
 

 

Abstract— Differential calculus was used to obtain the 

ordinary differential equations (ODE) of the probability 

density function (PDF), Quantile function (QF), survival 

function (SF) and hazard function (HF) of the Logistic and 

Log-Logistic distributions. The parameters and support that 

define the distribution inevitably determine the nature, 

existence, uniqueness and solution of the ODEs. The method 

can be extended to other probability distributions, functions 

and can serve an alternative to estimation and approximation. 

Computer codes and programs can be used for the 

implementation.      

              

Index Terms— Differential calculus, quantile function, 

hazard function, reversed hazard function, inverse survival 

function, survival function, Logistic distribution.  

 

I. INTRODUCTION 

ALCULUS in general and differential calculus in 

particular is often used in statistics in parameter and 

modal estimations. The method of maximum likelihood is 

an example.   

Differential equations often arise from the understanding 

and modeling of real life problems or some observed 

physical phenomena. Approximations of probability 

functions are one of the major areas of application of 

calculus and ordinary differential equations in mathematical 

statistics. The approximations are helpful in the recovery of 

the probability functions of complex distributions [1-5]. 

 Apart from mode estimation, parameter estimation and 

approximation, probability density function (PDF) of 

probability distributions can be expressed as ODE whose 

solution is the PDF. Some of which are available. They 

include: beta distribution [6], Lomax distribution [7], beta 

prime distribution [8], Laplace distribution [9] and raised 

cosine distribution [10]. 

The aim of this paper is to develop homogenous ordinary 

differential equations for the probability density function 

(PDF), Quantile function (QF), survival function (SF) and 

hazard function (HF) of the Logistic and log-Logistic 

distribution. The cases for the inverse survival function 
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(ISF) and reversed hazard function (RHF) were not 

considered because of their complexity. This will also help 

to provide the answers as to whether there are discrepancies 

between the support of the distribution and the conditions 

necessary for the existence of the ODEs. Similar results for 

other distributions have been proposed, see [11-24] for 

details.                                                                                                                                  

Logistic is a well-known continuous distribution whose 

cumulative distribution function is the logistic function [25]. 

Dubey [26] noted that the distribution is one of special cases 

of compound generalized extreme distribution                                                                                                         

Several aspects of the distribution have been studied by 

different researchers such as: shape of the distribution [27], 

approximation of the distribution to the cumulative normal 

distribution [28], statistical tests [29] and order statistics 

[30].                                                                                                                                

Bayesian inference, parameter estimation, maximum 

likelihood estimation about the distribution has been studied 

extensively. The details can be found in [31-36].                                  

Some generalizations of the distribution includes: class of 

bivariate Logistic distributions by [37], generalization [38], 

Gumbel bivariate Logistic distribution [39], logit logistic 

distribution [40], skew logistic distribution [41], logistic-

uniform distribution [42], some generalized Logistic-X 

distributions [43], half and generalized half logistic 

distribution of type I [44] and [45].                                                                                                                                           

Applications include: testing the reliability of economic plan 

[46] and modeling of water demand [47].  

The log-logistic distribution is the probability distribution 

of a random variable whose logarithm has a logistic 

distribution. It is similar in shape to the log-normal 

distribution but is characterized by heavy tails.                                                                                                                                                                                           

Differential calculus was used to obtain the results. 

 

II. LOGISTIC DISTRIBUTION 

A. Probability Density Function 

 

The probability density function of the Logistic distribution 

is given in three forms;          
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To obtain the first order ordinary differential equation for 

the probability density function of the Logistic distribution, 

differentiate equation (1), to obtain;    
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Differentiate equation (3) to obtain a first order ODE;     
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Squaring both sides of the equation;           
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Appling the trigonometric identity to equation (9);    

  
2 2tanh sech 1

2 2

x x

s s

     
    

   
             

(10)                            Substitute equation (10) into equation 

(9);                  

 

2
2 2

2

( )
( ) sech 1

2

f x x
f x

s s

   
    

  
         (11)                                       

Equation (3) can also be simplified as;           
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Substitute equation (12) into equation (11);                  
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The first order ODE for the probability density function of 

the Logistic distribution  is given as;          
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A special case is considered which showed the 

trigonometric nature of the Logistic distribution. This is 

when 0   and 1s  is substituted in equation (6), to 

obtain;        
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   (16)            

Higher order ODEs for the PDF of the Logistic distribution 

can be obtained from equation (14). See [11-24] for similar 

results.    

 

B. Quantile Function 

 

The Quantile function of the Logistic distribution is given 

as;           

 ( ) ln
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Differentiate equation (17);           
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The first order ordinary differential for the Quantile function 

of the Logistic distribution  is given as;         

 (1 ) ( ) 0p p Q p s                                        (19)         
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Special cases of equation (19) are considered;                                                

Case I; When 0.25p             

 3 ( ) 16 0Q p s                                                (21)         

Case II; When 0.50p             

 ( ) 4 0Q p s                                                    (22)         

Case III; When 0.75p             

 3 ( ) 16 0Q p s                                                (23)         

Differentiate equation (18), to obtain the second order ODE;
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(24)       Two ODEs can be obtained from further 

simplification of equations (24);                             

ODE 1                                                                                                                                                            

Using equation (18) in (24);                               
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ODE 2                                                                                                                                                          

Using the simplified form of equation (18) given as;                        
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Substitute equation (28) into equation (26);                                     
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Differentiate equation (24), to obtain the third order ODE; 
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Three ODEs can be obtained from the simplification of 

equations (32);                                                                                

ODE 1;                                                                                                                      

Simplify equation (32) using equation (18);            
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ODE 2;                                                                                                           

The following equations obtained from the simplifications 

of equations (18) or (28) is needed to obtain the ordinary 

differential equation.                                        
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Substitute equations (36) and (37) into equation (33);   
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ODE 3;                                                                                                                          

Equation (32) can also be written as;        
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Substitute equations (18) and (24) into equation (40);   
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See [11-24] for similar results. 

 

 

C. Survival Function 

 

The Survival function of the Logistic distribution is given 

as; 
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The first order ODE for the Survival function of the 

Logistic distribution  is given as;    
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Higher  order ODEs for the survival function of the Logistic 

distribution can be obtained from equation (47). See [11-24] 

for similar results. 

 

 

D. Hazard Function 

 

The Hazard function of the Logistic distribution is given as; 
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Differentiate equation (49);                                
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Higher order ODEs can be obtained;        
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Using equations (51), (54) and (56) on the results of the 

PDF of the Logistic distribution, the following ordinary 

differential equations can be obtained for the Hazard 

function.  

 Equation (14) becomes;          
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See [11-24] for similar results.      

 

III. LOG-LOGISTIC DISTRIBUTION 

A. Probability Density Function 

 

The probability density function of the Log-logistic 

distribution is given by;          
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Differentiate equation (59);               

 

2

1

3
1

2

1

( ) ( )
2

1

1

x

x

f x f x
x x

x





 





 





  












   
  

  
  
  

   
                   

   
        

   (60)      

 

1
2

1
( ) ( )

1

x

f x f x
x x







  



 
  
      

   
       

          (61)        

Special cases are considered.                      

Case I; When 1   , equation (61) becomes;    

 1 1

2
( ) ( )

1
f x f x

x
  


                                      (62)      

 1 1(1 ) ( ) 2 ( ) 0x f x f x                                 (63)      

Case I; When 1  , equation (61) becomes;      

  2 2

2
( ) ( )f x f x

x
  


                              (64)      

 2 2(1 ) ( ) 2 ( ) 0x f x f x                                 (65)         

Differentiate equation (61);              

 

2
2 1

22

2

2
1

1

( ) ( )

1
2

1

x

x x

f x f x

x

x











 





 







                   
   
          

   
   
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      (66)         

The following equations obtained from (61) is helpful in the 

simplification of equation (66). 
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                  (67)       
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2
2 1

2

2

1 1 ( )

4 ( )
1

x

f x

x f xx







  



    
              

    
     

     (69)        

 

1

1 ( )

2 ( )
1

x

f x

x f xx





 







 
       

    
     

      (70)        
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       
     

                                                                              (71)                                   
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Substitute equations (67), (69) and (71) into equation (66);  
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      
      

    
     
    




  

                                                                                   (72)                                

The simplification of equation (72) yield the required ODE. 

Moreover two cases are considered.                                                                                                           

Case I; When 1   , equation (72) becomes;    

 

23 ( )
( )

2 ( )

f x
f x

f x


                                                       (73)         

 
22 ( ) ( ) 3 ( ) 0f x f x f x                                      (74)      

See [11-24] for similar results.    

 

B. Quantile Function 

 

The Quantile function of the Log-logistic distribution is 

given by;            

 

1

( )
1

p
Q p

p




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                             (75)                       

Differentiate equation (75);               
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    (76)          
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                                                                                    (77)          

The first order ODE for the Quantile function of the Log-

logistic distribution  is given as;  

 (1 ) ( ) ( ) 0p p Q p Q p                                (78)           
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10 9
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


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   

                                 (79)              

Differentiate equation (77) to obtain the second order ODE;
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                        (80)          
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                                                                                      (81)          

The second order ODE for the Quantile function of the Log-

logistic distribution  is given as;           
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                         (83)         

Differentiate equation (80) to obtain the third order ODE;      
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                                                                                         (84)          

 

2 2

2 2

3 3

3 3

( ) 2( (1 ) ) ( )
( )

(1 ) (1 )

2( (1 ) ) ( )

(1 )

Q p p p Q p
Q p

p p p p

p p Q p

p p


  

  
 

 




  (85)         

The second order ODE for the Quantile function of the Log-

logistic distribution  is given as;           
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                     (87)     

See [11-24] for similar results.    

 

C. Survival Function 

 

The Survival function of the Log-logistic distribution is 

given by;             
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                                 (88)                       

Differentiate equation (88);          
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 ( ) ( ) 0S t f t                                           (90)         
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1
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
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
                                         (91)        

The ODE can be obtained for any given parameters of the 

distribution. See [11-24] for similar results.      
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E. Hazard Function 

 

The Hazard function of the Log-logistic distribution is given 

by;             
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Differentiate equation (92);                       
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    (93)           
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The first order ODE for the Hazard function of the Log-

logistic distribution  is given as;  
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1

h








                                         (97)                    

See [11-24] for similar results.    

                     

IV. CONCLUDING REMARKS 

Ordinary differential equations (ODEs) has been obtained 

for the probability density function (PDF), Quantile function 

(QF), survival function (SF) and hazard function (HF) of 

Logistic and log-logistic distributions. This differential 

calculus and efficient algebraic simplifications were used to 

derive the various classes of the ODEs. The parameter and 

the supports that characterize the distributions determine the 

nature, existence, orientation and uniqueness of the ODEs. 

The results are in agreement with those available in 

scientific literature. Furthermore several methods can be 

used to obtain desirable solutions to the ODEs [47-54]. This 

method of characterizing distributions cannot be applied to 

distributions whose PDF or CDF are either not 

differentiable or the domain of the support of the 

distribution contains singular points.       
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