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 

Abstract— Cloud computing provides services to a large 

number of remote users with diverse requirements, an 

increasingly popular paradigm for accessing computing 

resources over the Internet.  A popular cloud-service model is 

Infrastructure as a Service (IaaS), exemplified by Amazon’s 

Elastic Computing Cloud (EC2). In this model, users are given 

access to virtual machines on which they can install and run 

arbitrary applications, including relational database systems and 

geographic information systems (GIS).  Location-based services 

(LBS) for offering targeted, real-time advertising is an emerging 

retail practice wherein a mobile user receives offers for goods 

and services through a smart phone application.  These 

advertisements can be targeted to individual potential customers 

by correlating a smart phone user's interests to goods and 

services being offered within close proximity of the user.  In this 

paper, we examine the problem of determining the appropriate 

number of microprocessor cores assigned to a relational database 

instance (virtual machine) managed by a cloud infrastructure, 

required to constrain the query response time for a targeted 

advertisement to reach a mobile customer within approachable 

distance to a Point of Sale (POS).  We assume the optimum 

number of cores required to minimize offer latency is one that 

minimizes microprocessor core expenses, charged by cloud 

infrastructure providers, while maximizing application service 

provider revenues derived from POS transaction fees.  Changes 

in the number of microprocessor cores assigned to database 

resources can result in changes in the time taken to transmit, 

receive, and interpret a targeted advertisement sent to a potential 

customer in motion.  We develop a methodology to establish an 

equilibrium state between the utility gained from POS 

transaction revenues and costs incurred from purchasing 

microprocessor cores from infrastructure providers.  We present 

different approaches based on an exponential and linear method 

to model customer purchase decisions. From these models, the 

marginal cost and marginal revenue is calculated to determine 

the optimal number of microprocessor cores to purchase and 

assign to database instances executing within cloud 

infrastructures.  
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I. INTRODUCTION 

ocation-based services refer to computational services that 

locate a mobile user geographically and deliver 

information to the user tailored to their location.  A Location 

Based Service (LBS), specifically, is a geospatial mobile-

based application that provides services based on a user’s 

geographical location. An example of such a service is a food 

service application that informs mobile device holders of 

nearby restaurants.  First generation LBSs were reactive and 

client-server focused where users would query for information 

and received a response back from the server. With the 

advancement of push notification techniques, improved 

mobile Internet access, and widespread adoption of the 

Web2.0 paradigm, next generation user-to-user interactive 

LBSs evolved where information is pushed asynchronously to 

users based on their location, rather than users having to 

explicitly query for information. 

Location-based advertising services refer to marketing 

services offered to smart-phone users within the proximity of a 

point of sale (POS).  Suppose a smart-phone application firm 

wishes to host a LBS in a cloud infrastructure.  An LBS will 

rely on a relational database to monitor, in real-time, the 

geospatial data of all application users.  The firm must first 

decide which particular cloud infrastructure provider to invest 

in, such as Amazon EC2, Microsoft Windows Azure, 

Rackspace, etc.  Once a firm has chosen an infrastructure 

provider, the firm deploys their database in a cloud virtual 

machine (VM) instance.  The firm's database is used to 

maintain the purchasing preference profiles of application 

users in addition to geospatial information.  As mobile users 

enter within a proximate distance or purchase frontier of a 

POS, the deployed database is used to send offers for goods or 

services to application users.  Whenever a mobile user 

receives an offer on his or her smart-phone, the user has a 

probability of honoring the offer and changing course to walk 

to the POS to make a purchase.  Each purchase instigated from 

a received offer will generate transaction fees returned to the 

application firm in the form of revenue.  The firm is thus faced 

with a business optimization problem: whether to add or 

subtract additional cloud infrastructure resources to maximize 

profit.  Adding additional resources can reduce offer latency, 

or the time between when a user enters the purchase frontier of 
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a POS and the time when the user receives an offer on his or 

her smart-phone.  However, adding additional resources incurs 

additional costs for the firm.  The firm must decide the 

optimal number of resources to purchase from the cloud 

provider to maximize profit. 

Cloud computing involves delivery of hosted services over 

the Internet or a Local Area Network (LAN) [1].  These 

services can be broadly classified into three categories: 

Infrastructure as a Service (IaaS), Platform as a Service 

(PaaS) and Software as a Service (SaaS). Infrastructure as a 

Service is a provision model in which an organization 

outsources resources such as hardware, storage, servers, and 

networking components to support operations on demand. The 

service provider is completely responsible for running, 

housing, and maintaining these resources, which are 

distributed as a service and dynamically scaled according to 

demand. The IaaS client typically is billed on a per-use basis. 

The IaaS model is suitable where the demand is very volatile, 

that is, where there are spikes or troughs in terms of demand 

of infrastructure and where there is a limit to capital 

expenditure for a specific business application. 

The problem addressed in this paper is to derive a way for 

cloud customers to choose, dynamically, an optimal number of 

microprocessor cores to drive a relational database, hosted in a 

cloud infrastructure, that supports location based advertising 

services for mobile smart-phone applications. Upon choosing 

a particular commercial cloud provider, a mobile application 

firm hosts their back-end database application within a cloud 

instance, which is used to send offers for good or services to 

mobile smart-phone users. Based on the revenue generated by 

transaction fees charged to smart-phone users who consent to 

an offer received by purchasing goods or services at a point of 

sale, the mobile application firm then chooses to either add or 

remove microprocessor cores to maximize revenue. 

II. MODELING MOBILE SHOPPERS 

Fig. 1 shows an aerial photograph of an outdoor shopping 

mall where customers walk within regions bounded by brick-

and-mortar stores.  Suppose a mobile shopper is walking along 

the yellow path as shown.  A store, located at the black dot 

labeled “POS”, transmits offers to customers as soon as they 

enter the 50m purchase frontier, identified by the outer 

concentric red circle.  Circles are shown in increments of 10m 

from the POS.  The greater the offer latency, the greater the 

distance traveled by a shopper and the greater the shopper will 

need to backtrack to the POS to honor the received offer and 

make a purchase.  Based on the number of microprocessor 

cores assigned to the VM that hosts the geospatial database, 

the shopper will experience different offer latencies, which 

will result in the shopper receiving an offer at different 

distances from the POS.  Suppose many cores were assigned 

to the VM.  Then, the offer latency would be shorter and the 

shopper might receive an offer at position D1.  However, 

suppose fewer cores were assigned to the VM.  In this case, 

the shopper would travel an additional distance, say D3, before 

receiving the offer.  At position D1, the user will need to 

backtrack a shorter distance to the POS than at position D3.  

Our customer purchase model assumes the probability a user 

will backtrack to a given POS is indirectly proportional to the 

distance the user is to the POS at the time of receiving an 

offer.  Thus, a shopper who receives an offer at D1 is more 

likely to walk to the POS than a shopper who receives an offer 

at D3. By increasing the number of cores assigned to the 

database VM, a firm can reduce the shopper’s backtrack 

distance by reducing the offer latency.  However, adding cores 

incurs additional cost for the firm, according to the cloud 

provider's resource pricing model.  To maximize profit, the 

mobile application firm must minimize both a mobile user's 

backtrack distance by minimizing offer latency, and minimize 

the cost of adding additional cores assigned to a database's 

virtual instance. 

To simulate offer latency as a function of core count, we 

constructed a private cloud using the open source Eucalyptus 

Cloud platform [2] used to build Amazon Web Services 

(AWS)-compatible private and hybrid clouds.  Eucalyptus is a 

private cloud-computing platform that implements the 

Amazon specification for EC2, S3, EBS, and IAM.  We 

developed a multithreaded code that simulates one million 

mobile LBS users by simultaneously uploading one million 

random geospatial records into a remote PostgreSQL database 

running within a Eucalyptus virtual machine instance. Each 

geospatial record is 0.5MB in length and stores a user's GPS 

data (latitude, longitude, altitude, accuracy, GPS fix time) and 

consumer interest data.  The total time required to upload one 

million geospatial records is given by 

Total Insertion Geospatial Corelation Receptiont t t t t     (1) 

where tInsertion is the time required to transmit and insert 

records into a PostgreSQL table, tGeospatial is the time required 

 
Fig. 1.  Typical location-based customer purchase scenario.  Aerial view of 
an outdoor shopping mall where a customer walks along the yellow path 

shown.  A store, located at the black dot labeled POS, transmits offers to 

customers as soon as they enter the 50m purchase frontier, identified by the 
outer concentric red circle.  Circles are shown in increments of 10m from the 

POS.  The greater the offer latency, the greater the distance traveled by a 

shopper and the greater the shopper will need to backtrack to the POS to 
honor the received offer and make a purchase. 
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Fig. 3.  Shopper backtrack distance as a function of database VM 

microprocessor core count, for five radii at 50, 40, 30, 20, and 10 meters from 
the POS. 

 

Fig. 4.  Probability a shopper will backtrack to a POS upon 

receiving an offer as a function of microprocessor core count, based 

on a linear probability model, for five radii at 50, 40, 30, 20, and 10 
meters from the POS. 

 

 

Fig. 2.  Per user geospatial processing time tUser as a function of 
microprocessor core assignment.  Assumes one million mobile users and 

a geospatial update message size of 0.5 MB.  Processing time is invariant 

with five or more cores.  ST_Distance_Sphere uses the haversine formula 

to compute the distance between each user and the POS; 

ST_Distance_Spheroid() uses Vincenty’s method. 

 
to compute the distance between the user and the POS using 

either the haversine formula [3] or Vincenty's method [4], 

tCorelation is the time required to compute a correlation 

coefficient between the user's commercial interests and the 

products and/or services being offered by the POS, and 

tReception is time required to receive an offer from the cloud 

infrastructure, assuming a 4G mobile network is being used (8 

Mbps download data rate, 4 Mbps upload data rate).  Fig. 

2Fig. shows a plot of the per user geospatial processing time 

tUser as a function of microprocessor core assignment, where 

tUser = tTotal/N with N = 1 million.  One can see that the 

processing time to receive an offer - or offer latency - is 

reduced as additional cores are attached to the database VM 

instance, up to 5 cores when the processing time becomes 

invariant. 

 Assuming an average walking speed of v = 5 km/h (1.4 m/s) 

[5], we can compute the backtrack distance, dBacktrack, simply 

as 2 2

Backtrackd d r   where d = v tUser   is the distance traveled 

by the shopper and r is the radial distance the user is from the 

POS, assuming the user tangentially crosses a given concentric 

circle within the purchase frontier.  Fig. 3 shows a shopper's 

required backtrack distance in meters as a function of core 

count, for five radii at 50, 40, 30, 20, and 10 meters from the 

POS.  After five or more cores are assigned to a VM, the 

backtrack distance becomes invariant.  We assume the 

reluctance of a shopper to travel the backtrack distance to a 

POS is proportional to the distance.  We modeled shopper 

reluctance or purchase probability using a linear and 

exponential model. 

 The simplest approach to modeling purchase probability 

uses a linear model where the probability a shopper backtracks 

to a point of sale upon receiving offer on a 4G mobile smart 

phone is given by 

 max
linear

min max

backtrackd d
P

d d





 (2) 

where dmax, dmin are the maximum and minimum distances a 

shopper could have travelled upon receiving an offer for goods 

and/or services.  From Fig. 4, based on a linear model, a 

shopper is guaranteed to make a purchase if the LBS database 

VM is assigned five or more cores.  We hypothesized that 

shopper reluctance is more realistically modeled using an 

exponential where reluctance to backtrack increases 

exponentially with backtrack distance, that is 

 exponential

xP e    (3) 

with λ=1 and scaling factor β=1/50.  Fig 5 shows shopper 

purchase probability as a function of core count based on an 

exponential model.  The scaling factor adjusts the purchase 

probability to fall in the 20% to 80% range, based on the 

number of assigned cores. 
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Fig. 2.  Per user geospatial processing time tUser as a function of 

microprocessor core assignment.  Assumes one million mobile users and  

 

 
Fig. 5.  Probability a shopper will backtrack to a POS upon receiving an 

offer as a function of microprocessor core count, based on an exponential 
probability model, for five radii at 50, 40, 30, 20, and 10 meters from the 

POS. 

 Fig. 6.  Marginal revenue as a function of microprocessor core count, 

based on a transaction fee of 10¢ per purchase and a linear probability 

model, for five radii at 50, 40, 30, 20, and 10 meters from the POS. 

 

Fig. 7.  Marginal revenue as a function of microprocessor core count, 

based on a transaction fee of 10¢ per purchase and an exponential 

probability model, for five radii at 50, 40, 30, 20, and 10 meters from the 

POS.

Fig. 8.  Marginal cost can be determined using the Amazon EC2 online 

calculator, based on a firm's chosen instance type. 

III. REVENUE AND COST 

 

A mobile application firm's profit will be maximum when 

marginal revenue equals marginal cost. Marginal revenue 

(MR) is the additional revenue obtained by the mobile 

application firm via transaction fees collected from purchases 

when one additional microprocessor core is assigned to the 

database virtual instance.  Marginal cost (MC) is the additional 

cost incurred by the mobile application firm from purchasing 

one additional microprocessor core from the cloud 

infrastructure provider.  When MR>MC, the firm can increase 

profit by adding microprocessor cores to the VM.  When 

MR<MC, the firm can increase profit by revoking   

microprocessor cores assigned to the database VM, where the 

revoked cores are then returned to the cloud for use by a 

different client.  It is in the firm's best interest to assign the 

particular number of cores to the VM such that the equilibrium 

condition MR=MC is satisfied.  We calculate the revenue R on 

each purchase as the product of the purchase transaction fee T 

and purchase probability P, 

 R PT  (4) 

and marginal revenue as 

 
R

MR
c





 (5) 

with Δc=1 for the increase in revenue per each one additional 

microprocessor core added to the VM.  Figures 6 and 7 show 

marginal revenue as a function of microprocessor core count, 

based on a transaction fee of 10¢ per purchase for five radii at 

50, 40, 30, 20, and 10 meters from the POS, for the linear and 

exponential models, respectively.  Marginal cost is calculated 

as 

 
C

MC
c





 (6) 

for the increase in cost the application firm must pay the cloud  

provider per each one additional microprocessor core added to 

the VM.  Based on a chosen instance type [6] (e.g. micro, 

small, medium, etc.) which determines an initial resource 

configuration, one can compute marginal cost using a 

provider's online calculator [7], as shown in Fig. 8.  For 

example, Amazon EC2 charges hourly usage fees for an on-

demand instance.  Pricing is based on each instance-hour 

consumed for each VM instance purchased by the mobile 

application firm.  The marginal cost calculations used in this 

paper are based on an EC2 micro instance, which provides a 

small amount of consistent CPU resources to an application 

and allows one to increase CPU capacity in short bursts when 
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additional CPU cycles are needed. 

IV. RESULTS 

Selected marginal revenue and cost plots are shown in Figs. 

9-11 for different transaction fees and purchase probability 

models.  The plots show that, for a particular transaction fee 

and purchase probability model, the profit maximizing number 

of microprocessor cores to assign a virtual instance running a 

database can be determined by locating the integer number of 

cores closest to the average abscissa of the points of 

intersection.  In Fig. 9, the optimal number of cores to assign 

is three, while in Fig. 10 and 11 the optimal number is five. 

V. CONCLUSION 

We identified that a firm can use the MR=MC profit 

maximization concept to determine the optimal number of 

compute cores to assign to a database virtual instance hosted 

in a cloud infrastructure. This is a new and simple strategy that 

firms can use when hosting location-based mobile smart-

phone applications in a commercial cloud infrastructure, for 

apps that provide advertising services.  While the results are 

based on the Amazon Elastic Compute Cloud (Amazon EC2) 

infrastructure, the methodology can be adapted to any 

commercial cloud provider, where revenue is earned through 

application usage and costs are incurred through cloud 

resource investment. Furthermore, more complex purchase 

probability models can be substituted in place of our 

simplified linear and exponential models.  Our purchase 

probability models are purely hypothetical and need to be 

explored and validated as a future effort, by collecting data on 

actual customer behavior after receiving offers for goods and 

services by nearby points of sale. 
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Fig. 9.  MR (colored) and MC (black) intersection at profit maximization 
points with respect to the number of cores assigned to the database virtual 

instance.  Linear purchase probability model and transaction fee of 10¢ per 

purchase.  Optimal number of cores to assign the instance is three. 

 
Fig. 10.  MR (colored) and MC (black) curves.  Linear purchase probability 

model and transaction fee of $1 per purchase. Optimal number of cores to 

assign the instance is five. 

 
Fig. 11. MR (colored) and MC (black) curves.  Exponential purchase 
probability model and transaction fee of $1 per purchase. Optimal number of 

cores to assign the instance is five. 
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