from the

POS.

Fig. 8. Marginal cost can be determined using the Amazon EC2 online

calculator, based on a firm's chosen instance type.

III. REVENUE AND COST

A mobile application firm's profit will be maximum when

marginal revenue equals marginal cost. Marginal revenue

(MR) is the additional revenue obtained by the mobile

application firm via transaction fees collected from purchases

when one additional microprocessor core is assigned to the

database virtual instance. Marginal cost (MC) is the additional

cost incurred by the mobile application firm from purchasing

one additional microprocessor core from the cloud

infrastructure provider. When MR>MC, the firm can increase

profit by adding microprocessor cores to the VM. When

MR<MC, the firm can increase profit by revoking

microprocessor cores assigned to the database VM, where the

revoked cores are then returned to the cloud for use by a

different client. It is in the firm's best interest to assign the

particular number of cores to the VM such that the equilibrium

condition MR=MC is satisfied. We calculate the revenue R on

each purchase as the product of the purchase transaction fee T

and purchase probability P,

 R PT (4)

and marginal revenue as

R

MR
c





 (5)

with Δc=1 for the increase in revenue per each one additional

microprocessor core added to the VM. Figures 6 and 7 show

marginal revenue as a function of microprocessor core count,

based on a transaction fee of 10¢ per purchase for five radii at

50, 40, 30, 20, and 10 meters from the POS, for the linear and

exponential models, respectively. Marginal cost is calculated

as

C

MC
c





 (6)

for the increase in cost the application firm must pay the cloud

provider per each one additional microprocessor core added to

the VM. Based on a chosen instance type [6] (e.g. micro,

small, medium, etc.) which determines an initial resource

configuration, one can compute marginal cost using a

provider's online calculator [7], as shown in Fig. 8. For

example, Amazon EC2 charges hourly usage fees for an on-

demand instance. Pricing is based on each instance-hour

consumed for each VM instance purchased by the mobile

application firm. The marginal cost calculations used in this

paper are based on an EC2 micro instance, which provides a

small amount of consistent CPU resources to an application

and allows one to increase CPU capacity in short bursts when

Proceedings of the World Congress on Engineering and Computer Science 2013 Vol I
WCECS 2013, 23-25 October, 2013, San Francisco, USA

ISBN: 978-988-19252-3-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2013

additional CPU cycles are needed.

IV. RESULTS

Selected marginal revenue and cost plots are shown in Figs.

9-11 for different transaction fees and purchase probability

models. The plots show that, for a particular transaction fee

and purchase probability model, the profit maximizing number

of microprocessor cores to assign a virtual instance running a

database can be determined by locating the integer number of

cores closest to the average abscissa of the points of

intersection. In Fig. 9, the optimal number of cores to assign

is three, while in Fig. 10 and 11 the optimal number is five.

V. CONCLUSION

We identified that a firm can use the MR=MC profit

maximization concept to determine the optimal number of

compute cores to assign to a database virtual instance hosted

in a cloud infrastructure. This is a new and simple strategy that

firms can use when hosting location-based mobile smart-

phone applications in a commercial cloud infrastructure, for

apps that provide advertising services. While the results are

based on the Amazon Elastic Compute Cloud (Amazon EC2)

infrastructure, the methodology can be adapted to any

commercial cloud provider, where revenue is earned through

application usage and costs are incurred through cloud

resource investment. Furthermore, more complex purchase

probability models can be substituted in place of our

simplified linear and exponential models. Our purchase

probability models are purely hypothetical and need to be

explored and validated as a future effort, by collecting data on

actual customer behavior after receiving offers for goods and

services by nearby points of sale.

ACKNOWLEDGMENT

This work was supported by NSF I-Corps Grant #1313570,

entitled "Proximity - Let the cloud help you!"

REFERENCES

[1] Donald Kossmann, Tim Kraska, and Simon Loesing, "An

evaluation of alternative architectures for transaction

processing in the cloud," in SIGMOD '10 Proceedings of

the 2010 ACM SIGMOD International Conference on

Management of data, Indianapolis, 2010, pp. 579-590.

[2] Eucalyptus AWS-Compatible Private Cloud. [Online].

www.eucalyptus.com

[3] R. W. Sinnott, "Virtues of the Haversine," Sky and

Telescope, vol. 68, no. 2, p. 159, 1984.

[4] T. Vincenty, "Direct and Inverse Solutions of Geodesics

on the Ellipsoid with application of nested equations,"

Survey Review, vol. XXIII, no. 176, p. 88–93, April 1975.

[5] Nick Carey, "Establishing Pedestrian Walking Speeds,"

Portland State University, Portland, 2005.

[6] Amazon Web Services EC2 Instance Types. [Online].

http://aws.amazon.com/ec2/instance-types/

[7] Amazon Web Services Simple Monthly Calculator.

[Online]. http://calculator.s3.amazonaws.com/calc5.html

Fig. 9. MR (colored) and MC (black) intersection at profit maximization
points with respect to the number of cores assigned to the database virtual

instance. Linear purchase probability model and transaction fee of 10¢ per

purchase. Optimal number of cores to assign the instance is three.

Fig. 10. MR (colored) and MC (black) curves. Linear purchase probability

model and transaction fee of $1 per purchase. Optimal number of cores to

assign the instance is five.

Fig. 11. MR (colored) and MC (black) curves. Exponential purchase
probability model and transaction fee of $1 per purchase. Optimal number of

cores to assign the instance is five.

Proceedings of the World Congress on Engineering and Computer Science 2013 Vol I
WCECS 2013, 23-25 October, 2013, San Francisco, USA

ISBN: 978-988-19252-3-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2013

file:///C:/Users/Christopher%20Paolini/Documents/research/PIMRC13/www.eucalyptus.com
http://aws.amazon.com/ec2/instance-types/
http://calculator.s3.amazonaws.com/calc5.html

