
 

  
Abstract—During the past two and a half decades, many 

subpixel classification algorithms have been developed to 
classify multispectral and hyperspectral data for spatio-
temporal data mining. The aim of these classification 
algorithms is to disintegrate a pixel spectrum into its 
constituent spectra through a mixture model assuming that 
observed data are linear mixtures of two or more objects, 
representing a mixed pixel. The linear mixture model allows 
the presence of a number of target classes with the fractions of 
their fixed spectrum corresponding to the area occupied by 
that class in a pixel. The linear model is inverted to produce 
estimates of those fractional abundances. All of these 
algorithms are either unconstrained or partially constrained or 
fully constrained depending on whether the abundance non-
negativity and abundance sum-to-one constraints are imposed. 
More often, the constrained algorithms are appropriate for 
target class quantification and abundance fraction estimation. 
In this paper, we perform a comparative analysis of five state 
of the art fully constrained linear subpixel classification 
algorithms – fully constrained least squares (FCLS), modified 
FCLS (MFCLS), simplex projection unmixing (SPU), 
constrained sparse unmixing via variable splitting and 
augmented Lagrangian (CSUnSAL) and CSUnSAL Total 
Variation (CSUnSAL TV). The algorithms were tested on 
computer-simulated data of various signal to noise ratio and 
Landsat-5 TM data of an agricultural landscape and an urban 
scenario. The results were validated using descriptive statistics, 
correlation coefficient, RMSE and probability of success. 
 

Index Terms—algorithm, constrained model, endmember, 
linear spectral mixture, mixed pixel 
 

I. INTRODUCTION 
INEAR spectral mixture analysis has remained an 
important area of active research to characterize the 

mixed pixels in medium to coarse spatial resolution remote 
sensing (RS) data [1]. It employs a linear mixture model 
(LMM) that infers a set of pure spectral signatures 
(endmembers), and fractions of these endmembers 
(abundances) in each pixel of the image [2]. LMM assumes 
that the spectra collected by imaging instrument are a linear 
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combination of endmembers, weighted by their 
corresponding abundances. The endmembers are either 
derived using some endmember extraction algorithms [3], 
[4] from the image pixels or obtained from an endmember 
library available a priori. Once the endmembers are known, 
LMM is inverted to produce estimates of those fractional 
abundances, i.e. the model allows a number of target 
materials to be present, each contributing a fraction of its 
spectrum corresponding to the area occupied by that 
category in a pixel. Numerous approaches have been 
proposed in the past two and a half decades to solve the 
mixed pixel problem for a wide variety of applications 
ranging from modeling the component mixtures to solving 
the linear combinations to obtain abundances through 
geometrical, statistical and sparse regression-based 
approaches [5]-[7]. The discussion on this topic can be 
continued till ad nauseum [8]. The optimal solution of these 
models can be unconstrained, partially constrained or fully 
constrained (when the abundance non-negativity constraint 
(ANC) and abundance sum-to-one constraint (ASC) are 
imposed). ANC restricts the abundance values from being 
negative and ASC confines the sum of abundance values of 
all the classes to unity. Although unconstrained and partially 
constrained algorithms are appropriate for applications 
seeking target detection, identification and discrimination, 
constrained models are more suitable for target 
quantification and for estimating abundance fractions. 
Undoubtedly, the abundance maps obtained from fully 
constrained models render more accurate fractional 
estimates of each class compared to per-pixel classification. 
 
In this paper, we perform a comparative analysis of five 
different state of the art fully constrained unmixing 
algorithms namely, fully constrained least squares (FCLS), 
modified FCLS (MFCLS), simplex projection unmixing 
(SPU), constrained sparse unmixing via variable splitting 
and augmented Lagrangian (CSUnSAL) and CSUnSAL 
Total Variation (CSUnSAL TV) based on heuristic. The 
algorithms are first tested on computer simulated noise-free 
and noisy data of different signal to noise ratio. 
Subsequently, Gaussian noise (a random variable with 0 
mean and fixed variance) was induced in the data to judge 
the robustness of the algorithms. In the second and third set 
of experiments with the real world data, 11 Landsat-5 TM 
scenes (of 30 m spatial resolution) of an agricultural 
landscape (near Fresno, California, USA), and a Landsat 
scene of an urban scenario (San Francisco, California, USA) 
were used to evaluate the algorithms. These data were 
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analyzed by deriving vegetation, substrate and dark objects 
(shadows, deep water) endmember fractions with respect to 
the ground measurements for the agricultural area and by 
comparing with the high-resolution World View-2 (WV-2) 
(of 2 m spatial resolution) unmixed image for the urban area 
respectively. The results were evaluated and the sources of 
errors were analyzed using descriptive statistics, Pearson 
product-moment correlation coefficient (cc), root mean 
square error (RMSE) and probability of success. The paper 
is organized as follows: section II discusses the general 
principle of linear mixture model, section III discusses 
algorithms for fully constrained linear mixture models and 
section IV details the data used in this analysis. Results and 
discussion are presented in section V.  

II. LINEAR MIXTURE MODEL (LMM)  
If there are M spectral bands and N classes, then associated 
with each pixel is a M-dimensional vector y whose 
components are the gray values corresponding to the M 
bands. Let E = [e1, …en-1, en, en+1 ..., eN] be a M × N matrix, 
where {en} is a column vector representing the spectral 
signature (endmember) of the nth target material. For a 
given pixel, the abundance or fraction of the nth target 
material present in the pixel is denoted by αn, and these 
values are the components of the N-dimensional abundance 
vector α. Assuming LMM [9], the spectral response of a 
pixel in any given spectral band is a linear combination of 
all the endmembers present in the pixel at the respective 
spectral band. For each pixel, the observation vector y is 
related to E by a linear model written as 
 
        𝐲 = 𝐄𝛂 + 𝛈                  (1) 
   
where 𝛈 accounts for the measurement noise. We further 
assume that the components of the noise vector 𝛈 are zero-
mean random variables that are i.i.d. (independent and 
identically distributed). Therefore, covariance matrix of the 
noise vector is σ2I, where σ2 is the variance, and I is M × M 
identity matrix. 

III. CONSTRAINED MIXTURE MODELS 
The conventional approach to extract the abundance values 
is to minimize 𝐲 − 𝐄𝛂  as in (2): 
 
       𝛂!"#$ = (𝐄!𝐄)!!𝐄!𝐲       (2) 
 
which is termed as unconstrained least squares (UCLS) 
estimate of the abundance. The value of α! is the abundance 
of the nth class in an abundance map. If no constraints are 
imposed on the abundances, the estimated abundance 
fractions may deviate with a wide range. To avoid such 
conditions, generally two constraints are imposed on the 
model in (1): the abundance non-negativity constraint 
(ANC) given as (3) and the abundance sum-to-one 
constraint (ASC) expressed as (4) 
 
               𝛼! ≥ 0  ∀  𝑛:  1 ≤ 𝑛 ≤ 𝑁                (3) 
and 
                      𝛼! = 1!

!!! .                  (4) 
ANC and ASC allows the value of abundance in any given 

pixel to range between 0 to 1, where 0 indicates absence of a 
particular class and 1 indicates presence of only that class in 
a pixel. Intermediate values between 0 and 1 represent a 
fraction of that class. When only ASC is imposed on the 
solution, the sum-to-one constrained least squares (SCLS) 
estimate of the abundance is obtained by 
 
       𝛂!"#! = 𝐄!𝐄!! 𝐄!𝐲 − !

!
1     (5) 

 

where      λ = !(𝟏! 𝐄𝑻𝐄
!!
    𝐄!𝐲!𝟏)

𝟏𝑻 𝐄!𝐄
!!
𝟏

.     (6) 

 
The SCLS solution may have negative abundance values but 
they add to unity. With this background, next we discuss 
five state of the art fully constrained linear mixture models. 

A. Fully Constrained Least Squares (FCLS) 
FCLS [7] extends NNLS (Nonnegative Least Squares) 
algorithm [10] to minimize 𝐄𝛂 − 𝐲  subject to 𝛂 ≥ 0 by 
including ASC. ASC is included in the signature matrix E 
by a new signature matrix (SME) defined by 
    

      𝐒𝐌𝐄 =
θ𝐄

𝟏!
          (7) 

with 𝟏 = (11111. .1)
𝑵

!, and 

        𝐬 =
θ𝐲

1
.           (8) 

 
θ in (7) and (8) regulates ASC. Using these two equations 
an FCLS algorithm can be derived directly from the NNLS 
algorithm by replacing signature matrix E with SME and 
pixel vector y with s. For a detailed derivation of the NNLS 
algorithm, readers are requested to refer (Lawson and 
Hanson, 1995) [10]. 

B. Modified Fully Constrained Least Squares (MFCLS) 
ANC is a major problem in solving constrained linear 
unmixing problems as it forbids use of Lagrange multiplier. 
Chang (2003) [7] proposed the replacement of 𝛼! ≥
0  ∀  𝑛:  1 ≤ 𝑛 ≤ 𝑁 with absolute ASC (AASC), 𝛼! =!

!!!
1. AASC allows usage of Lagrange multiplier along with 
exclusion of negative abundance fractions leading to optimal 
constrained least squares solution satisfying both ASC and 
AASC with all nonnegative fractions. This method is called 
MFCLS, expressed as 
 

 min!∈∆{( 𝐲 − 𝐄𝛂) 𝐲 − 𝐄𝛂 !}      (9) 
 
subject to ∆={𝛼| 𝛼! = 1!

!!!   and   𝛼! = 1!
!!! }. 

 
It turns out that the solution to (9) is 
 
 α!"#$% = α!"#$ − (𝐄!𝐄)!![λ!𝟏 + λ!𝑠𝑖𝑔𝑛 α ]   (10) 
 
where α!"#$ =    (𝐄!𝐄)!!  𝐄!𝐲 which is the unconstrained 
solution as in (2). The ASC and the AASC constraints are 
now used to compute λ! and λ! by replacing 𝛼 with 𝛼!"#$ 
with the following constraints: 𝛼! = 1!𝛼 = 1!

!!! , and 
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𝛼! = 𝑠𝑖𝑔𝑛  (𝛼)!𝛼 = 1!
!!! ,  

where 𝑠𝑖𝑔𝑛   𝛼 = (𝜔!,𝜔!,…𝜔!!!,𝜔!,𝜔!!!…𝜔!)! and 
 

𝜔! =
𝛼!
𝛼!

;   if  𝛼! ≠ 0

0;   if  𝛼! = 0            
 

 
The MFCLS algorithm is briefly stated as 
 
Step 1: Set 𝛼!"#$% = 𝛼!"#!  from (5).   
Step 2: Compute λ! and λ! 
Step 3: Compute 𝛼!"#$% = 𝛼!"#! −   (𝐄!𝐄)!![λ!𝟏 +
λ!𝑠𝑖𝑔𝑛 𝛼 ] 
Step 4: If 𝛼!"#$% has any negative value, go to step 2 else 
exit. 
 
MFCLS algorithm utilizes the SCLS solution. Step 4 
terminates the algorithm when all the components are 
nonnegative. Alternatively, a preselected threshold can be 
used for a fast implementation. For a more detailed 
derivation, readers are directed to refer [7], pp. 184. 

C. Simplex Projection Unmixing (SPU) 
SPU [11] is a supervised unmixing algorithm, equivalent to 
FCLS. SPU finds the projection of a point onto a generic 
simplex and minimizes the least squares error while 
imposing ANC and ASC. It greatly reduces the 
computational complexity without following any 
optimization or maximization, while recursively reducing 
the dimensionality of the problem to obtain a suitable 
abundance vector. At each run, the algorithm identifies an 
endmember that has zero abundance and orthogonally 
projects on a hyperplane of a dimension less than the 
previous one. The simplex projection algorithm 
(simplex_project) is briefed below. For a more detailed 
derivation, readers are requested to refer [11].  
 
Consider a data set of P points 𝐲!  𝜖  ℝ! , 𝑝 = 1…𝑃, and N 
endmembers {e1, …en-1, en, en+1 ..., eN}. The goal is to 
project all points 𝐲! on to a simplex 𝑆! spanned by the N 
endmembers in the set I = {e1, …en-1, en, en+1 ..., eN} 
producing projected points 𝐲!! and corresponding 
abundance vectors 𝛂! = α!!,… , α!" . The projected 
points 𝐲!! are determined through 𝐲!! = 𝐄𝛂!. 

Input → 𝐲,𝐄 where 𝐲 is a M x P matrix, the points to unmix 
and 𝐄 is a M x N matrix, the N endmembers (or classes). 
 
Output → 𝛂 where 𝛂 is a N x P vector. 
start 
 If N = 1 then 𝛂 = 1; return;  
 I = {}; 
 for ∀  𝑝  𝜖  [1,… ,𝑃], calculate partial abundance  

𝐩𝐚𝐫_𝐚𝐛𝐧! = 𝐄!𝐄
!!
𝐄! 𝐲 − 𝑒𝟏 . 

 If ∀  𝑗: 𝑝𝑎𝑟_𝑎𝑏𝑛!
!   ≥   0 and 𝑝𝑎𝑟_𝑎𝑏𝑛!

!
!   ≤   1 

then 
  𝛂! = [1 − 𝑝𝑎𝑟_𝑎𝑏𝑛!

!
! , 𝐩𝐚𝐫_𝐚𝐛𝐧!]; 

else 
 project 𝐲! onto simplex plane with 

𝐄 𝐄!𝐄
!!
𝐄! 𝐲 − 𝑒! + 𝑒! 

Add p to I; 

Calculate endmember distance matrix D; 
for ∀  𝑖  𝜖  [1,… ,𝑁],  

Calculate volume 𝑉! of subbsimplex 
𝐄! =    [𝑒!,… 𝑒!!!, 𝑒!!!  . . . , 𝑒!] using 
−1 !2!!!( N − 1 !)!𝑉! = det(𝑪!,!,…!) 

where 𝑪!,!,…!  =
𝑫!,!,…! 𝟏
𝟏 0

, with 𝑫!,!,…! = 𝑑!,!! !,!!!,!,…!.
 

 Calculate the incenter c: α!! = V! V!!
!!!  & 

𝒄 = 𝐄𝛂! 
 for ∀  𝑖  𝜖  [1,… ,𝑁]  
  I = {}; 
  for ∀  𝑗  𝜖  𝐼 

Solve 𝐲!=𝐄!!𝐛! for 𝐛!; 
if ∀  𝑘: 𝐛!! ≥ 0 then 

Add j to 𝐼!; 
  if   𝑖   ≠ {}  then 
  𝛂! =   simplex_project(𝐲!" ,𝐄!);  
  𝛂( 1,… , 𝑖 − 1, 𝑖 + 1,…𝑁 , 𝐼!) = 𝛂!; 
  𝛂(𝑖, 𝐼!) = 0; 
end 

D. Constrained Sparse unmixing via variable splitting 
and augmented Lagrangian (CSUnSAL) 

Sparse regression [12] is a new direction in unmixing which 
is related to both statistical and geometrical frameworks. 
Endmember search is conducted in a large library, say 
𝐄 ∈ ℝ!  !  !, where M < N and 𝛂 ∈ ℝ! . It is possible that 
only a few signatures contained in E would involve in the 
mixed pixel spectrum. Therefore, 𝛂 will contain many 
values of zero and is a sparse vector. The sparse regression 
problem is expressed as 
 
  min𝛂 𝛂 !          subject to           𝐲 − 𝐄𝛂 ! ≤ δ,             (11)  

𝛂 ≥ 0,   𝟏!𝛂 = 1 
 
where 𝛂 ! denotes the number of nonzero components of 
𝛂, and δ ≥ 0 is the noise and modeling error tolerance. A 
set of sparsest signals belonging to the (N-1) probability 
simplex satisfying error tolerance inequality defines the 
solution of (11). When the fractional abundances from 
sparse regression follow ANC and ASC, the problem is 
referred to as constrained sparse regression (CSR). The 
general CSR problem is given by (12). 
 

min𝛂 1/2 𝐄𝛂 − 𝐲 !
! + λ 𝛂 !           (12) 

subject to:     𝛂 ≥ 0, 𝟏!𝛂 = 1 
 
where 𝛂 ! and   𝛂 ! are the l2 and l1 norms and λ ≥ 0 is a 
weighing factor between the l2 and l1 terms. SUnSAL is 
based on the alternating direction method of multipliers 
(ADMM) [13], [14]. ADMM can be derived as a variable 
splitting procedure followed by the adoption of an 
augmented Lagrangian method to solve the constrained 
problem. The algorithm is briefly stated here, readers are 
encouraged to refer [15] for detailed derivation. Assume that 
E is known and corresponds to underdetermined systems (N 
> M) rather than obtained from an endmember extraction 
algorithm (where N < M). Consider arbitrary 𝜇 > 0, 
𝐮!,  𝐝! ∈   ℝ!""_!"# (where aff_dim is an affine dimension), 
and {𝛂! ∈   ℝ!,  𝐮! ,𝐝! ∈   ℝ!""_!"#, where i = 0, 1, …}. 
Step 1: Let i = 0, select 𝜇 > 0, u0, d0 
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Step 2: Continue step 3 to step 8 until specified condition is 
achieved. 
Step 3: Compute 𝐰 = 𝐄!𝐲 + 𝜇(𝐮! + 𝐝!) 
Step 4: Compute 𝛂!!! = 𝐁!!𝐰 − 𝐂  (1!𝐁!!𝐰 − 1) 
Step 5: Compute 𝛎! = 𝛂!!! − 𝐝!  
Step 6: Compute 𝐮!!! = max  {0, soft 𝛎! , λ 𝜇 } 

Step 7: Compute 𝐝!!! = 𝐝! −   (𝛂!!! − 𝐮!!!) 
Step 8: Increment i by 1 
Step 9: Exit  
where 𝐁 ≡ 𝐄!𝐄 + 𝜇𝐈, 𝐂 ≡ 𝐁!!𝟏(𝟏!𝐁!!𝟏)!! and λ is a 
parameter controlling the relative weight. (Note: the symbol 
≡  means “is defined as” or “equivalence”). Soft threshold 
function is discussed in [16]. 

E. CSUnSAL Total Variation (CSUnSAL TV)  
While sparse unmixing techniques characterize mixed pixel 
problems using spectral libraries, they do not deal with the 
neighboring pixels and tend to ignore the spatial context. 
SUnSAL and Total Variation (SUnSAL TV) [17] takes into 
account spatial information (the relationship between each 
pixel vector and its neighbors) on the sparse unmixing 
formulation by means of the TV regularizer [18] assuming 
that it is very likely that two neighboring pixels have similar 
fractional abundances for the same endmember. The TV 
regularizer acts as a priori information and unmixing is 
achieved by a large nonsmooth convex optimization 
problem. For detailed solution to this optimization problem, 
readers can refer the Appendix of [17]. SUnSAL TV with 
ANC and ASC imposed is referred as CSUnSAL TV. 

IV. DATA 

A. Computer simulations 
Simulation of imagery was carried out with a set of global 
spectra of the three endmember libraries [19] to generate 
three abundance maps. Equation (1) was inverted (with 
ANC and ASC imposed) to generate computer simulated 
noise free data of 6 bands of size 512 x 512. In a separate set 
of experiments, error in the estimate was examined as the 
noise power (variance) was set to 2, 4, 8, 16, 32, 64, 128 and 
256. This noise is a random number drawn from Gaussian 
distribution where the mean of each endmember is set to 0 
and the variability is controlled i.e., Gaussian noise = mean 
+ random perturbation; random perturbation is a Gaussian 
random variable of specific variance. 

B. Landsat data 
A spectrally diverse collection of 11 scenes of Level 1 
terrain corrected, cloud free Landsat-5 16 bit (path 43, row 
35) of Fresno were used in this study. These data were 
captured on April 4 and 20, May 22, June 7 and 23, July 9 
and 25, August 26, September 11 and 27 and October 13 for 
the year 2008 and were calibrated to exoatmospheric 
reflectance [20]. Corresponding to the above scenes, a 
coincidental set of ground canopy cover were available for a 
number of surveyed field within the footprint of Landsat 
WRS path 43, row 35 [21]. LEDAPS atmospheric correction 
method [22] was used to convert atmospheric reflectance to 
surface reflectance which reduced the perturbations caused 
by Rayleigh scattering and the absorption of the mixing 
atmospheric molecules and aerosols. 74 surveyed field 
polygons of the fractional vegetation cover were generated 

from digital photographs taken with a multispectral camera 
mounted on a frame at nadir view pointed 2.3 m above the 
ground at the commercial agricultural fields of San Joaquin 
Valley (in central California) on 11 dates mentioned above, 
except for one date when the Landsat acquisition preceded 
the ground observation by one day. For each date, 2-4 
evenly spaced pictures were taken for an area of 100 m x 
100 m with center location marked by a GPS [21]. These 
fractional measurements belonged to a diverse set of 
seasonal and perennial crops in various developmental 
stages, from emergence to full canopy representing an 
agricultural scenario in the RS data.  
 
A second set of a pair of coincident clear sky Landsat TM-5 
data and WV-2 data for an area of San Francisco (SF) were 
used to assess the algorithms. SF is chosen for the test site 
because of its urbanized landscape, having colonial and 
eclectic mix of building architectures on the steep rolling 
hills. WV-2 data were acquired a few minutes after the 
Landsat-5 TM data acquisition on May 1, 2010 for an area 
near the Golden Gate Bridge, SF. The spectral range of the 
first four bands of Landsat data correspond with the WV-2 
bands 2, 3, 5 and 7 in terms of the wavelength range so they 
have a similar mixing space. WV-2 data were converted to 
Top of Atmosphere (TOA) Reflectance values using the 
python program [23] in GRASS GIS 7.1. The Landsat 
unmixed images were compared with the corresponding 
WV-2 fraction images for accuracy assessment. 

C. Endmember generation 
Global mixing spaces using a spectrally diverse LC and 
diversity of biomes with 100 Landsat ETM+ scenes was 
used to define a standardized set of spectral endmembers of 
substrate (“S” – endmember 1 or E1), vegetation (“V” – 
endmember 2 or E2), and dark objects (“D” – endmember 3 
or E3) [24]. Vegetation refers to green photosynthetic 
plants, dark objects encompass absorptive substrate 
materials, clear water, deep shadows, etc., and substrate 
includes soils, sediments, rocks, and non-photosynthetic 
vegetation. The S-V-D endmember coefficients, with dates 
and locations of each subscene are available at [25]. The 
estimates obtained from the global endmembers have been 
compared to fractional vegetation cover derived vicariously 
by linearly unmixing near-coincidental WV-2 acquisitions 
over a set of diverse coastal environments, using both global 
endmembers and image-specific endmembers to unmix the 
WV-2 images. The strong 1:1 linear correlation between the 
fractions obtained from the two types of images indicates 
that the mixture model fractions scale linearly from 2 m to 
30 m over a wide range of terrains. When endmembers are 
derived from a large enough sample of radiometric 
responses to encompass the Landsat spectral mixing space, 
they can be used to build a standardized spectral mixture 
model with global applicability [26]. UCLS, SCLS, FCLS 
and MFCLS were implemented in C++ programming 
language with OpenCV and boost C++ libraries. SPU and 
SUnSAL programs were obtained from the authors. GRASS 
GIS was used for visualization of results and statistical 
analysis was carried in R statistical package on the NASA 
Earth Exchange [27]. The parameter λ in CSUnSAL was set 
to 0, in CSUnSAL TV was set to 0.0005, and λ!" in 
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CSUnSAL TV was set to 0.005 for computer simulated data 
and 0.001 for Landsat data. Here, the maximum number of 
iterations was set to 100 and all other parameters were set to 
default. For validation of computer simulated data, the 
estimated class proportion maps were compared with the 
synthetic true abundance maps using visual checks and 
various other measures such as descriptive statistics 
(minimum and maximum fractional estimates), cc, RMSE 
and probability of success (𝑝!). Considering the true 
abundance 𝛂 and estimated abundance 𝛂, cc (or r) between 
𝛂 and 𝛂 ranges from −1 to 1, where 1 implies that a linear 
equation describes the relationship between 𝛂 and 𝛂 
perfectly with all the data points lying on a straight line for 
which 𝛂 increases as 𝛂 increases. r = −1 infers that all data 
points lie on a line for which 𝛂 decreases as 𝛂 increases and 
r = 0 means there is no linear correlation between the true 
and estimated abundances. On the other hand, a smaller 
RMSE indicates a better unmixing result i.e. higher 
accuracy. 𝑝! is an estimate of the probability that the relative 
error power is smaller than a certain threshold [12] i.e. 
𝑝! ≡ 𝑃( !!! !

! ! ≤ threshold). If threshold is 10, and 𝑝! = 1, 
it suggests that the total relative error power of proportional 
abundances is less than 1/10 with a probability of 1. 
Estimation result is accepted when !!! !

! ! ≤ 0.95 (5.22 dB). 
0.95 is the average of the 99th percentile of all the 
abundances of the three endmembers for noise variance 8. 
At this noise variance, the signal-to-noise ratio which is the 
logarithm to the base 10 of the ratio of sum of the square of 
the true abundances to the sum of the square of the 
difference between the estimated and the true abundances 
turns out to be 5.22 dB. Empirically, we found that when 
𝑝!  = 1, then 1 dB ≤ the SNR for the entire abundance pixels 
≤ 8 dB for our data set.  

V. EXPERIMENTAL RESULTS AND DISCUSSION 

A. Computer simulated data 
Fig. 1 (a-c) shows noise free synthetic abundance maps for 
endmember 1, 2 and 3, (d-f) shows estimated abundance 
maps obtained for each signature class (E1, E2 and E3) 
corresponding directly to the gray scale values from FCLS, 
(g-i) from SPU, and (j-l) from CSUnSAL with the range of 
abundance fraction values specified in square bracket 
[minimum abundance value – maximum abundance value] 
underneath each figure. Visual examination of the 
abundance maps revealed that they were similar in terms of 
the relative fractions. Table I reveals that for the noise free 
data, all models have high cc, low RMSE and 𝑝! = 1. At 
noise variance 256, FCLS showed highest cc for endmember 
1, followed by MFCLS, SPU and CSUnSAL. All these four 
methods showed similar cc for endmember 2 and 3. RMSE 
for these methods were similar for the second and third 
endmembers and they produced high 𝑝! (0.92). On the other 
hand, CSUnSAL TV had the worst performance with lowest 
cc, highest RMSE for all the endmembers and lowest 𝑝!. 
Note that CSUnSAL TV did not detect endmember 3 with 
noise variance 256. The details of other noise variances are 
omitted due to space constraints.  For each endmember, all 
the models showed high cc (close to 1) when variance in the 

 
Fig. 1. (a - c) synthetic abundance maps for endmember 1-2-3; 
abundance maps: (d – f) from FCLS, (g – i) from SPU, and (j – l) from 
CSUnSAL from noise free data. In the figure, black indicates absence of a 
particular class (the minimum abundance value) and white indicates full 
presence of that class in a pixel (the maximum abundance value). 
Intermediate values of the shades of gray represent mixture of more than 
one class in a pixel. 

TABLE I.  CC, RMSE AND 𝑝! FOR ENDMEMBER 1, 2 AND 3 (E1, E2 AND 
E3) FOR NOISE VARIANCE 0 AND 256 

Models cc RMSE 𝒑𝐬 
E1 E2 E3 E1 E2 E3 

Noise 𝝈𝟐  = 0 

FCLS 1 1 1 0 0 0 1 
MFCLS 1 1 1 0 0 0 1 
SPU 1 1 1 0 0 0 1 
CSUnSAL 1 1 1 0 0 0 1 
CSUnSAL TV 1 1 0.99 0 0 0 1 

Noise 𝝈𝟐  = 256 
FCLS 0.99 0.87 0.81 0.03 0.20 0.15 0.92 
MFCLS 0.74 0.87 0.83 0.26 0.20 0.14 0.92 
SPU 0.74 0.87 0.83 0.26 0.20 0.14 0.92 
CSUnSAL 0.74 0.87 0.83 0.26 0.20 0.14 0.92 
CSUnSAL TV 0.32 0.42 0.12 0.89 0.90 64.6 0.46 

 
noise was increased till 32, beyond which cc gradually 
decreased and reached a minimum of 0.12 for endmember 3 
for CSUnSAL TV. To a certain noise level (noise variance 
32), all the models are robust, however as noise increased in 
the data, they tend to produce higher RMSE following a 
hyperbolic curve. FCLS was robust till noise 128. Up to 
noise variance 16, all the algorithms had 𝑝! = 1, beyond 
which it decreased to 0.46 for CSUnSAL TV for which the 
quantification results were worse. 

B. Landsat data – an agricultural landscape 
Each of the 11 Landsat scene was unmixed with S-V-D 
endmembers (E1, E2 and E3) using different models to 
obtain the abundance estimates. For each scene, the 
proportions of vegetation fraction were compared with the 
ground observations. Mean absolute error (MAE) of 
vegetation fraction for FCLS, MFCLS, SPU and CSUnSAL 
was 0.08 and for CSUnSAL TV was 0.3. Cc (statistically 
significant at 0.99 confidence level, p-value < 2.2e-16) 
between ground vegetation fractions and abundance 
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estimates from FCLS, MFCLS, SPU and CSUnSAL were 
0.98 and for CSUnSAL TV was 0.21. This indicates that the 
four constrained models were able to accurately reproduce 
the proportions of vegetation endmember in the 11 scenes 
under investigation with similar accuracies. 

C. Landsat data – an urban scenario 
Landsat data of SF (Fig. 2) were unmixed with S-V-D 
endmembers using the five models. WV-2 data were also 
unmixed with the same S-V-D endmembers using FCLS 
algorithm for validating the Landsat abundance maps. FCLS 
was selected for unmixing WV-2 data since it was robust 
against noise in synthetic data analysis and performed well 
in vegetation classification with Landsat data. The WV-2 
fractions were convolved with a Gaussian low pass filter 
having 30 m full width half maximum, with the point spread 
function of the Landsat sensor and resampled to 30 m. 

 
Fig. 2. False colur composite (FCC) of San Francisco in Landsat  
resolution. 

Coordinate comparison of WV-2 and Landsat data sets at 
many random pixels did not reveal any systematic image 
registration error. Comparison of Landsat S-V-D fractions to 
WV-2 S-V-D fractions revealed that MAE of S-V-D 
fractions for FCLS, MFCLS, SPU and CSUnSAL were 
0.09, 0.07 and 0.06, and for CSUnSAL TV were 0.11, 0.07 
and 2. Cc of S-V-D fractions for FCLS, MFCLS, SPU and 
CSUnSAL were 0.87, 0.88 and 0.63 whereas cc for 
CSUnSAL TV were 0.85, 0.88 and -0.03; CSUnSAL TV 
was not able to discriminate the dark objects class. The 
outcome of this study clearly indicates that the constrained 
models can be used to identify, quantify and estimate 
materials from the large repository of Landsat data. They are 
best to assess state, distribution and quantification of 
materials for spatial-temporal information extraction. 
Considering the various measures of performance 
discriminators in the above analysis, FCLS, MFCLS, SPU 
and CSUnSAL had equally high performance whereas 
CSUnSAL TV performed worst. Future study of the models 
with hyperspectral data and numerous endmembers may 
reveal additional differences between the algorithm’s 
performances. 
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